research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (2E,2′E)-3,3′-(1,4-phenyl­ene)bis­­[1-(2,4-di­fluoro­phen­yl)prop-2-en-1-one]

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Sciences, Universiti Sains Malaysia, Penang 11800 USM, Malaysia, bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, cDepartment of Engineering Chemistry, Vidya Vikas Institute of Engineering & Technology, Visvesvaraya Technological University, Alanahally, Mysuru 570028, Karnataka, India, dDepartment of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Perak Campus, Jalan Universiti, Bandar Barat, Perak, Malaysia, eDepartment of Physics, School of Engineering & Technology, Jain University, Bangalore 562 112, India, and fDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: chidankumar@gmail.com, khalil.i@najah.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 31 July 2017; accepted 26 October 2017; online 3 November 2017)

The asymmetric unit of the title compound, C24H14F4O2, comprises of one and a half mol­ecules; the half-mol­ecule is completed by crystallographic inversion symmetry. In the crystal, mol­ecules are linked into a three-dimensional network by C—H⋯F and C—H⋯O hydrogen bonds. Some of the C—H⋯F links are unusually short (< 2.20 Å). Hirshfeld surface analyses (dnorm surfaces and two-dimensional fingerprint plots) for the title compound are presented and discussed.

1. Chemical context

Chalcones, considered to be the precursors of flavonoids and isoflavonoids, are abundant in edible plants. They consist of two aromatic rings joined by a three-carbon-atom unsat­urated carbonyl system (–CH=CH—CO–). Bischalcones with the general formula Ar—CH=CH—CO—CH=CH—Ar (Baeyer & Villiger, 1902[Baeyer, A. & Villiger, V. (1902). Chem. Ber. 35, 1201-1212.]) are an important class of compounds that are widely used in many fields such as organic solid-state photochemistry, and display anti-oxidative and anti-inflammatory activities, cytotoxicity, non-linear optical activity (Uchida et al., 1998[Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.]) and fluorescence and luminescent properties (Tay et al., 2016[Tay, M. G., Tiong, M. H., Chia, Y. Y., Kuan, S. H. C. & Liu, Z.-Q. (2016). J. Chem. pp. 1-8.]). Several crystal structures of this type of compound have been reported (Fun et al., 2010[Fun, H.-K., Ruanwas, P. & Chantrapromma, S. (2010). Acta Cryst. E66, o307-o308.]; Park et al., 2013[Park, D. H., Ramkumar, V. & Parthiban, P. (2013). Acta Cryst. E69, o177.]; Ruanwas et al., 2014[Ruanwas, P., Chantrapromma, S., Ghabbour, H. A. & Fun, H.-K. (2014). Acta Cryst. E70, o589-o590.]; Sim et al., 2017[Sim, A., Chidan Kumar, C. S., Kwong, H. C., Then, L. Y., Win, Y.-F., Quah, C. K., Naveen, S., Chandraju, S., Lokanath, N. K. & Warad, I. (2017). Acta Cryst. E73, 896-900.]). As part of our studies in this area, we report herein the syntheses and structure of the title compound, C24H14F4O2, (I)[link], and a Hirshfeld analysis of its inter­molecular inter­actions.

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] with Z = ½ consists of one and a half mol­ecules of the bis­chalcone title compound (one complete mol­ecule A and a half mol­ecule B) (Fig. 1[link]). The mol­ecule is constructed from two aromatic rings (central benzene and terminal 2,4-di­fluoro­phenyl rings), which are linked by a C=C—C(=O)—C enone bridge, with the carbonyl group in a cis conformation with respect to the olefinic double bond. The structural conformation of (I)[link] can be described by three degrees of freedom, which are the torsion angles between the terminal 2,4-difluorophenyl ring and the carbonyl group O1—C7—C6—C1/O2—C18—C19—C20 (τ1); between the carbonyl group and the olefinic double bond O1—C7—C8—C9/O2—C18—C17—C16 (τ2) and between the olefinic double bond and center benzene ring C8—C9—C10—C11/C14—C13—C16—C17 (τ3). In mol­ecule A, the carbonyl groups form similar torsion angles with the 2,4-di­fluoro­phenyl ring [O1A—C7A—C6A—C1A = −168.4 (4)°; O2A—C18A—C19A—C20A = 165.9 (4)°] and the olefinic double bond [O1A—C7A—C8A—C9A = −2.1 (5)°; O2A—C18A—C17A—C16A = −2.4 (6)°]. Conversely, the torsion angles between the olefinic double bond and the central benzene ring are slightly different [C8A—C9A—C10A—C11A = 171.9 (3)°; C14A—C13A—C16A—C17A = −166.5 (4)°]. This leads to slight differences in the dihedral angles between the terminal 2,4-di­fluoro­phenyl and the central benzene rings [7.91 (2)° for C1A–C6A and 6.28 (2)° for C19A–C24A]. In mol­ecule B, both torsion angles τ1 and τ3 are comparable to those in mol­ecule A [C1B—C6B—C7B—O1B = 171.1 (4)°; C8B—C9B—C10B—C11B = 174.2 (4)°]. However, mol­ecule B is slightly closer to planar than mol­ecule A, as its central and terminal rings subtend a dihedral angle of 5.49 (2)°. This might arise from the lower torsion angle between the olefinic double bond and the central benzene ring [O1B—C7B—C8B—C9B = 0.9 (6)°]. Selected torsion and dihedral angles are listed in Table 1[link]. The C8=C9 double-bond lengths in both mol­ecules are in agreement with expected values reported in the literature (Sathiya Moorthi et al., 2005[Sathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Radhika, R., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o480-o482.]).

Table 1
Selected torsion and dihedral angles (°) for the title compound

The dihedral angle is between the mean planes of the terminal 2,4-di­fluoro­phenyl rings and the central benzene ring.

  Mol­ecule A Mol­ecule B
O1—C7—C6—C1/ O2—C18—C19—C20, τ1 −168.4 (4), 165.9 (4) 171.1 (4)
τ2, O1—C7—C8—C9/ O2—C18—C17—C16, τ2 −2.1 (5), −2.4 (6) 0.9 (6)
C8—C9—C10—C11/ C14—C13—C16—C17, τ3 171.9 (3), −166.5 (4) 174.2 (4)
Dihedral angle 7.91, 6.28 5.49
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing 50% displacement ellipsoids.

Each of the intra­molecular C8A—H8A⋯F1A, C17A—H17A⋯F3A and C8B—H8B⋯F1B hydrogen bonds generates an S(6) ring motif (Table 1[link], Fig. 1[link]).

3. Supra­molecular features

In the crystal of (I)[link], the C11B—H11B⋯O1A hydrogen bonds (Table 1[link]) generate R22(12) and R32(23) graph-set motifs with the C5A—H5A⋯O1B and C2B—H2B⋯F3A hydrogen bonds (Table 2[link]). As the central benzene ring of mol­ecule B is located about an inversion center, pairs of these hydrogen bonds link the mol­ecules into a centrosymmetric trimer (Fig. 2[link], Table 2[link]). Atom F2A acts as double acceptor and links the trimers into a three-dimensional network via C2A—H2A⋯F2A and C23A—H23A⋯F2A hydrogen bonds, as shown in Fig. 3[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5A—H5A⋯O1Bi 0.93 2.49 3.243 (5) 138
C11B—H11B⋯O1Aii 0.93 2.54 3.322 (5) 142
C2A—H2A⋯F2Aiii 0.93 2.48 3.362 (5) 158
C2B—H2B⋯F3Aiv 0.93 2.50 3.324 (5) 147
C8A—H8A⋯F1A 0.93 2.19 2.822 (4) 124
C8B—H8B⋯F1B 0.93 2.16 2.806 (5) 125
C17A—H17A⋯F3A 0.93 2.19 2.802 (4) 122
C23A—H23A⋯F2Av 0.93 2.56 3.3910 149
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+1, -y, -z+1; (v) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The partial packing of (I)[link], showing a centrosymmetric trimer.
[Figure 3]
Figure 3
The packing of (I) shown in projection down the a axis.

4. Hirshfeld surface analysis

The Hirshfeld surface analyses (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]) of (I)[link] were generated by CrystalExplorer 3.1 (Wolff et al., 2012[Wolff, S., Grimwood, D., McKinnon, J., Turner, M., Jayatilaka, D. & Spackman, M. (2012). Crystal Explorer. The University of Western Australia Perth, Australia.]), and can be summarized by fingerprint plots mapped over dnorm. The contact distances to the closest atom inside (di) and outside (de) of the Hirshfeld surface analyze the inter­molecular inter­action via the mapping of dnorm. In a dnorm surface, any inter­molecular inter­actions will appear as a red spot.

Dark-red spots that are close to atoms O1B, H11B and H2BA in the dnorm surface mapping are the result of C—H⋯O and C—H⋯F hydrogen bonds (Fig. 4[link]a). Similarly, the C—H⋯F inter­actions are identified by red spots near the F2A atom in mol­ecule A (Fig. 4[link]b). As illustrated in Fig. 5[link], the corresponding fingerprint plots (FP) for Hirshfeld surfaces of the title compound are shown with characteristic pseudo-symmetry wings in the de and di diagonal axes represent the overall two-dimensional FP and those delineated into F⋯H/H⋯F, H⋯H and O⋯H/H⋯O contacts, respectively. The most significant inter­molecular inter­actions are the reciprocal F⋯H/H⋯F inter­actions (30.1%), which appear as two sharp symmetric spikes in FP maps with a prominent long spike at de + di ≃ 2.3 Å (Fig. 5[link]b). The H⋯H inter­actions appear in the central region of the FP with de = di ≃ 2.4 Å and contribute 29.0% to the Hirshfeld surface (Fig. 5[link]c) whereas two symmetrical narrow pointed wings corresponding to the O⋯H/H⋯O inter­actions with 12.7% contribution appear at diagonal axes of de + di ≃ 2.4 Å (Fig. 5[link]d). The percentage contributions for other inter­molecular contacts are less than 10% in the Hirshfeld surface mapping (Fig. 6).

[Figure 4]
Figure 4
Plots of dnorm mapped on the Hirshfeld surfaces for (I)[link] showing (a) C—H⋯O and C—H⋯F hydrogen bonds and (b) C—H⋯F inter­actions.
[Figure 5]
Figure 5
The two-dimensional fingerprint plots for (I)[link] showing contributions from different contacts; views on the right highlight the relevant surface patches associated with the specific contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.38, last update Nov 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using (E)-1-(4-fluoro­phen­yl)-3-phenyl­prop-2-en-1-one as the main skeleton revealed the presence of seven structures containing the chalcone moiety with different substituent similar to the title compounds in this study. These structures are 4′-fluoro­chalcone (Ng et al., 2006[Ng, S.-L., Razak, I. A., Fun, H.-K., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2897-o2899.]), (2E)-3-[4-(di­methyl­amino)­phen­yl]-1-(4fluoro­phen­yl)prop-2-en-1-one (Jasinski et al., 2011[Jasinski, J. P., Butcher, R. J., Siddaraju, B. P., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o313-o314.]), (E)-3-(4-chloro­phen­yl)-1-(4-fluoro­phen­yl)prop-2-en-1-one (Fun et al., 2012[Fun, H.-K., Chia, T. S., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o629.]), 3-[4-(1H-imidazol-1-yl) phen­yl]prop-2-en-1-ones (Hussain et al., 2009[Hussain, T., Siddiqui, H. L., Zia-ur-Rehman, M., Masoom Yasinzai, M. & Parvez, M. (2009). Eur. J. Med. Chem. 44, 4654-4660.]), (E)-1-(4-fluoro­phen­yl)-3-(4-methyl­phen­yl)prop-2-en-1-one (Fun et al., 2008[Fun, H.-K., Jebas, S. R., Patil, P. S., D'Silva, E. D. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o935.]), 1-(4-fluoro­phen­yl)-3-(4-meth­oxy­phen­yl)prop-2-en-1-one (Harrison et al., 2006[Harrison, W. T. A., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o3251-o3253.]) and 3-(biphenyl-4-yl)-1-(4-fluoro­phen­yl)prop-2-en-1-one (Sarojini et al., 2007[Sarojini, B. K., Yathirajan, H. S., Sreevidya, T. V., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o2945.]). In these seven compounds, the dihedral angles between the central benzene and the fluoro­phenyl rings range from 7.14 to 56.26°.

6. Synthesis and crystallization

A solution of terephthaldi­aldehyde (0.01 mol) in methanol (20 ml) was mixed with 2,4-di­fluoro­aceto­phenone (0.02 mol) in methanol (20 ml) in the presence of NaOH. The reaction mixtures were stirred for about 5–6 h at room temperature. The resultant crude products were filtered, washed successively with distilled water and recrystallized from ethanol solution to get the title compound. Yellow blocks of (I)[link] were obtained by slow evaporation using acetone as solvent.

(2E,2′E)-3,3′-(1,4-Phenyl­ene)bis­(1-(2,4-di­fluoro­phen­yl)prop-2-en-1-one), C24H14F4O2. Solvent for growing crystals: mixture of chloro­form and aceto­nitrile (1:1 v/v); yield 85%, m.p. 447–449 K; FT–IR (ATR (solid) cm−1): 3101 (Ar, C—H, ν), 1600 (C=O, ν), 1593, 1420 (Ar, C=C, ν), 1229 (C—F, ν); 1H NMR (500 MHz, CDCl3): δ 7.969–7.922 (q, 2H, J = 8.7 Hz, 2CH), 7.818–7.787 (d, 2H, J = 15.7 Hz, 8CH), 7.697 (s, 4H, 11CH, 12CH), 7.059–7.022 (t, 2H, J = 8.7 Hz, 5CH), 6.969–6.935 (t, 2H, J = 8.7 Hz, 4CH); 13C NMR (125 MHz, CDCl3): 187.00 (C7), 143.62 (C9), 136.83 (C2), 133.11 (C10), 133.03 (C5), 129.14 (C11, C12), 126.18 (C6), 126.12 (C8) 112.47, 112.27 (C3), 105.01, 104.81 (C1), 104.59 (C4).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were positioned geometrically [C—H = 0.93 Å] and were refined using a riding model with Uiso(H) = 1.2Ueq(C) for H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C24H14F4O2
Mr 410.35
Crystal system, space group Monoclinic, P21/c
Temperature (K) 297
a, b, c (Å) 12.190 (6), 5.972 (3), 38.17 (2)
β (°) 98.013 (10)
V3) 2752 (3)
Z 6
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.55 × 0.22 × 0.09
 
Data collection
Diffractometer Bruker APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.870, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 33683, 5127, 3112
Rint 0.053
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.233, 1.09
No. of reflections 5127
No. of parameters 406
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.66, −0.23
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2006[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).

(2E,2'E)-3,3'-(1,4-Phenylene)bis[1-(2,4-difluorophenyl)prop-2-en-1-one] top
Crystal data top
C24H14F4O2F(000) = 1260
Mr = 410.35Dx = 1.486 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.190 (6) ÅCell parameters from 3764 reflections
b = 5.972 (3) Åθ = 2.5–22.7°
c = 38.17 (2) ŵ = 0.12 mm1
β = 98.013 (10)°T = 297 K
V = 2752 (3) Å3Block, yellow
Z = 60.55 × 0.22 × 0.09 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5127 independent reflections
Radiation source: fine-focus sealed tube3112 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
φ and ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1414
Tmin = 0.870, Tmax = 0.989k = 77
33683 measured reflectionsl = 4646
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.233 w = 1/[σ2(Fo2) + (0.1029P)2 + 1.8579P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
5127 reflectionsΔρmax = 0.66 e Å3
406 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F1A0.3498 (2)0.4797 (4)0.64668 (5)0.0798 (7)
F2A0.5838 (2)0.1955 (5)0.74203 (5)0.1025 (9)
F3A0.0361 (2)0.5505 (4)0.34851 (6)0.0883 (8)
F4A0.2622 (2)0.8474 (5)0.25239 (6)0.1042 (9)
O1A0.3887 (3)0.1043 (5)0.59117 (7)0.0856 (9)
O2A0.0708 (3)1.1292 (5)0.40487 (7)0.0794 (9)
C1A0.4176 (3)0.3132 (6)0.65981 (8)0.0540 (9)
C2A0.4676 (3)0.3391 (7)0.69405 (9)0.0636 (10)
H2A0.45640.46720.70690.076*
C3A0.5337 (3)0.1714 (7)0.70838 (9)0.0644 (11)
C4A0.5521 (3)0.0183 (7)0.69058 (9)0.0636 (10)
H4A0.59780.13130.70110.076*
C5A0.5008 (3)0.0365 (6)0.65649 (9)0.0545 (9)
H5A0.51250.16540.64390.065*
C6A0.4322 (3)0.1276 (5)0.63988 (8)0.0451 (8)
C7A0.3807 (3)0.0836 (6)0.60274 (8)0.0500 (8)
C8A0.3236 (3)0.2583 (6)0.58072 (8)0.0502 (8)
H8A0.31610.40000.59020.060*
C9A0.2820 (3)0.2184 (6)0.54740 (8)0.0506 (8)
H9A0.29300.07450.53920.061*
C10A0.2221 (3)0.3691 (5)0.52217 (8)0.0459 (8)
C11A0.1966 (3)0.3069 (6)0.48697 (8)0.0521 (8)
H11A0.22050.16850.47980.063*
C12A0.1373 (3)0.4430 (6)0.46248 (8)0.0524 (9)
H12A0.12080.39460.43920.063*
C13A0.1015 (3)0.6513 (5)0.47177 (8)0.0459 (8)
C14A0.1282 (3)0.7143 (6)0.50699 (8)0.0540 (9)
H14A0.10580.85440.51400.065*
C15A0.1857 (3)0.5784 (6)0.53163 (8)0.0526 (9)
H15A0.20080.62580.55500.063*
C16A0.0406 (3)0.8033 (6)0.44689 (8)0.0524 (8)
H16A0.03590.95000.45470.063*
C17A0.0093 (3)0.7626 (6)0.41464 (8)0.0519 (8)
H17A0.00850.61840.40550.062*
C18A0.0656 (3)0.9413 (6)0.39316 (9)0.0516 (8)
C19A0.1175 (3)0.9016 (6)0.35579 (8)0.0457 (8)
C20A0.1023 (3)0.7186 (6)0.33524 (9)0.0541 (9)
C21A0.1490 (3)0.6970 (7)0.30074 (10)0.0680 (10)
H21A0.13650.57100.28760.082*
C22A0.2141 (3)0.8657 (8)0.28658 (9)0.0682 (11)
C23A0.2331 (3)1.0523 (7)0.30478 (10)0.0684 (11)
H23A0.27791.16640.29420.082*
C24A0.1846 (3)1.0691 (6)0.33929 (9)0.0572 (9)
H24A0.19721.19690.35210.069*
F1B0.7643 (2)0.0572 (4)0.60526 (6)0.0866 (8)
F2B0.9643 (2)0.2046 (6)0.71503 (7)0.1169 (11)
O1B0.6556 (2)0.5348 (5)0.64536 (7)0.0775 (8)
C1B0.7976 (3)0.0164 (7)0.63916 (10)0.0621 (10)
C2B0.8648 (3)0.1269 (7)0.65982 (11)0.0702 (11)
H2B0.88640.26300.65110.084*
C3B0.8987 (3)0.0634 (8)0.69345 (11)0.0718 (11)
C4B0.8691 (3)0.1350 (8)0.70704 (10)0.0749 (12)
H4B0.89420.17490.73030.090*
C5B0.8008 (3)0.2739 (7)0.68516 (9)0.0667 (10)
H5B0.77930.40960.69400.080*
C6B0.7627 (3)0.2187 (6)0.65007 (8)0.0538 (9)
C7B0.6864 (3)0.3795 (7)0.62957 (9)0.0579 (9)
C8B0.6511 (3)0.3494 (7)0.59149 (9)0.0618 (10)
H8B0.67550.22580.57990.074*
C9B0.5846 (3)0.4972 (7)0.57353 (9)0.0611 (10)
H9B0.56260.61640.58660.073*
C10B0.5418 (3)0.4979 (6)0.53638 (8)0.0527 (8)
C11B0.4812 (3)0.6741 (6)0.52103 (9)0.0623 (10)
H11B0.46740.79520.53510.075*
C12B0.5603 (3)0.3208 (6)0.51443 (10)0.0627 (10)
H12B0.60100.19760.52370.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1A0.1200 (19)0.0576 (13)0.0584 (14)0.0213 (13)0.0001 (13)0.0063 (10)
F2A0.132 (2)0.124 (2)0.0401 (12)0.0345 (18)0.0246 (13)0.0016 (13)
F3A0.127 (2)0.0673 (15)0.0660 (14)0.0339 (14)0.0031 (14)0.0057 (11)
F4A0.122 (2)0.134 (2)0.0464 (13)0.0110 (18)0.0245 (13)0.0039 (14)
O1A0.131 (3)0.0617 (18)0.0548 (16)0.0283 (17)0.0202 (16)0.0127 (14)
O2A0.113 (2)0.0579 (17)0.0584 (16)0.0191 (16)0.0192 (15)0.0076 (13)
C1A0.070 (2)0.049 (2)0.0418 (18)0.0017 (18)0.0031 (16)0.0005 (16)
C2A0.090 (3)0.060 (2)0.0410 (19)0.016 (2)0.0097 (19)0.0106 (17)
C3A0.077 (3)0.082 (3)0.0310 (17)0.023 (2)0.0038 (17)0.0022 (19)
C4A0.064 (2)0.075 (3)0.047 (2)0.004 (2)0.0106 (17)0.0127 (19)
C5A0.059 (2)0.056 (2)0.0466 (19)0.0003 (17)0.0006 (16)0.0012 (16)
C6A0.0512 (18)0.0501 (19)0.0328 (16)0.0030 (15)0.0023 (14)0.0046 (14)
C7A0.060 (2)0.050 (2)0.0383 (17)0.0063 (17)0.0005 (15)0.0045 (15)
C8A0.060 (2)0.0465 (19)0.0408 (18)0.0020 (16)0.0032 (15)0.0003 (15)
C9A0.057 (2)0.0476 (19)0.0444 (18)0.0001 (16)0.0039 (15)0.0014 (15)
C10A0.0489 (18)0.0519 (19)0.0343 (16)0.0068 (15)0.0033 (14)0.0043 (14)
C11A0.063 (2)0.0482 (19)0.0425 (18)0.0012 (16)0.0031 (15)0.0067 (15)
C12A0.061 (2)0.058 (2)0.0346 (16)0.0038 (17)0.0060 (15)0.0001 (15)
C13A0.0466 (18)0.0480 (19)0.0408 (17)0.0054 (15)0.0018 (14)0.0023 (14)
C14A0.064 (2)0.051 (2)0.0440 (19)0.0040 (17)0.0023 (16)0.0037 (15)
C15A0.064 (2)0.055 (2)0.0359 (17)0.0025 (18)0.0004 (15)0.0037 (15)
C16A0.059 (2)0.0490 (19)0.0463 (19)0.0025 (16)0.0020 (16)0.0023 (15)
C17A0.062 (2)0.0457 (19)0.0439 (19)0.0010 (16)0.0080 (16)0.0016 (15)
C18A0.056 (2)0.052 (2)0.0444 (18)0.0011 (16)0.0018 (15)0.0006 (16)
C19A0.0451 (18)0.0504 (19)0.0396 (17)0.0018 (15)0.0013 (14)0.0051 (14)
C20A0.057 (2)0.052 (2)0.051 (2)0.0049 (17)0.0001 (16)0.0050 (17)
C21A0.085 (3)0.069 (3)0.049 (2)0.001 (2)0.0036 (19)0.0074 (19)
C22A0.070 (2)0.087 (3)0.043 (2)0.014 (2)0.0080 (18)0.008 (2)
C23A0.064 (2)0.076 (3)0.059 (2)0.004 (2)0.0142 (19)0.018 (2)
C24A0.060 (2)0.055 (2)0.054 (2)0.0057 (17)0.0013 (17)0.0044 (17)
F1B0.1097 (19)0.0836 (17)0.0610 (14)0.0151 (14)0.0071 (13)0.0051 (12)
F2B0.100 (2)0.137 (3)0.103 (2)0.0185 (18)0.0234 (16)0.0478 (19)
O1B0.097 (2)0.0786 (19)0.0539 (16)0.0117 (17)0.0005 (14)0.0086 (14)
C1B0.059 (2)0.078 (3)0.048 (2)0.009 (2)0.0020 (17)0.0060 (19)
C2B0.066 (2)0.073 (3)0.070 (3)0.002 (2)0.000 (2)0.012 (2)
C3B0.061 (2)0.087 (3)0.063 (3)0.002 (2)0.006 (2)0.024 (2)
C4B0.075 (3)0.101 (3)0.044 (2)0.017 (3)0.0101 (19)0.011 (2)
C5B0.070 (2)0.076 (3)0.053 (2)0.007 (2)0.0034 (19)0.005 (2)
C6B0.0505 (19)0.066 (2)0.0434 (19)0.0088 (18)0.0013 (15)0.0121 (17)
C7B0.059 (2)0.065 (2)0.049 (2)0.0010 (19)0.0047 (17)0.0048 (18)
C8B0.063 (2)0.075 (3)0.0450 (19)0.003 (2)0.0002 (17)0.0048 (18)
C9B0.069 (2)0.067 (2)0.046 (2)0.008 (2)0.0036 (17)0.0025 (17)
C10B0.0471 (19)0.068 (2)0.0422 (18)0.0011 (18)0.0040 (15)0.0049 (17)
C11B0.076 (2)0.062 (2)0.048 (2)0.010 (2)0.0078 (18)0.0081 (18)
C12B0.062 (2)0.063 (2)0.060 (2)0.0130 (19)0.0004 (18)0.0140 (19)
Geometric parameters (Å, º) top
F1A—C1A1.344 (4)C17A—H17A0.9300
F2A—C3A1.350 (4)C18A—C19A1.497 (4)
F3A—C20A1.342 (4)C19A—C20A1.373 (5)
F4A—C22A1.358 (4)C19A—C24A1.387 (4)
O1A—C7A1.215 (4)C20A—C21A1.366 (5)
O2A—C18A1.213 (4)C21A—C22A1.348 (5)
C1A—C6A1.370 (5)C21A—H21A0.9300
C1A—C2A1.371 (5)C22A—C23A1.350 (6)
C2A—C3A1.353 (5)C23A—C24A1.370 (5)
C2A—H2A0.9300C23A—H23A0.9300
C3A—C4A1.356 (6)C24A—H24A0.9300
C4A—C5A1.367 (5)F1B—C1B1.373 (4)
C4A—H4A0.9300F2B—C3B1.359 (5)
C5A—C6A1.383 (5)O1B—C7B1.195 (4)
C5A—H5A0.9300C1B—C2B1.358 (5)
C6A—C7A1.492 (4)C1B—C6B1.366 (5)
C7A—C8A1.455 (4)C2B—C3B1.347 (6)
C8A—C9A1.323 (4)C2B—H2B0.9300
C8A—H8A0.9300C3B—C4B1.362 (6)
C9A—C10A1.441 (4)C4B—C5B1.372 (5)
C9A—H9A0.9300C4B—H4B0.9300
C10A—C11A1.387 (4)C5B—C6B1.395 (5)
C10A—C15A1.391 (5)C5B—H5B0.9300
C11A—C12A1.367 (4)C6B—C7B1.481 (5)
C11A—H11A0.9300C7B—C8B1.469 (5)
C12A—C13A1.381 (5)C8B—C9B1.323 (5)
C12A—H12A0.9300C8B—H8B0.9300
C13A—C14A1.390 (4)C9B—C10B1.441 (5)
C13A—C16A1.442 (4)C9B—H9B0.9300
C14A—C15A1.361 (5)C10B—C11B1.370 (5)
C14A—H14A0.9300C10B—C12B1.387 (5)
C15A—H15A0.9300C11B—C12Bi1.378 (5)
C16A—C17A1.317 (4)C11B—H11B0.9300
C16A—H16A0.9300C12B—C11Bi1.378 (5)
C17A—C18A1.458 (5)C12B—H12B0.9300
F1A—C1A—C6A120.8 (3)C20A—C19A—C24A115.6 (3)
F1A—C1A—C2A116.1 (3)C20A—C19A—C18A126.7 (3)
C6A—C1A—C2A123.1 (3)C24A—C19A—C18A117.6 (3)
C3A—C2A—C1A117.6 (3)F3A—C20A—C21A116.2 (3)
C3A—C2A—H2A121.2F3A—C20A—C19A120.1 (3)
C1A—C2A—H2A121.2C21A—C20A—C19A123.7 (3)
F2A—C3A—C2A118.1 (4)C22A—C21A—C20A117.3 (4)
F2A—C3A—C4A118.8 (4)C22A—C21A—H21A121.3
C2A—C3A—C4A123.1 (3)C20A—C21A—H21A121.3
C3A—C4A—C5A117.2 (4)C21A—C22A—C23A123.0 (3)
C3A—C4A—H4A121.4C21A—C22A—F4A118.4 (4)
C5A—C4A—H4A121.4C23A—C22A—F4A118.6 (4)
C4A—C5A—C6A123.2 (3)C22A—C23A—C24A118.2 (4)
C4A—C5A—H5A118.4C22A—C23A—H23A120.9
C6A—C5A—H5A118.4C24A—C23A—H23A120.9
C1A—C6A—C5A115.8 (3)C23A—C24A—C19A122.1 (4)
C1A—C6A—C7A126.9 (3)C23A—C24A—H24A118.9
C5A—C6A—C7A117.3 (3)C19A—C24A—H24A118.9
O1A—C7A—C8A120.6 (3)C2B—C1B—C6B124.7 (4)
O1A—C7A—C6A117.7 (3)C2B—C1B—F1B114.9 (4)
C8A—C7A—C6A121.8 (3)C6B—C1B—F1B120.4 (3)
C9A—C8A—C7A120.9 (3)C3B—C2B—C1B117.1 (4)
C9A—C8A—H8A119.5C3B—C2B—H2B121.4
C7A—C8A—H8A119.5C1B—C2B—H2B121.4
C8A—C9A—C10A128.3 (3)C2B—C3B—F2B118.6 (5)
C8A—C9A—H9A115.8C2B—C3B—C4B123.0 (4)
C10A—C9A—H9A115.8F2B—C3B—C4B118.3 (4)
C11A—C10A—C15A117.1 (3)C3B—C4B—C5B117.7 (4)
C11A—C10A—C9A120.3 (3)C3B—C4B—H4B121.2
C15A—C10A—C9A122.6 (3)C5B—C4B—H4B121.2
C12A—C11A—C10A121.9 (3)C4B—C5B—C6B122.3 (4)
C12A—C11A—H11A119.0C4B—C5B—H5B118.9
C10A—C11A—H11A119.0C6B—C5B—H5B118.9
C11A—C12A—C13A121.1 (3)C1B—C6B—C5B115.2 (3)
C11A—C12A—H12A119.5C1B—C6B—C7B127.7 (3)
C13A—C12A—H12A119.5C5B—C6B—C7B117.0 (4)
C12A—C13A—C14A116.9 (3)O1B—C7B—C8B121.7 (4)
C12A—C13A—C16A123.3 (3)O1B—C7B—C6B117.1 (3)
C14A—C13A—C16A119.7 (3)C8B—C7B—C6B121.3 (4)
C15A—C14A—C13A122.4 (3)C9B—C8B—C7B120.3 (4)
C15A—C14A—H14A118.8C9B—C8B—H8B119.8
C13A—C14A—H14A118.8C7B—C8B—H8B119.8
C14A—C15A—C10A120.6 (3)C8B—C9B—C10B128.5 (4)
C14A—C15A—H15A119.7C8B—C9B—H9B115.7
C10A—C15A—H15A119.7C10B—C9B—H9B115.7
C17A—C16A—C13A128.9 (3)C11B—C10B—C12B116.8 (3)
C17A—C16A—H16A115.6C11B—C10B—C9B121.5 (3)
C13A—C16A—H16A115.6C12B—C10B—C9B121.7 (3)
C16A—C17A—C18A120.7 (3)C10B—C11B—C12Bi122.6 (3)
C16A—C17A—H17A119.7C10B—C11B—H11B118.7
C18A—C17A—H17A119.7C12Bi—C11B—H11B118.7
O2A—C18A—C17A121.0 (3)C11Bi—C12B—C10B120.6 (3)
O2A—C18A—C19A117.4 (3)C11Bi—C12B—H12B119.7
C17A—C18A—C19A121.6 (3)C10B—C12B—H12B119.7
F1A—C1A—C2A—C3A178.1 (3)C17A—C18A—C19A—C24A169.6 (3)
C6A—C1A—C2A—C3A0.2 (6)C24A—C19A—C20A—F3A178.1 (3)
C1A—C2A—C3A—F2A179.7 (3)C18A—C19A—C20A—F3A0.9 (5)
C1A—C2A—C3A—C4A0.2 (6)C24A—C19A—C20A—C21A0.1 (5)
F2A—C3A—C4A—C5A179.6 (3)C18A—C19A—C20A—C21A177.3 (3)
C2A—C3A—C4A—C5A0.3 (6)F3A—C20A—C21A—C22A178.7 (3)
C3A—C4A—C5A—C6A0.0 (6)C19A—C20A—C21A—C22A0.5 (6)
F1A—C1A—C6A—C5A177.8 (3)C20A—C21A—C22A—C23A0.8 (6)
C2A—C1A—C6A—C5A0.4 (5)C20A—C21A—C22A—F4A179.5 (3)
F1A—C1A—C6A—C7A1.1 (5)C21A—C22A—C23A—C24A0.6 (6)
C2A—C1A—C6A—C7A179.3 (3)F4A—C22A—C23A—C24A179.8 (3)
C4A—C5A—C6A—C1A0.3 (5)C22A—C23A—C24A—C19A0.0 (6)
C4A—C5A—C6A—C7A179.3 (3)C20A—C19A—C24A—C23A0.4 (5)
C1A—C6A—C7A—O1A168.4 (4)C18A—C19A—C24A—C23A177.8 (3)
C5A—C6A—C7A—O1A10.5 (5)C6B—C1B—C2B—C3B0.1 (6)
C1A—C6A—C7A—C8A12.1 (5)F1B—C1B—C2B—C3B179.2 (3)
C5A—C6A—C7A—C8A169.0 (3)C1B—C2B—C3B—F2B178.8 (3)
O1A—C7A—C8A—C9A2.1 (5)C1B—C2B—C3B—C4B0.3 (6)
C6A—C7A—C8A—C9A177.4 (3)C2B—C3B—C4B—C5B0.4 (6)
C7A—C8A—C9A—C10A179.0 (3)F2B—C3B—C4B—C5B178.6 (3)
C8A—C9A—C10A—C11A171.9 (3)C3B—C4B—C5B—C6B0.5 (6)
C8A—C9A—C10A—C15A9.3 (6)C2B—C1B—C6B—C5B0.1 (5)
C15A—C10A—C11A—C12A0.6 (5)F1B—C1B—C6B—C5B179.2 (3)
C9A—C10A—C11A—C12A178.2 (3)C2B—C1B—C6B—C7B177.5 (4)
C10A—C11A—C12A—C13A1.0 (5)F1B—C1B—C6B—C7B1.8 (6)
C11A—C12A—C13A—C14A0.3 (5)C4B—C5B—C6B—C1B0.3 (5)
C11A—C12A—C13A—C16A178.8 (3)C4B—C5B—C6B—C7B178.0 (3)
C12A—C13A—C14A—C15A0.7 (5)C1B—C6B—C7B—O1B171.1 (4)
C16A—C13A—C14A—C15A179.8 (3)C5B—C6B—C7B—O1B6.3 (5)
C13A—C14A—C15A—C10A1.0 (5)C1B—C6B—C7B—C8B9.3 (6)
C11A—C10A—C15A—C14A0.4 (5)C5B—C6B—C7B—C8B173.3 (3)
C9A—C10A—C15A—C14A179.2 (3)O1B—C7B—C8B—C9B0.9 (6)
C12A—C13A—C16A—C17A14.4 (6)C6B—C7B—C8B—C9B178.7 (3)
C14A—C13A—C16A—C17A166.5 (4)C7B—C8B—C9B—C10B179.5 (4)
C13A—C16A—C17A—C18A178.9 (3)C8B—C9B—C10B—C11B174.2 (4)
C16A—C17A—C18A—O2A2.4 (6)C8B—C9B—C10B—C12B5.6 (6)
C16A—C17A—C18A—C19A176.7 (3)C12B—C10B—C11B—C12Bi0.1 (6)
O2A—C18A—C19A—C20A165.9 (4)C9B—C10B—C11B—C12Bi179.7 (4)
C17A—C18A—C19A—C20A13.2 (5)C11B—C10B—C12B—C11Bi0.1 (6)
O2A—C18A—C19A—C24A11.3 (5)C9B—C10B—C12B—C11Bi179.7 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5A—H5A···O1Bii0.932.493.243 (5)138
C11B—H11B···O1Aiii0.932.543.322 (5)142
C2A—H2A···F2Aiv0.932.483.362 (5)158
C2B—H2B···F3Av0.932.503.324 (5)147
C8A—H8A···F1A0.932.192.822 (4)124
C8B—H8B···F1B0.932.162.806 (5)125
C17A—H17A···F3A0.932.192.802 (4)122
C23A—H23A···F2Avi0.932.563.3910149
Symmetry codes: (ii) x, y1, z; (iii) x, y+1, z; (iv) x+1, y+1/2, z+3/2; (v) x+1, y, z+1; (vi) x1, y+3/2, z1/2.
Selected torsion and dihedral angles (°) for the title compound top
The dihedral angle is between the mean planes of the terminal 2,4-difluorophenyl rings and the central benzene ring.
Molecule AMolecule B
O1—C7—C6—C1/ O2—C18—C19—C20, τ1-168.4 (4), 165.9 (4)171.1 (4)
τ2, O1—C7—C8—C9/ O2—C18—C17—C16, τ2-2.1 (5), -2.4 (6)0.9 (6)
C8—C9—C10—C11/ C14—C13—C16—C17, τ3171.9 (3), -166.5 (4)174.2 (4)
Dihedral angle7.91, 6.285.49
 

Acknowledgements

The authors extend their appreciation to Vidya Vikas Research & Development Center for the provision of facilities and support.

Funding information

AS and HCK thank the Malaysian Government for MyBrain15 scholarships.

References

First citationBaeyer, A. & Villiger, V. (1902). Chem. Ber. 35, 1201–1212.  CrossRef
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFun, H.-K., Chia, T. S., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o629.  CSD CrossRef IUCr Journals
First citationFun, H.-K., Jebas, S. R., Patil, P. S., D'Silva, E. D. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o935.  Web of Science CSD CrossRef IUCr Journals
First citationFun, H.-K., Ruanwas, P. & Chantrapromma, S. (2010). Acta Cryst. E66, o307–o308.  Web of Science CSD CrossRef CAS IUCr Journals
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationHarrison, W. T. A., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o3251–o3253.  Web of Science CSD CrossRef IUCr Journals
First citationHussain, T., Siddiqui, H. L., Zia-ur-Rehman, M., Masoom Yasinzai, M. & Parvez, M. (2009). Eur. J. Med. Chem. 44, 4654–4660.  Web of Science CSD CrossRef PubMed CAS
First citationJasinski, J. P., Butcher, R. J., Siddaraju, B. P., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o313–o314.  Web of Science CSD CrossRef IUCr Journals
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals
First citationNg, S.-L., Razak, I. A., Fun, H.-K., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2897–o2899.  Web of Science CSD CrossRef IUCr Journals
First citationPark, D. H., Ramkumar, V. & Parthiban, P. (2013). Acta Cryst. E69, o177.  CSD CrossRef IUCr Journals
First citationRuanwas, P., Chantrapromma, S., Ghabbour, H. A. & Fun, H.-K. (2014). Acta Cryst. E70, o589–o590.  CSD CrossRef IUCr Journals
First citationSarojini, B. K., Yathirajan, H. S., Sreevidya, T. V., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o2945.  Web of Science CSD CrossRef IUCr Journals
First citationSathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Radhika, R., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o480–o482.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSim, A., Chidan Kumar, C. S., Kwong, H. C., Then, L. Y., Win, Y.-F., Quah, C. K., Naveen, S., Chandraju, S., Lokanath, N. K. & Warad, I. (2017). Acta Cryst. E73, 896–900.  Web of Science CSD CrossRef IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationTay, M. G., Tiong, M. H., Chia, Y. Y., Kuan, S. H. C. & Liu, Z.-Q. (2016). J. Chem. pp. 1–8.  Web of Science CrossRef
First citationUchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.  Web of Science CrossRef
First citationWolff, S., Grimwood, D., McKinnon, J., Turner, M., Jayatilaka, D. & Spackman, M. (2012). Crystal Explorer. The University of Western Australia Perth, Australia.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds