research communications
r-1,c-2-dibenzoyl-t-3,t-4-bis(2-nitrophenyl)cyclobutane
ofaCentro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif. IC8 Complejo de Ciencias, C.U., 72570 Puebla, Pue., Mexico, bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico, cFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico, and dIngeniería en Biotecnología, Universidad Politécnica Metropolitana de Puebla, Popocatépetl s/n, Tres Cerritos, 72480 Puebla, Pue., Mexico
*Correspondence e-mail: jaime.vazquez@metropoli.edu.mx
The condensation reaction of acetophenone (1-phenylethan-1-one) with 2-nitrobenzaldehyde in the molten state yielded the expected chalcone, (E)-3-(2-nitrophenyl)-1-phenylprop-2-en-1-one, and, unexpectedly, the title compound, C30H22N2O6, which results from the syn head-to-head [2 + 2] cycloaddition of the chalcone. The molecular structure of the dimer shows that the four benzene rings of the substituents are oriented in such a way that potential is minimized, whilst allowing some degree of intermolecular π–π interactions for crystal stabilization. In the molecule, one nitro group is disordered over two positions, with occupancies for each part of 0.876 (7) and 0.127 (7).
Keywords: crystal structure; cyclobutane; truxillic isomer; truxinic isomer; chalcone.
CCDC reference: 1583527
1. Chemical context
The [2 + 2]-photocycloaddition reaction is the most frequently used ). On the other hand, [2 + 2] cycloaddition may be also a key tool for the synthesis of some natural compounds including a functionalized cyclobutane ring, for example sceptrin, isolated from a marine sponge (Ma et al., 2014), ediandrin, isolated from the roots of an Australian rainforest plant (Davis et al., 2009), or incarvillateine, isolated from the aerial parts of a wild plant found in China (Nakamura et al., 1999; Ichikawa et al., 2004).
to access four-membered carbon rings. An emblematic application of this large class of reactions is the synthesis of cage compounds such as cubane (Eaton & Cole, 1964The syntheses of these compounds generally involves photochemical dimerization of α,β-unsaturated carbonyl, or carboxyl compounds. Traditionally, these compounds have been synthesized through intermolecular [2 + 2]-photocycloaddition reaction of 1,3-diarylprop-2-en-1-ones (also known as chalcones) in solution (Kumar et al., 2017), or in the solid state and molten state, under UV irradiation. The cycloaddition of (E)-chalcones may give four possible namely syn/anti, head-to-head and head-to-tail (Fig. 1), depending on the physical state of the substrate (solid, solution or molten state) and on other reaction conditions, such as the type of glassware used for the workup.
Herein we report the synthesis and structure of a new chalcone dimer, obtained fortuitously while preparing the monomeric chalcone (see Scheme). The title compound corresponds to the syn head-to-head stereoisomer (Fig. 1a), which could arise from a supra–supra bonding interaction between the singly occupied molecular orbital (SOMO) of one chalcone and the lowest unoccupied molecular orbital (LUMO) of the other one (Fig. 1e; Smith, 2016). Since we detected only one stereoisomer corresponding to the cycloaddition product in the mixture of the reaction carried out under sunlight, we assume that dimerization is actually performed via this mechanism. Indeed, the proposed mechanism is consistent with the structure reported herein.
2. Structural commentary
The topochemical solid-state dimerization of the chalcone (E)-3-(2-nitrophenyl)-1-phenylprop-2-en-1-one resulted in the title tetrasubstituted cyclobutane derivative (Fig. 2). The rctt (cis, trans, trans) relative stereochemistry of the substituents is identical to that of β-truxinic acid, obtained by photodimerization of cinnamic acid (Hein, 2006), indicating that dimerization occurred via a syn head-to-head [2 + 2] cycloaddition of the chalcone.
The molecule potentially belongs to the Cs but crystallizes in a general position in P. The cyclobutane ring is thus non-planar, unlike many head-to-tail photodimerizations adducts, which crystallize with the ring placed about an inversion centre (see Database survey section). However, the departure from planarity is very small, the dihedral angle between the C1/C2/C3 and C1/C4/C3 mean planes being 3.6 (2)°. Some other rctt tetrasubstituted cyclobutane derivatives have a more marked butterfly conformation, which apparently results from steric restrictions imposed by bulky substituents (e.g. Strabler et al., 2013). In the case of the title compound, the cis benzoyl and nitrobenzene groups are oriented in such a way that intramolecular π–π or C—H⋯π contacts are avoided. The shortest centroid-to-centroid separation is larger than 4.2 Å, for the nitrobenzene rings, which form a dihedral angle of 45.73 (8)°. In contrast, an intermolecular π–π contact is formed by parallel C11–C16 mnitobenzene rings related by an inversion centre. In that case, the separation between the rings is 3.883 (1) Å. These features seem to indicate that the molecular conformation is optimized in order to avoid whilst at the same time allowing an efficient packing for the crystal stabilization.
The geometry of the cyclobutane ring matches the statistics computed by MOGUL (Bruno et al., 2004). The C—C bond lengths range from 1.542 (2) to 1.580 (3) Å and the C—C—C angles range from 88.90 (13) to 90.76 (13)° (MOGUL medians: m = 1.558–1.565 Å and m = 88.7–89.5°, respectively). On the other hand, the average of absolute values for torsion angle defined by the four C atoms of the cyclobutane ring is 〈|δ|〉 = 2.52 (2)°. All these features support the conclusion reached by another research group who determined the structure of a closely related compound, namely a cyclobutane substituted by two benzoyl and two methoxyphenyl groups (Steyl et al., 2005): the total distortion of the cyclobutane ring increases while additional functionalization of the benzene rings is achieved, due mainly to steric effects. In that sense, the title molecule belongs to the class of cyclobutane derivatives exhibiting almost no puckering distortion.
3. Database survey
A survey of the current organic sub-set of the CSD database (CSD 5.38 updated May 2017; Groom et al., 2016) was performed for cyclobutane derivatives formulated C4H4R2R′2 where R and R′ are two different substituents. The data set was limited to cyclobutanes for which each C atom is substituted by exactly one H atom and one non-H substituent, and all hits for which the cyclobutane is fused with one or various cyclic systems were omitted. The resulting hits for which 3D coordinates are available were checked by hand in order to eliminate cyclobutanes substituted by three or four different substituents and those for which the four substituents are identical. Finally, structures determined several times were filtered to avoid statistical bias, and some severely disordered cases unsuitable for geometric computations were also deleted. The final working set contained 225 cyclobutanes C4H4R2R′2 comparable with the title compound (see deposited Excel file).
Within this set, 77% of the cyclobutanes result formally from a head-to-tail dimerization (known as truxillic type), many of them (108) with the cyclobutane lying on a special position. The remaining 23% result formally from a head-to-head dimerization (known as truxinic type), and only one of them displays C2; Ma et al., 2014). Although the truxillic cyclobutanes thus have a marked tendency to be more `symmetric' than the truxinic co-set, both groups are very similar regarding their conformational flexibility. The range of distortion accessible for the cyclobutane ring may be estimated by plotting the geometric parameters describing the conformation of the ring: bond lengths, angles, and torsion angles (Figs. 3 and 4). The distributions observed for 52 truxinic cyclobutanes (Fig. 3) and 174 truxillic cyclobutanes (Fig. 4) are almost identical, with the exception of the accumulation of data at bond angles of 90° in the latter, due to the occurrence of rings planar by symmetry. The same applies to the distortion of the rings in both groups, for example, for the functions τ = τ(θ), where θ is a bond angle and τ a torsion angle (blue curves in Figs. 3 and 4). Indeed, these distributions are perfectly fitted using the same power function in both groups: τ = 15(θ − 90)0.5, where τ and θ are expressed in degrees.
(cyclobutane of sceptrin, placed on a twofold axis inThe title compound belongs to the truxinic group, and exhibits a very small distortion for the cyclobutane ring, compared to other truxinic derivatives (see black dots in Fig. 3). Only three other related truxinic derivatives for which the X-ray structures have been published present a more planar cyclobutane ring. It thus appears that the substituents in the title molecule, benzoyl and 2-nitrophenyl, have very little steric influence on the central ring.
4. Synthesis and crystallization
A mixture of acetophenone (0.52 g, 4.38 mmol), 2-nitrobenzaldehyde (0.66 g, 4.38 mmol) and solid NaOH pellets (0.17 g, 4.38 mmol) were ground in an agate mortar with a pestle, at room temperature, for 23 min. The reaction proceeds exothermically (as noted by a rise in temperature of about 5–12 K). The progress of the reaction was monitored by TLC. After completion, the mixture was diluted with CH2Cl2 and washed with brine. The organic layer was separated, dried over MgSO4 and evaporated under reduced pressure. The crude product was purified by using silica-gel and hexanes–ethyl acetate 4:1 as to give the expected chalcone and the title compound (0.66 g, 30%), as brown and colourless solids, respectively. Cyclobutane derivative: m.p. 517 K. FT–IR νmax/cm−1 1659 (C=O), 1557, 1348 (NO2). 1H NMR (500 MHz, CDCl3) δ/ppm: 7.81–7.33 (18H, m, ArH), 5.22 (2H, m, CH) and 4.87 (2H, m, CH). 13C NMR (125 MHz, CDCl3) δ/ppm: 44.3, 46.8, 125.0, 128.3, 129.4, 129.6, 130.4, 133.1, 134.7, 136.7, 137.5, 148.6, 196.9. HRMS (EI) calculated for C30H22N2O6 (M+) 506.1478; found 506.1477.
5. Refinement
Crystal data, data collection and structure . One of the nitro groups is disordered by rotation about its C—NO2 bond, and was refined with two parts for the O atoms: O1A/O2A with occupancy 0.876 (7) and O1B/O2B with occupancy 0.124 (7). These four sites were restrained to have similar displacement parameters, with standard deviation of 0.04 Å2. The same restriction was applied to the O atoms of the other nitro group, O3/O4, given that this nitro group is probably also affected by disorder, although we were unable to refine a suitable model on the basis of the room temperature data for this group. The C-bound H atoms were treated as riding atoms in geometrically idealized positions: C—H 0.93–0.98 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 1Supporting information
CCDC reference: 1583527
https://doi.org/10.1107/S2056989017015936/ex2002sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017015936/ex2002Isup2.hkl
excel file for statistic analysis. DOI: https://doi.org/10.1107/S2056989017015936/ex2002sup3.txt
Supporting information file. DOI: https://doi.org/10.1107/S2056989017015936/ex2002Isup4.cml
Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).C30H22N2O6 | F(000) = 528 |
Mr = 506.49 | Dx = 1.341 Mg m−3 |
Triclinic, P1 | Melting point: 517 K |
a = 7.2599 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.5614 (5) Å | Cell parameters from 5272 reflections |
c = 16.7351 (8) Å | θ = 3.6–27.9° |
α = 78.863 (4)° | µ = 0.10 mm−1 |
β = 87.472 (5)° | T = 295 K |
γ = 85.238 (5)° | Prism, colourless |
V = 1254.13 (13) Å3 | 0.37 × 0.20 × 0.15 mm |
Z = 2 |
Agilent Xcalibur Atlas Gemini diffractometer | 5116 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3292 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
Detector resolution: 10.5564 pixels mm-1 | θmax = 26.4°, θmin = 3.1° |
ω scans | h = −9→8 |
Absorption correction: analytical (CrysAlis PRO; Agilent, 2013) | k = −13→13 |
Tmin = 0.962, Tmax = 0.983 | l = −20→20 |
25649 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.164 | w = 1/[σ2(Fo2) + (0.0762P)2 + 0.1873P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
5116 reflections | Δρmax = 0.27 e Å−3 |
363 parameters | Δρmin = −0.27 e Å−3 |
24 restraints | Extinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 constraints | Extinction coefficient: 0.011 (3) |
Primary atom site location: structure-invariant direct methods |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.6552 (3) | 0.64030 (16) | 0.23390 (11) | 0.0415 (4) | |
H1A | 0.548307 | 0.694892 | 0.209849 | 0.050* | |
C2 | 0.6594 (3) | 0.63982 (16) | 0.32828 (11) | 0.0406 (4) | |
H2A | 0.558141 | 0.699162 | 0.342918 | 0.049* | |
C3 | 0.8388 (3) | 0.71065 (17) | 0.31510 (11) | 0.0415 (4) | |
H3A | 0.942691 | 0.650434 | 0.336831 | 0.050* | |
C4 | 0.8326 (3) | 0.71816 (17) | 0.22142 (11) | 0.0414 (4) | |
H4A | 0.938656 | 0.668933 | 0.200920 | 0.050* | |
C5 | 0.6680 (3) | 0.51217 (17) | 0.20721 (11) | 0.0466 (5) | |
C6 | 0.5325 (3) | 0.4711 (2) | 0.16339 (15) | 0.0648 (6) | |
C7 | 0.5406 (5) | 0.3472 (3) | 0.1475 (2) | 0.0961 (10) | |
H7A | 0.447643 | 0.322545 | 0.118570 | 0.115* | |
C8 | 0.6849 (5) | 0.2614 (3) | 0.1744 (2) | 0.0980 (10) | |
H8A | 0.690019 | 0.177555 | 0.164369 | 0.118* | |
C9 | 0.8229 (5) | 0.2982 (2) | 0.21645 (17) | 0.0815 (8) | |
H9A | 0.922486 | 0.239823 | 0.234101 | 0.098* | |
C10 | 0.8140 (3) | 0.4216 (2) | 0.23247 (13) | 0.0591 (6) | |
H10A | 0.908604 | 0.445158 | 0.261050 | 0.071* | |
C11 | 0.6561 (3) | 0.51184 (17) | 0.38742 (11) | 0.0424 (4) | |
C12 | 0.5073 (3) | 0.43324 (18) | 0.39869 (12) | 0.0466 (5) | |
C13 | 0.5125 (3) | 0.3138 (2) | 0.45159 (13) | 0.0564 (6) | |
H13A | 0.410934 | 0.264323 | 0.456958 | 0.068* | |
C14 | 0.6658 (4) | 0.2693 (2) | 0.49537 (13) | 0.0637 (6) | |
H14A | 0.670172 | 0.189494 | 0.530677 | 0.076* | |
C15 | 0.8138 (3) | 0.3437 (2) | 0.48669 (14) | 0.0646 (6) | |
H15A | 0.919549 | 0.314127 | 0.516170 | 0.078* | |
C16 | 0.8071 (3) | 0.4627 (2) | 0.43438 (13) | 0.0565 (6) | |
H16A | 0.908810 | 0.511744 | 0.430641 | 0.068* | |
C17 | 0.8343 (3) | 0.83090 (18) | 0.35266 (11) | 0.0449 (5) | |
C18 | 0.9976 (3) | 0.91010 (17) | 0.34225 (11) | 0.0448 (5) | |
C19 | 0.9958 (3) | 1.0116 (2) | 0.38363 (15) | 0.0633 (6) | |
H19A | 0.892064 | 1.031224 | 0.414871 | 0.076* | |
C20 | 1.1465 (4) | 1.0838 (3) | 0.37887 (18) | 0.0789 (8) | |
H20A | 1.144193 | 1.151593 | 0.407100 | 0.095* | |
C21 | 1.3000 (4) | 1.0563 (3) | 0.33276 (17) | 0.0766 (8) | |
H21A | 1.401455 | 1.105457 | 0.329712 | 0.092* | |
C22 | 1.3038 (3) | 0.9565 (2) | 0.29124 (15) | 0.0642 (6) | |
H22A | 1.407992 | 0.937882 | 0.259970 | 0.077* | |
C23 | 1.1527 (3) | 0.8830 (2) | 0.29563 (13) | 0.0527 (5) | |
H23A | 1.155681 | 0.815337 | 0.267201 | 0.063* | |
C24 | 0.7924 (3) | 0.84768 (18) | 0.16696 (12) | 0.0438 (5) | |
C25 | 0.8062 (3) | 0.85576 (19) | 0.07748 (12) | 0.0469 (5) | |
C26 | 0.7499 (3) | 0.9703 (2) | 0.02607 (14) | 0.0623 (6) | |
H26A | 0.703596 | 1.041174 | 0.048177 | 0.075* | |
C27 | 0.7615 (4) | 0.9808 (3) | −0.05686 (15) | 0.0782 (8) | |
H27A | 0.723599 | 1.058504 | −0.090560 | 0.094* | |
C28 | 0.8287 (4) | 0.8769 (3) | −0.09014 (15) | 0.0817 (8) | |
H28A | 0.836448 | 0.884338 | −0.146453 | 0.098* | |
C29 | 0.8843 (4) | 0.7627 (3) | −0.04106 (15) | 0.0809 (8) | |
H29A | 0.929398 | 0.692340 | −0.063924 | 0.097* | |
C30 | 0.8737 (4) | 0.7515 (2) | 0.04271 (14) | 0.0647 (6) | |
H30A | 0.911977 | 0.673403 | 0.075957 | 0.078* | |
N6 | 0.3729 (4) | 0.5581 (3) | 0.13166 (19) | 0.0906 (8) | |
O1A | 0.3951 (6) | 0.6676 (4) | 0.1010 (3) | 0.1231 (16) | 0.876 (7) |
O2A | 0.2222 (4) | 0.5095 (3) | 0.1392 (2) | 0.1287 (16) | 0.876 (7) |
O1B | 0.307 (5) | 0.642 (4) | 0.154 (3) | 0.149 (13) | 0.124 (7) |
O2B | 0.360 (5) | 0.567 (3) | 0.0504 (17) | 0.209 (16) | 0.124 (7) |
N12 | 0.3353 (2) | 0.47251 (18) | 0.35551 (12) | 0.0607 (5) | |
O3 | 0.2211 (3) | 0.3957 (2) | 0.3593 (2) | 0.1493 (13) | |
O4 | 0.3067 (2) | 0.58039 (15) | 0.31765 (11) | 0.0740 (5) | |
O17 | 0.7042 (2) | 0.85530 (15) | 0.39699 (10) | 0.0658 (5) | |
O24 | 0.7394 (2) | 0.94134 (13) | 0.19653 (9) | 0.0615 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0485 (11) | 0.0308 (9) | 0.0445 (10) | −0.0046 (8) | −0.0076 (8) | −0.0030 (8) |
C2 | 0.0457 (10) | 0.0316 (9) | 0.0440 (10) | −0.0048 (8) | −0.0007 (8) | −0.0055 (8) |
C3 | 0.0470 (10) | 0.0339 (10) | 0.0421 (10) | −0.0059 (8) | −0.0030 (8) | −0.0023 (8) |
C4 | 0.0483 (11) | 0.0326 (10) | 0.0421 (10) | −0.0035 (8) | 0.0017 (8) | −0.0049 (8) |
C5 | 0.0628 (13) | 0.0345 (10) | 0.0422 (11) | −0.0086 (9) | 0.0004 (9) | −0.0051 (8) |
C6 | 0.0732 (16) | 0.0551 (14) | 0.0720 (15) | −0.0143 (12) | −0.0027 (12) | −0.0229 (12) |
C7 | 0.113 (2) | 0.0699 (19) | 0.122 (3) | −0.0273 (18) | −0.004 (2) | −0.0510 (18) |
C8 | 0.141 (3) | 0.0449 (15) | 0.117 (3) | −0.0163 (18) | 0.019 (2) | −0.0380 (16) |
C9 | 0.120 (2) | 0.0465 (14) | 0.0735 (17) | 0.0141 (14) | 0.0103 (16) | −0.0105 (12) |
C10 | 0.0822 (16) | 0.0420 (12) | 0.0506 (12) | 0.0059 (11) | −0.0009 (11) | −0.0074 (9) |
C11 | 0.0531 (11) | 0.0351 (10) | 0.0397 (10) | −0.0077 (8) | 0.0028 (8) | −0.0076 (8) |
C12 | 0.0520 (12) | 0.0402 (11) | 0.0480 (11) | −0.0092 (9) | 0.0055 (9) | −0.0082 (8) |
C13 | 0.0727 (15) | 0.0432 (12) | 0.0525 (12) | −0.0185 (11) | 0.0069 (11) | −0.0035 (9) |
C14 | 0.0940 (18) | 0.0417 (12) | 0.0511 (13) | −0.0135 (12) | −0.0039 (12) | 0.0056 (10) |
C15 | 0.0793 (16) | 0.0530 (13) | 0.0561 (13) | −0.0101 (12) | −0.0166 (11) | 0.0084 (10) |
C16 | 0.0667 (14) | 0.0472 (12) | 0.0531 (12) | −0.0158 (10) | −0.0126 (10) | 0.0037 (9) |
C17 | 0.0540 (12) | 0.0406 (11) | 0.0396 (10) | −0.0094 (9) | −0.0002 (9) | −0.0045 (8) |
C18 | 0.0523 (11) | 0.0374 (10) | 0.0425 (10) | −0.0107 (9) | −0.0059 (9) | 0.0019 (8) |
C19 | 0.0747 (15) | 0.0518 (13) | 0.0689 (15) | −0.0207 (11) | 0.0016 (12) | −0.0192 (11) |
C20 | 0.094 (2) | 0.0624 (16) | 0.0895 (19) | −0.0351 (14) | −0.0022 (16) | −0.0237 (14) |
C21 | 0.0775 (18) | 0.0671 (17) | 0.0843 (18) | −0.0349 (14) | −0.0142 (14) | 0.0031 (14) |
C22 | 0.0563 (13) | 0.0607 (15) | 0.0687 (15) | −0.0143 (11) | −0.0032 (11) | 0.0093 (12) |
C23 | 0.0547 (12) | 0.0450 (12) | 0.0552 (12) | −0.0096 (10) | −0.0055 (10) | 0.0022 (9) |
C24 | 0.0495 (11) | 0.0356 (10) | 0.0455 (11) | −0.0080 (8) | 0.0035 (8) | −0.0047 (8) |
C25 | 0.0509 (11) | 0.0442 (11) | 0.0444 (11) | −0.0103 (9) | 0.0007 (9) | −0.0029 (9) |
C26 | 0.0765 (15) | 0.0528 (13) | 0.0530 (13) | 0.0000 (11) | −0.0017 (11) | −0.0003 (10) |
C27 | 0.0956 (19) | 0.0791 (18) | 0.0502 (14) | 0.0041 (15) | −0.0057 (13) | 0.0078 (13) |
C28 | 0.106 (2) | 0.094 (2) | 0.0416 (13) | −0.0032 (17) | −0.0048 (13) | −0.0059 (14) |
C29 | 0.114 (2) | 0.0783 (18) | 0.0509 (14) | 0.0014 (15) | 0.0051 (14) | −0.0198 (13) |
C30 | 0.0890 (17) | 0.0526 (13) | 0.0501 (13) | −0.0018 (12) | 0.0024 (11) | −0.0066 (10) |
N6 | 0.0822 (18) | 0.0880 (19) | 0.114 (2) | −0.0055 (17) | −0.0415 (15) | −0.0410 (19) |
O1A | 0.133 (3) | 0.084 (2) | 0.150 (4) | −0.005 (2) | −0.085 (3) | 0.002 (2) |
O2A | 0.0728 (18) | 0.148 (3) | 0.183 (4) | −0.0225 (16) | −0.0267 (17) | −0.064 (2) |
O1B | 0.15 (2) | 0.12 (2) | 0.19 (3) | 0.075 (19) | −0.081 (19) | −0.08 (2) |
O2B | 0.27 (3) | 0.25 (3) | 0.12 (2) | 0.09 (2) | −0.13 (2) | −0.109 (19) |
N12 | 0.0526 (11) | 0.0481 (11) | 0.0804 (13) | −0.0163 (9) | 0.0023 (9) | −0.0054 (10) |
O3 | 0.1017 (17) | 0.0876 (15) | 0.241 (3) | −0.0563 (14) | −0.0743 (18) | 0.0496 (17) |
O4 | 0.0612 (10) | 0.0490 (10) | 0.1066 (14) | −0.0061 (8) | −0.0150 (9) | 0.0015 (9) |
O17 | 0.0734 (10) | 0.0636 (10) | 0.0683 (10) | −0.0249 (8) | 0.0213 (8) | −0.0288 (8) |
O24 | 0.0923 (11) | 0.0372 (8) | 0.0528 (9) | 0.0021 (7) | −0.0004 (8) | −0.0066 (7) |
C1—C5 | 1.499 (3) | C16—H16A | 0.9300 |
C1—C4 | 1.569 (3) | C17—O17 | 1.217 (2) |
C1—C2 | 1.580 (3) | C17—C18 | 1.491 (3) |
C1—H1A | 0.9800 | C18—C19 | 1.383 (3) |
C2—C11 | 1.514 (2) | C18—C23 | 1.384 (3) |
C2—C3 | 1.542 (2) | C19—C20 | 1.375 (3) |
C2—H2A | 0.9800 | C19—H19A | 0.9300 |
C3—C17 | 1.519 (3) | C20—C21 | 1.371 (4) |
C3—C4 | 1.557 (3) | C20—H20A | 0.9300 |
C3—H3A | 0.9800 | C21—C22 | 1.368 (4) |
C4—C24 | 1.504 (3) | C21—H21A | 0.9300 |
C4—H4A | 0.9800 | C22—C23 | 1.387 (3) |
C5—C10 | 1.390 (3) | C22—H22A | 0.9300 |
C5—C6 | 1.397 (3) | C23—H23A | 0.9300 |
C6—C7 | 1.380 (3) | C24—O24 | 1.217 (2) |
C6—N6 | 1.469 (4) | C24—C25 | 1.483 (3) |
C7—C8 | 1.359 (5) | C25—C26 | 1.385 (3) |
C7—H7A | 0.9300 | C25—C30 | 1.387 (3) |
C8—C9 | 1.372 (4) | C26—C27 | 1.370 (3) |
C8—H8A | 0.9300 | C26—H26A | 0.9300 |
C9—C10 | 1.376 (3) | C27—C28 | 1.369 (4) |
C9—H9A | 0.9300 | C27—H27A | 0.9300 |
C10—H10A | 0.9300 | C28—C29 | 1.363 (4) |
C11—C16 | 1.383 (3) | C28—H28A | 0.9300 |
C11—C12 | 1.401 (3) | C29—C30 | 1.383 (3) |
C12—C13 | 1.393 (3) | C29—H29A | 0.9300 |
C12—N12 | 1.460 (3) | C30—H30A | 0.9300 |
C13—C14 | 1.360 (3) | N6—O1B | 1.09 (3) |
C13—H13A | 0.9300 | N6—O1A | 1.192 (4) |
C14—C15 | 1.369 (3) | N6—O2A | 1.238 (4) |
C14—H14A | 0.9300 | N6—O2B | 1.35 (2) |
C15—C16 | 1.384 (3) | N12—O3 | 1.198 (2) |
C15—H15A | 0.9300 | N12—O4 | 1.198 (2) |
C5—C1—C4 | 117.35 (16) | C16—C15—H15A | 119.7 |
C5—C1—C2 | 117.82 (14) | C11—C16—C15 | 123.0 (2) |
C4—C1—C2 | 88.90 (13) | C11—C16—H16A | 118.5 |
C5—C1—H1A | 110.4 | C15—C16—H16A | 118.5 |
C4—C1—H1A | 110.4 | O17—C17—C18 | 120.32 (18) |
C2—C1—H1A | 110.4 | O17—C17—C3 | 119.49 (17) |
C11—C2—C3 | 119.52 (15) | C18—C17—C3 | 119.87 (17) |
C11—C2—C1 | 118.78 (14) | C19—C18—C23 | 118.94 (19) |
C3—C2—C1 | 90.19 (13) | C19—C18—C17 | 118.30 (19) |
C11—C2—H2A | 109.0 | C23—C18—C17 | 122.71 (18) |
C3—C2—H2A | 109.0 | C20—C19—C18 | 120.4 (2) |
C1—C2—H2A | 109.0 | C20—C19—H19A | 119.8 |
C17—C3—C2 | 114.65 (15) | C18—C19—H19A | 119.8 |
C17—C3—C4 | 122.24 (15) | C21—C20—C19 | 120.4 (2) |
C2—C3—C4 | 90.76 (13) | C21—C20—H20A | 119.8 |
C17—C3—H3A | 109.2 | C19—C20—H20A | 119.8 |
C2—C3—H3A | 109.2 | C22—C21—C20 | 119.9 (2) |
C4—C3—H3A | 109.2 | C22—C21—H21A | 120.0 |
C24—C4—C3 | 119.06 (15) | C20—C21—H21A | 120.0 |
C24—C4—C1 | 110.24 (15) | C21—C22—C23 | 120.2 (2) |
C3—C4—C1 | 90.03 (13) | C21—C22—H22A | 119.9 |
C24—C4—H4A | 111.9 | C23—C22—H22A | 119.9 |
C3—C4—H4A | 111.9 | C18—C23—C22 | 120.1 (2) |
C1—C4—H4A | 111.9 | C18—C23—H23A | 119.9 |
C10—C5—C6 | 115.99 (19) | C22—C23—H23A | 119.9 |
C10—C5—C1 | 119.59 (18) | O24—C24—C25 | 121.40 (17) |
C6—C5—C1 | 124.18 (19) | O24—C24—C4 | 119.91 (17) |
C7—C6—C5 | 122.2 (3) | C25—C24—C4 | 118.55 (16) |
C7—C6—N6 | 116.4 (2) | C26—C25—C30 | 118.15 (19) |
C5—C6—N6 | 121.5 (2) | C26—C25—C24 | 119.69 (19) |
C8—C7—C6 | 119.8 (3) | C30—C25—C24 | 122.16 (18) |
C8—C7—H7A | 120.1 | C27—C26—C25 | 121.0 (2) |
C6—C7—H7A | 120.1 | C27—C26—H26A | 119.5 |
C7—C8—C9 | 120.1 (2) | C25—C26—H26A | 119.5 |
C7—C8—H8A | 120.0 | C28—C27—C26 | 120.0 (2) |
C9—C8—H8A | 120.0 | C28—C27—H27A | 120.0 |
C8—C9—C10 | 120.0 (3) | C26—C27—H27A | 120.0 |
C8—C9—H9A | 120.0 | C29—C28—C27 | 120.2 (2) |
C10—C9—H9A | 120.0 | C29—C28—H28A | 119.9 |
C9—C10—C5 | 122.0 (2) | C27—C28—H28A | 119.9 |
C9—C10—H10A | 119.0 | C28—C29—C30 | 120.1 (2) |
C5—C10—H10A | 119.0 | C28—C29—H29A | 120.0 |
C16—C11—C12 | 114.61 (17) | C30—C29—H29A | 120.0 |
C16—C11—C2 | 120.86 (16) | C29—C30—C25 | 120.5 (2) |
C12—C11—C2 | 124.52 (17) | C29—C30—H30A | 119.8 |
C13—C12—C11 | 122.70 (19) | C25—C30—H30A | 119.8 |
C13—C12—N12 | 115.67 (17) | O1A—N6—O2A | 124.8 (3) |
C11—C12—N12 | 121.63 (17) | O1B—N6—O2B | 114 (2) |
C14—C13—C12 | 120.2 (2) | O1B—N6—C6 | 129.1 (15) |
C14—C13—H13A | 119.9 | O1A—N6—C6 | 119.5 (3) |
C12—C13—H13A | 119.9 | O2A—N6—C6 | 115.7 (3) |
C13—C14—C15 | 119.0 (2) | O2B—N6—C6 | 111.4 (13) |
C13—C14—H14A | 120.5 | O3—N12—O4 | 120.1 (2) |
C15—C14—H14A | 120.5 | O3—N12—C12 | 119.1 (2) |
C14—C15—C16 | 120.5 (2) | O4—N12—C12 | 120.80 (17) |
C14—C15—H15A | 119.7 | ||
C5—C1—C2—C11 | −6.2 (2) | C14—C15—C16—C11 | −1.3 (4) |
C4—C1—C2—C11 | −126.84 (16) | C2—C3—C17—O17 | 8.2 (3) |
C5—C1—C2—C3 | 118.12 (17) | C4—C3—C17—O17 | 116.0 (2) |
C4—C1—C2—C3 | −2.51 (13) | C2—C3—C17—C18 | −178.33 (15) |
C11—C2—C3—C17 | −107.37 (19) | C4—C3—C17—C18 | −70.5 (2) |
C1—C2—C3—C17 | 128.91 (15) | O17—C17—C18—C19 | −0.5 (3) |
C11—C2—C3—C4 | 126.25 (17) | C3—C17—C18—C19 | −173.92 (18) |
C1—C2—C3—C4 | 2.53 (13) | O17—C17—C18—C23 | 176.93 (19) |
C17—C3—C4—C24 | −9.3 (3) | C3—C17—C18—C23 | 3.5 (3) |
C2—C3—C4—C24 | 110.78 (17) | C23—C18—C19—C20 | −0.4 (3) |
C17—C3—C4—C1 | −122.65 (18) | C17—C18—C19—C20 | 177.1 (2) |
C2—C3—C4—C1 | −2.55 (13) | C18—C19—C20—C21 | 0.3 (4) |
C5—C1—C4—C24 | 120.25 (17) | C19—C20—C21—C22 | −0.1 (4) |
C2—C1—C4—C24 | −118.70 (15) | C20—C21—C22—C23 | 0.0 (4) |
C5—C1—C4—C3 | −118.56 (16) | C19—C18—C23—C22 | 0.4 (3) |
C2—C1—C4—C3 | 2.49 (13) | C17—C18—C23—C22 | −177.02 (18) |
C4—C1—C5—C10 | 50.3 (2) | C21—C22—C23—C18 | −0.2 (3) |
C2—C1—C5—C10 | −54.1 (2) | C3—C4—C24—O24 | −10.5 (3) |
C4—C1—C5—C6 | −135.5 (2) | C1—C4—C24—O24 | 91.3 (2) |
C2—C1—C5—C6 | 120.1 (2) | C3—C4—C24—C25 | 173.63 (16) |
C10—C5—C6—C7 | 1.4 (4) | C1—C4—C24—C25 | −84.5 (2) |
C1—C5—C6—C7 | −173.0 (2) | O24—C24—C25—C26 | −3.1 (3) |
C10—C5—C6—N6 | −178.7 (2) | C4—C24—C25—C26 | 172.72 (19) |
C1—C5—C6—N6 | 7.0 (4) | O24—C24—C25—C30 | 177.2 (2) |
C5—C6—C7—C8 | −0.5 (5) | C4—C24—C25—C30 | −7.0 (3) |
N6—C6—C7—C8 | 179.5 (3) | C30—C25—C26—C27 | −0.4 (3) |
C6—C7—C8—C9 | −0.7 (5) | C24—C25—C26—C27 | 179.9 (2) |
C7—C8—C9—C10 | 1.0 (5) | C25—C26—C27—C28 | 0.3 (4) |
C8—C9—C10—C5 | −0.1 (4) | C26—C27—C28—C29 | 0.0 (4) |
C6—C5—C10—C9 | −1.1 (3) | C27—C28—C29—C30 | −0.3 (5) |
C1—C5—C10—C9 | 173.6 (2) | C28—C29—C30—C25 | 0.1 (4) |
C3—C2—C11—C16 | 5.1 (3) | C26—C25—C30—C29 | 0.2 (3) |
C1—C2—C11—C16 | 113.4 (2) | C24—C25—C30—C29 | 179.9 (2) |
C3—C2—C11—C12 | −173.80 (17) | C7—C6—N6—O1B | 153 (4) |
C1—C2—C11—C12 | −65.4 (2) | C5—C6—N6—O1B | −27 (4) |
C16—C11—C12—C13 | −1.4 (3) | C7—C6—N6—O1A | −137.9 (4) |
C2—C11—C12—C13 | 177.54 (18) | C5—C6—N6—O1A | 42.2 (5) |
C16—C11—C12—N12 | 178.28 (18) | C7—C6—N6—O2A | 41.9 (4) |
C2—C11—C12—N12 | −2.8 (3) | C5—C6—N6—O2A | −138.0 (3) |
C11—C12—C13—C14 | 0.5 (3) | C7—C6—N6—O2B | −56 (2) |
N12—C12—C13—C14 | −179.2 (2) | C5—C6—N6—O2B | 124 (2) |
C12—C13—C14—C15 | 0.1 (3) | C13—C12—N12—O3 | −9.5 (3) |
C13—C14—C15—C16 | 0.2 (4) | C11—C12—N12—O3 | 170.8 (3) |
C12—C11—C16—C15 | 1.8 (3) | C13—C12—N12—O4 | 169.5 (2) |
C2—C11—C16—C15 | −177.2 (2) | C11—C12—N12—O4 | −10.2 (3) |
Funding information
We are grateful to VIEP–BUAP for financial support. MVX and UHP thank CONACyT for their scholarships (297948 and 277416), project CONACyT 173585 and PRODEP UPMP-PTC-007.
References
Agilent (2013). CrysAlis PRO, Agilent Technologies Inc., Santa Clara, CA, USA.
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. Web of Science CSD CrossRef PubMed CAS
Cibin, F. R., Doddi, G. & Mencarelli, P. (2003). Tetrahedron, 59, 3455–3459. Web of Science CrossRef CAS
Davis, R. A., Barnes, E. C., Longden, J., Avery, V. M. & Healy, P. C. (2009). Bioorg. Med. Chem. 17, 1387–1392. Web of Science CSD CrossRef PubMed CAS
Eaton, P. E. & Cole, T. W. (1964). J. Am. Chem. Soc. 86, 3157–3158. CrossRef CAS Web of Science
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals
Hein, S. M. (2006). J. Chem. Educ. 83, 940–942. CrossRef CAS
Ichikawa, M., Takahashi, M., Aoyagi, S. & Kibayashi, C. (2004). J. Am. Chem. Soc. 126, 16553–16558. Web of Science CSD CrossRef PubMed CAS
Kumar, S., Salian, V. V., Narayana, B., Sarojini, B. K., Anthal, S. & Kant, R. (2017). Rasayan J. Chem. 10, 522–527.
Ma, Z., Wang, X., Wang, X., Rodriguez, R. A., Moore, C. E., Gao, S., Tan, X., Ma, Y., Rheingold, A. L., Baran, P. S. & Chen, C. (2014). Science, 346, 219–224. Web of Science CSD CrossRef CAS PubMed
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals
Nakamura, M., Chi, Y. M., Yan, W. M., Nakasugi, Y., Yoshizawa, T., Irino, N., Hashimoto, F., Kinjo, J., Nohara, T. & Sakurada, S. (1999). J. Nat. Prod. 62, 1293–1294. Web of Science CSD CrossRef PubMed CAS
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Smith, M. (2016). Organic Synthesis, 4th edition. Academic Press.
Steyl, G., Hill, T. & Roodt, A. (2005). Acta Cryst. E61, o1978–o1980. Web of Science CSD CrossRef IUCr Journals
Strabler, C., Ortner, T., Prock, J., Granja, A., Gutmann, R., Kopacka, H., Müller, T. & Brüggeller, P. (2013). Eur. J. Inorg. Chem. pp. 5121–5132. Web of Science CSD CrossRef
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.