research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-[6-amino-5-(benzo[d]thia­zol-2-yl)-3-cyano-4-methyl­sulfanyl-2-oxo-1,2-di­hydro­pyridin-1-yl]-4-methyl­benzene­sulfonamide di­methyl­formamide monosolvate

CROSSMARK_Color_square_no_text.svg

aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by P. C. Healy, Griffith University, Australia (Received 25 October 2017; accepted 30 October 2017; online 3 November 2017)

In the title compound, C21H17N5O3S3·C3H7NO, the toluene­sulfonamide ring and the combined ring system involving the pyridone and benzo­thia­zole rings subtend an inter­planar angle of 39.86 (4)°. The pyridone and benzo­thiazyl rings are linked by the intra­molecular hydrogen bond N—Hamine⋯Nthia­zole. The DMF O atom accepts two classical hydrogen bonds. The mol­ecules are linked by hydrogen bonds and an S⋯O contact to form layers parallel to the bc plane.

1. Chemical context

Cyano­ketene di­thio­acetals are versatile synthetic inter­mediates (Elgemeie et al., 2003a[Elgemeie, G. H., El-Ezbawy, S. R. & Sood, S. A. (2003a). Synth. Commun. 33, 2095-2101.], 2015[Elgemeie, G. H., Abou-Zeid, M., Alsaid, S., Hebishy, A. & Essa, H. (2015). Nucleosides Nucleotides Nucleic Acids, 34, 659-673.]) that have been utilized as building blocks for the synthesis of a wide range of heterocyclic compounds (Elgemeie et al., 2009[Elgemeie, G. H., Elsayed, S. H. & Hassan, A. S. (2009). Synth. Commun. 39, 1781-1792.], 2017a[Elgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017a). Nucleosides Nucleotides Nucleic Acids, 36, 213-223.]); they are also of general inter­est in pharmaceutical chemistry (Elgemeie & Abou-Zeid, 2015[Elgemeie, G. H. & Abou-Zeid, M. (2015). Nucleosides Nucleotides Nucleic Acids, 34, 834-847.]; Elgemeie et al., 2016[Elgemeie, G. H., Abou-Zeid, M. & Azzam, R. (2016). Nucleosides Nucleotides Nucleic Acids, 35, 211-222.]). Recently, we have described the synthesis of various anti­metabolites starting from cyano­ketene di­thio­acetals and related compounds, viz. cyano­ketene S,S-acetals (Elgemeie, Mohamed, 2006[Elgemeie, G. H. & Mohamed, M. A. (2006). Synth. Commun. 36, 1025-1038.]), cyano­ketene N,S-acetals (Elgemeie et al. 2017b[Elgemeie, G. H., Fathy, N., Zaghary, W. & Farag, A. (2017b). Nucleosides Nucleotides Nucleic Acids, 36, 198-212.]), and cyano­ketene N,N-acetals (Elgemeie et al., 2003b[Elgemeie, G. H., Elghandour, A. H. & Abd Elaziz, G. W. (2003b). Synth. Commun. 33, 1659-1664.]). As a part of this programme, the reaction of 2-(benzo[d]thia­zol-2-yl)-3,3-bis­(methyl­thio)­acrylo­nitrile (1) with N-(2-cyano­acet­yl)-4-methyl­benzene­sulfono­hydrazide (2) was investigated. The reaction between 1 and 2 in KOH–DMF gives an adduct for which four possible isomeric structures were considered (structures 36). Spectroscopic methods did not allow us to identify the product unambiguously and therefore the X-ray crystal structure was determined, confirming the exclusive presence of structure 6 in the solid state. The formation of 6 from the reaction of 1 and 2 is assumed to proceed via initial addition of the active methyl­ene carbon atom of 2 to the double bond of 1, followed by elimination of CH3SH and cyclization via addition of the NH group to the cyano group of benzo­thia­zole to give the favoured, kinetically and thermodynamically controlled product 6. The 1H NMR spectra of the product revealed the presence of an amino group at δ = 8.84 p.p.m. and a pyridine methyl­thio group at δ = 2.45 p.p.m. in solution. Compound 6 and its derivatives showed inter­esting preclinical biological results and are currently being patented (Elgemeie et al., 2017c[Elgemeie, G. H., Azzam, R. A. & Elsayed, R. E. (2017c). Patent No. 1554/2017. Egyptian Academy of Scientific Research.]).

[Scheme 1]

2. Structural commentary

The solid-state structure of 6 is shown in Fig. 1[link], the structure analysis thereby confirming the nature of the product. The mol­ecule essentially consists of two planes; the toluene­sulfonamide ring and the combined ring system involving the pyridone and benzo­thia­zole rings. The former has a r.m.s. deviation of 0.04 Å and the latter of 0.01 Å (including all direct substituents), and the inter­planar angle is 39.86 (4)°. The pyridone and benzo­thiazyl rings are held coplanar by the intra­molecular hydrogen bond N4—H03⋯N3 (Table 1[link]). The contact N4—H02⋯N1 might also be classified as a hydrogen bond, with H⋯N 2.24 (2) Å, but its angle is only 105.7 (15)°. The nitro­gen N4 is planar (angle sum 359.7°) but N1 is pyramidalized (343.9°).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯O99i 0.888 (18) 1.872 (18) 2.7583 (13) 175.7 (16)
N4—H02⋯O99 0.84 (2) 2.05 (2) 2.8334 (14) 154.6 (18)
N4—H03⋯N3 0.86 (2) 1.86 (2) 2.5760 (15) 139.9 (17)
N4—H02⋯N1 0.84 (2) 2.237 (19) 2.5932 (14) 105.7 (15)
C7—H7⋯O3ii 0.95 2.54 3.3161 (16) 139
C20—H20⋯O2iii 0.95 2.64 3.5605 (16) 164
C97—H97C⋯N5iv 0.98 2.59 3.504 (2) 155
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y+1, z; (iii) -x+1, -y+1, -z+1; (iv) x, y, z-1.
[Figure 1]
Figure 1
The structure of the title compound in the crystal. Displacement ellipsoids represent 50% probability levels.

3. Supra­molecular features

The oyxgen atom of the di­methyl­formamide accepts two classical hydrogen bonds. The clearest packing feature is the formation of layers parallel to the bc plane (Fig. 2[link]), in which the hydrogen bonds H02⋯O99, H7⋯O3ii and H97C⋯N5iv are involved (Table 1[link]), together with the short contact S1⋯O3(x, 1 + y, z) 3.2662 (10) Å. The hydrogen bond H01⋯O99i connects the layers in the third dimension.

[Figure 2]
Figure 2
Packing diagram of the title compound viewed perpendicular to the bc plane. Dashed lines indicate classical hydrogen bonds (thick) or C—H⋯X and S⋯O inter­actions (thin).

4. Database survey

The 2-pyridone ring displays the usual features of a narrow angle at nitro­gen and a wide angle at the carbonyl carbon (Table 2[link]). A database search gave 555 hits (745 values) for the 2-pyridone ring, with average angles of 123.9° at nitro­gen and 115.3° at C=O. No other structures could be found in which a 2-pyridone ring is attached at the 5-position to the C2 atom of a thia­zol ring.

Table 2
Selected bond angles (°)

N2—C11—C10 113.44 (10) C12—N2—C11 125.63 (10)

5. Synthesis and crystallization

2-(Benzo[d]thia­zol-2-yl)-3,3-bis­(methyl­thio)­acrylo­nitrile (1) (2.78 g, 0.01 mol) was added to a solution of N-(2-cyano­acet­yl)-4-methyl­benzene­sulfono­hydrazide (2) (2.53 g., 0.01 mol) in dry DMF (30 ml) containing pulverized potassium hydrox­ide (0.56 g, 0.01 mol). The reaction mixture was refluxed with stirring for 2 h (TLC monitoring). After cooling, the reaction mixture was poured into ice-cold water and neutralized with HCl. The solid product was filtered off, washed with water, and dried. It was further purified from hot ethyl acetate: petroleum ether (1:1). The precipitated solid was crystallized from DMF to give yellow crystals, m.p. = 494 K, yield 78%.

IR (KBr, cm−1): ν 3393, 3208 (NH, NH2), 3072 (ArCH), 2922 (CH3), 2210 (CN), 1677 (CO), 1594 (C=N), 1350, 1170 (O=S=O); 1H NMR (400 MHz, DMSO-d6): δ 2.42 (s, 3H, CH3), 2.45 (s, 3H, SCH3), 7.42 (d, J = 8 Hz, 2H, C6H4), 7.49 (t, J = 8 Hz, 1H, benzo­thia­zole H), 7.56 (t, J = 8 Hz, 1H, benzo­thia­zole H), 7.71 (d, J = 8 Hz, 2H, C6H4), 8.06 (d, J = 8 Hz, 1H, benzo­thia­zole H), 8.13 (d, J = 8 Hz, 1H, benzo­thia­zole H), 8.84 (br, 2H, NH2), 11.44 (s, 1H, NH). Analysis calculated for C21H17N5O3S3 (483.59): C 52.16, H 3.54, N 14.48%; found: C 52.11; H 3.48; N 14.50%; MS m/z (%): 484 (M+1, 1.03%), 384 (84%), 356 (100%), 283 (60%), 117 (77%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. NH hydrogen atoms were refined freely. Methyl hydrogen atoms were refined as idealized rigid groups allowed to rotate but not tip (AFIX 137), with C—H 0.98 Å and H—C—H 109.5°. Other hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic 0.95, C—Hmethine 1.00 Å) with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all others.

Table 3
Experimental details

Crystal data
Chemical formula C21H17N5O3S3·C3H7NO
Mr 556.67
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.9916 (5), 11.7805 (6), 11.9776 (6)
α, β, γ (°) 88.809 (4), 79.159 (4), 67.245 (5)
V3) 1274.80 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.34
Crystal size (mm) 0.5 × 0.4 × 0.2
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Abingdon, UK.])
Tmin, Tmax 0.972, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 68326, 7630, 6682
Rint 0.036
(sin θ/λ)max−1) 0.726
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.082, 1.04
No. of reflections 7630
No. of parameters 350
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.61, −0.36
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Abingdon, UK.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, Wisconsin USA.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015\bbr01); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

N-[6-Amino-5-(benzo[d]thiazol-2-yl)-3-cyano-4-methylsulfanyl-2-oxo-1,2-dihydropyridin-1-yl]-4-methylbenzenesulfonamide dimethylformamide monosolvate top
Crystal data top
C21H17N5O3S3·C3H7NOZ = 2
Mr = 556.67F(000) = 580
Triclinic, P1Dx = 1.450 Mg m3
a = 9.9916 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.7805 (6) ÅCell parameters from 19857 reflections
c = 11.9776 (6) Åθ = 2.3–30.6°
α = 88.809 (4)°µ = 0.34 mm1
β = 79.159 (4)°T = 100 K
γ = 67.245 (5)°Tablet, yellow
V = 1274.80 (12) Å30.5 × 0.4 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
7630 independent reflections
Radiation source: fine-focus sealed X-ray tube6682 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.036
ω–scanθmax = 31.1°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
h = 1414
Tmin = 0.972, Tmax = 1.000k = 1616
68326 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: mixed
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0337P)2 + 0.772P]
where P = (Fo2 + 2Fc2)/3
7630 reflections(Δ/σ)max = 0.001
350 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20917 (3)1.05419 (3)0.44384 (2)0.01311 (6)
C20.17424 (12)0.91906 (10)0.43367 (10)0.0117 (2)
N30.13892 (11)0.90316 (9)0.33646 (8)0.01298 (18)
C3A0.13978 (12)0.99549 (11)0.26319 (10)0.0130 (2)
C40.10933 (14)1.00118 (12)0.15352 (10)0.0165 (2)
H40.0861430.9388090.1229410.020*
C50.11382 (14)1.10006 (12)0.09052 (11)0.0183 (2)
H50.0940631.1053100.0156220.022*
C60.14719 (14)1.19255 (12)0.13597 (11)0.0185 (2)
H60.1481371.2600420.0914740.022*
C70.17885 (14)1.18784 (11)0.24436 (11)0.0167 (2)
H70.2016121.2505660.2747400.020*
C7A0.17590 (13)1.08692 (11)0.30715 (10)0.0134 (2)
C80.18455 (12)0.82947 (10)0.52233 (10)0.0113 (2)
C90.21641 (12)0.84103 (10)0.63037 (10)0.0119 (2)
C100.22112 (13)0.75420 (11)0.71150 (10)0.0130 (2)
C110.19296 (13)0.64662 (11)0.69151 (10)0.0126 (2)
C120.16105 (12)0.72035 (10)0.49822 (9)0.0112 (2)
C130.25168 (14)0.76681 (11)0.82143 (11)0.0161 (2)
C140.44732 (16)0.90452 (15)0.64337 (18)0.0375 (4)
H14A0.4829090.8321000.6881750.056*
H14B0.4842760.9657110.6634530.056*
H14C0.4832270.8798480.5620980.056*
S20.28523 (3)0.39958 (3)0.51130 (2)0.01363 (7)
S30.24867 (3)0.97028 (3)0.67335 (3)0.01445 (7)
O10.18556 (10)0.56948 (8)0.75942 (7)0.01650 (17)
O20.39814 (10)0.43053 (8)0.44172 (8)0.01993 (19)
O30.22015 (11)0.32617 (8)0.46616 (8)0.01989 (19)
N10.14142 (11)0.53246 (9)0.55209 (8)0.01215 (18)
H010.0686 (19)0.5236 (16)0.6018 (15)0.024 (4)*
N20.17243 (11)0.63362 (9)0.57965 (8)0.01120 (18)
N40.13014 (12)0.69607 (10)0.40197 (9)0.01497 (19)
H020.116 (2)0.6318 (18)0.3914 (16)0.031 (5)*
H030.118 (2)0.7536 (18)0.3545 (16)0.030 (5)*
N50.27764 (14)0.77140 (11)0.91037 (10)0.0249 (2)
C150.35093 (13)0.32693 (11)0.63125 (10)0.0142 (2)
C160.27838 (14)0.25780 (11)0.69169 (11)0.0162 (2)
H160.1966470.2500180.6679580.019*
C170.32777 (14)0.20066 (11)0.78708 (11)0.0174 (2)
H170.2782680.1542750.8293140.021*
C180.44894 (14)0.21006 (11)0.82216 (11)0.0173 (2)
C190.51825 (14)0.28051 (12)0.76017 (11)0.0184 (2)
H190.6002930.2881720.7834990.022*
C200.46997 (13)0.33974 (11)0.66507 (11)0.0168 (2)
H200.5175660.3880920.6239970.020*
C210.50385 (16)0.14328 (14)0.92318 (12)0.0247 (3)
H21A0.4193380.1523640.9842400.037*
H21B0.5672300.1783180.9501520.037*
H21C0.5607790.0556390.9010040.037*
C970.20835 (19)0.51005 (15)0.00331 (12)0.0303 (3)
H97A0.1058030.5475120.0143050.045*
H97B0.2584310.4297280.0455750.045*
H97C0.2598930.5639810.0312590.045*
C980.35300 (17)0.44892 (18)0.15100 (14)0.0356 (4)
H98A0.3393230.4413220.2336010.053*
H98B0.4005020.5072000.1298600.053*
H98C0.4156560.3681410.1123430.053*
C990.08612 (15)0.51648 (12)0.19300 (11)0.0186 (2)
H990.0036770.5416040.1655240.022*
N990.20970 (13)0.49363 (11)0.11715 (9)0.0198 (2)
O990.07862 (10)0.50763 (9)0.29665 (7)0.01853 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01528 (13)0.01090 (13)0.01511 (13)0.00706 (10)0.00348 (10)0.00176 (10)
C20.0104 (5)0.0097 (5)0.0145 (5)0.0042 (4)0.0008 (4)0.0002 (4)
N30.0147 (4)0.0121 (4)0.0126 (4)0.0060 (4)0.0022 (3)0.0015 (3)
C3A0.0114 (5)0.0121 (5)0.0137 (5)0.0038 (4)0.0004 (4)0.0013 (4)
C40.0173 (5)0.0168 (5)0.0156 (5)0.0069 (4)0.0032 (4)0.0016 (4)
C50.0184 (6)0.0200 (6)0.0148 (5)0.0059 (5)0.0029 (4)0.0046 (4)
C60.0188 (6)0.0156 (6)0.0195 (6)0.0062 (5)0.0020 (5)0.0059 (4)
C70.0174 (5)0.0130 (5)0.0198 (6)0.0067 (4)0.0021 (4)0.0038 (4)
C7A0.0124 (5)0.0122 (5)0.0143 (5)0.0042 (4)0.0013 (4)0.0020 (4)
C80.0114 (5)0.0092 (5)0.0130 (5)0.0041 (4)0.0016 (4)0.0003 (4)
C90.0108 (5)0.0108 (5)0.0139 (5)0.0041 (4)0.0017 (4)0.0015 (4)
C100.0140 (5)0.0127 (5)0.0123 (5)0.0049 (4)0.0032 (4)0.0008 (4)
C110.0133 (5)0.0126 (5)0.0108 (5)0.0039 (4)0.0023 (4)0.0005 (4)
C120.0115 (5)0.0105 (5)0.0113 (5)0.0044 (4)0.0007 (4)0.0004 (4)
C130.0178 (5)0.0139 (5)0.0172 (6)0.0060 (4)0.0053 (4)0.0001 (4)
C140.0149 (6)0.0276 (8)0.0685 (12)0.0089 (6)0.0016 (7)0.0143 (8)
S20.01854 (14)0.00982 (12)0.01155 (13)0.00509 (10)0.00151 (10)0.00011 (9)
S30.01584 (13)0.01206 (13)0.01707 (14)0.00662 (10)0.00418 (10)0.00170 (10)
O10.0234 (4)0.0140 (4)0.0126 (4)0.0076 (3)0.0040 (3)0.0024 (3)
O20.0211 (4)0.0179 (4)0.0164 (4)0.0061 (4)0.0033 (3)0.0016 (3)
O30.0315 (5)0.0121 (4)0.0181 (4)0.0088 (4)0.0089 (4)0.0005 (3)
N10.0155 (5)0.0092 (4)0.0131 (4)0.0067 (4)0.0018 (4)0.0001 (3)
N20.0153 (4)0.0090 (4)0.0108 (4)0.0063 (3)0.0028 (3)0.0000 (3)
N40.0237 (5)0.0127 (5)0.0129 (5)0.0107 (4)0.0062 (4)0.0025 (4)
N50.0317 (6)0.0252 (6)0.0212 (6)0.0117 (5)0.0121 (5)0.0009 (5)
C150.0168 (5)0.0100 (5)0.0139 (5)0.0038 (4)0.0017 (4)0.0002 (4)
C160.0190 (6)0.0137 (5)0.0177 (6)0.0080 (4)0.0046 (4)0.0019 (4)
C170.0210 (6)0.0139 (5)0.0172 (6)0.0073 (5)0.0030 (4)0.0025 (4)
C180.0171 (5)0.0147 (5)0.0152 (5)0.0013 (4)0.0026 (4)0.0005 (4)
C190.0130 (5)0.0194 (6)0.0208 (6)0.0040 (4)0.0030 (4)0.0009 (5)
C200.0145 (5)0.0151 (5)0.0190 (6)0.0054 (4)0.0001 (4)0.0003 (4)
C210.0214 (6)0.0284 (7)0.0198 (6)0.0041 (5)0.0063 (5)0.0065 (5)
C970.0417 (9)0.0361 (8)0.0130 (6)0.0163 (7)0.0027 (6)0.0032 (5)
C980.0233 (7)0.0561 (11)0.0247 (7)0.0136 (7)0.0018 (6)0.0001 (7)
C990.0228 (6)0.0182 (6)0.0164 (6)0.0094 (5)0.0045 (5)0.0006 (4)
N990.0238 (5)0.0229 (5)0.0126 (5)0.0098 (4)0.0021 (4)0.0011 (4)
O990.0248 (5)0.0228 (5)0.0127 (4)0.0153 (4)0.0016 (3)0.0004 (3)
Geometric parameters (Å, º) top
S1—C7A1.7375 (12)S2—N11.6678 (10)
S1—C21.7677 (12)S2—C151.7597 (12)
C2—N31.3153 (15)N1—N21.4020 (13)
C2—C81.4706 (15)N1—H010.888 (18)
N3—C3A1.3848 (14)N4—H020.84 (2)
C3A—C41.3977 (17)N4—H030.86 (2)
C3A—C7A1.4013 (17)C15—C201.3872 (17)
C4—C51.3855 (17)C15—C161.3955 (17)
C4—H40.9500C16—C171.3875 (17)
C5—C61.4031 (19)C16—H160.9500
C5—H50.9500C17—C181.3970 (18)
C6—C71.3880 (18)C17—H170.9500
C6—H60.9500C18—C191.3948 (18)
C7—C7A1.4005 (16)C18—C211.5034 (18)
C7—H70.9500C19—C201.3894 (18)
C8—C91.4108 (16)C19—H190.9500
C8—C121.4372 (15)C20—H200.9500
C9—C101.3897 (16)C21—H21A0.9800
C9—S31.7781 (12)C21—H21B0.9800
C10—C131.4295 (16)C21—H21C0.9800
C10—C111.4340 (16)C97—N991.4536 (17)
C11—O11.2213 (14)C97—H97A0.9800
C11—N21.4132 (14)C97—H97B0.9800
C12—N41.3124 (15)C97—H97C0.9800
C12—N21.3851 (14)C98—N991.4554 (19)
C13—N51.1499 (17)C98—H98A0.9800
C14—S31.7952 (15)C98—H98B0.9800
C14—H14A0.9800C98—H98C0.9800
C14—H14B0.9800C99—O991.2343 (15)
C14—H14C0.9800C99—N991.3242 (17)
S2—O31.4317 (10)C99—H990.9500
S2—O21.4326 (9)
C7A—S1—C289.58 (6)N2—N1—S2117.20 (8)
N3—C2—C8121.49 (10)N2—N1—H01113.6 (11)
N3—C2—S1113.55 (8)S2—N1—H01113.1 (11)
C8—C2—S1124.95 (9)C12—N2—N1115.94 (9)
C2—N3—C3A112.58 (10)C12—N2—C11125.63 (10)
N3—C3A—C4125.08 (11)N1—N2—C11117.88 (9)
N3—C3A—C7A114.40 (10)C12—N4—H02121.2 (13)
C4—C3A—C7A120.52 (11)C12—N4—H03114.9 (13)
C5—C4—C3A118.33 (12)H02—N4—H03123.6 (18)
C5—C4—H4120.8C20—C15—C16121.33 (11)
C3A—C4—H4120.8C20—C15—S2120.72 (9)
C4—C5—C6120.82 (12)C16—C15—S2117.94 (9)
C4—C5—H5119.6C17—C16—C15118.80 (12)
C6—C5—H5119.6C17—C16—H16120.6
C7—C6—C5121.60 (11)C15—C16—H16120.6
C7—C6—H6119.2C16—C17—C18121.22 (12)
C5—C6—H6119.2C16—C17—H17119.4
C6—C7—C7A117.34 (12)C18—C17—H17119.4
C6—C7—H7121.3C19—C18—C17118.44 (11)
C7A—C7—H7121.3C19—C18—C21121.38 (12)
C7—C7A—C3A121.37 (11)C17—C18—C21120.17 (12)
C7—C7A—S1128.74 (10)C20—C19—C18121.46 (12)
C3A—C7A—S1109.88 (8)C20—C19—H19119.3
C9—C8—C12116.48 (10)C18—C19—H19119.3
C9—C8—C2125.41 (10)C15—C20—C19118.73 (11)
C12—C8—C2118.11 (10)C15—C20—H20120.6
C10—C9—C8122.53 (10)C19—C20—H20120.6
C10—C9—S3115.37 (9)C18—C21—H21A109.5
C8—C9—S3122.08 (9)C18—C21—H21B109.5
C9—C10—C13122.46 (11)H21A—C21—H21B109.5
C9—C10—C11122.30 (10)C18—C21—H21C109.5
C13—C10—C11115.24 (10)H21A—C21—H21C109.5
O1—C11—N2119.46 (11)H21B—C21—H21C109.5
O1—C11—C10127.10 (11)N99—C97—H97A109.5
N2—C11—C10113.44 (10)N99—C97—H97B109.5
N4—C12—N2116.83 (10)H97A—C97—H97B109.5
N4—C12—C8123.94 (11)N99—C97—H97C109.5
N2—C12—C8119.23 (10)H97A—C97—H97C109.5
N5—C13—C10176.92 (13)H97B—C97—H97C109.5
S3—C14—H14A109.5N99—C98—H98A109.5
S3—C14—H14B109.5N99—C98—H98B109.5
H14A—C14—H14B109.5H98A—C98—H98B109.5
S3—C14—H14C109.5N99—C98—H98C109.5
H14A—C14—H14C109.5H98A—C98—H98C109.5
H14B—C14—H14C109.5H98B—C98—H98C109.5
O3—S2—O2121.42 (6)O99—C99—N99125.03 (13)
O3—S2—N1102.99 (5)O99—C99—H99117.5
O2—S2—N1106.32 (5)N99—C99—H99117.5
O3—S2—C15106.76 (6)C99—N99—C97121.56 (12)
O2—S2—C15109.03 (6)C99—N99—C98121.18 (12)
N1—S2—C15109.88 (5)C97—N99—C98117.25 (12)
C9—S3—C1498.98 (6)
C7A—S1—C2—N30.89 (9)C2—C8—C12—N40.37 (17)
C7A—S1—C2—C8178.19 (10)C9—C8—C12—N20.79 (15)
C8—C2—N3—C3A178.06 (10)C2—C8—C12—N2179.01 (10)
S1—C2—N3—C3A1.06 (13)C10—C9—S3—C1483.40 (11)
C2—N3—C3A—C4178.78 (11)C8—C9—S3—C1498.15 (12)
C2—N3—C3A—C7A0.70 (14)O3—S2—N1—N2167.59 (8)
N3—C3A—C4—C5179.67 (11)O2—S2—N1—N238.90 (9)
C7A—C3A—C4—C50.89 (17)C15—S2—N1—N278.95 (9)
C3A—C4—C5—C60.39 (18)N4—C12—N2—N13.39 (15)
C4—C5—C6—C70.93 (19)C8—C12—N2—N1177.19 (10)
C5—C6—C7—C7A0.15 (18)N4—C12—N2—C11174.61 (10)
C6—C7—C7A—C3A1.15 (17)C8—C12—N2—C115.97 (17)
C6—C7—C7A—S1179.72 (9)S2—N1—N2—C12103.12 (10)
N3—C3A—C7A—C7178.80 (11)S2—N1—N2—C1184.95 (11)
C4—C3A—C7A—C71.70 (17)O1—C11—N2—C12172.21 (11)
N3—C3A—C7A—S10.01 (13)C10—C11—N2—C127.76 (16)
C4—C3A—C7A—S1179.49 (9)O1—C11—N2—N11.15 (16)
C2—S1—C7A—C7179.17 (12)C10—C11—N2—N1178.82 (9)
C2—S1—C7A—C3A0.47 (9)O3—S2—C15—C20152.17 (10)
N3—C2—C8—C9177.62 (11)O2—S2—C15—C2019.34 (12)
S1—C2—C8—C93.36 (16)N1—S2—C15—C2096.82 (10)
N3—C2—C8—C122.61 (16)O3—S2—C15—C1628.68 (11)
S1—C2—C8—C12176.41 (8)O2—S2—C15—C16161.51 (9)
C12—C8—C9—C101.79 (16)N1—S2—C15—C1682.33 (10)
C2—C8—C9—C10178.44 (11)C20—C15—C16—C170.33 (18)
C12—C8—C9—S3179.88 (8)S2—C15—C16—C17179.47 (9)
C2—C8—C9—S30.10 (16)C15—C16—C17—C180.79 (19)
C8—C9—C10—C13179.23 (11)C16—C17—C18—C191.19 (18)
S3—C9—C10—C130.79 (15)C16—C17—C18—C21177.66 (12)
C8—C9—C10—C110.40 (18)C17—C18—C19—C200.49 (19)
S3—C9—C10—C11178.04 (9)C21—C18—C19—C20178.35 (12)
C9—C10—C11—O1175.15 (12)C16—C15—C20—C191.01 (18)
C13—C10—C11—O13.76 (18)S2—C15—C20—C19179.87 (9)
C9—C10—C11—N24.82 (16)C18—C19—C20—C150.59 (19)
C13—C10—C11—N2176.27 (10)O99—C99—N99—C97178.03 (13)
C9—C8—C12—N4179.84 (11)O99—C99—N99—C983.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···O99i0.888 (18)1.872 (18)2.7583 (13)175.7 (16)
N4—H02···O990.84 (2)2.05 (2)2.8334 (14)154.6 (18)
N4—H03···N30.86 (2)1.86 (2)2.5760 (15)139.9 (17)
N4—H02···N10.84 (2)2.237 (19)2.5932 (14)105.7 (15)
C7—H7···O3ii0.952.543.3161 (16)139
C20—H20···O2iii0.952.643.5605 (16)164
C97—H97C···N5iv0.982.593.504 (2)155
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x, y, z1.
 

References

First citationElgemeie, G. H. & Abou-Zeid, M. (2015). Nucleosides Nucleotides Nucleic Acids, 34, 834–847.  Web of Science CrossRef CAS PubMed
First citationElgemeie, G. H., Abou-Zeid, M., Alsaid, S., Hebishy, A. & Essa, H. (2015). Nucleosides Nucleotides Nucleic Acids, 34, 659–673.  Web of Science CrossRef CAS PubMed
First citationElgemeie, G. H., Abou-Zeid, M. & Azzam, R. (2016). Nucleosides Nucleotides Nucleic Acids, 35, 211–222.  Web of Science CrossRef CAS PubMed
First citationElgemeie, G. H., Azzam, R. A. & Elsayed, R. E. (2017c). Patent No. 1554/2017. Egyptian Academy of Scientific Research.
First citationElgemeie, G. H., El-Ezbawy, S. R. & Sood, S. A. (2003a). Synth. Commun. 33, 2095–2101.  Web of Science CrossRef CAS
First citationElgemeie, G. H., Elghandour, A. H. & Abd Elaziz, G. W. (2003b). Synth. Commun. 33, 1659–1664.  Web of Science CrossRef CAS
First citationElgemeie, G. H., Elsayed, S. H. & Hassan, A. S. (2009). Synth. Commun. 39, 1781–1792.  Web of Science CrossRef CAS
First citationElgemeie, G. H., Fathy, N., Zaghary, W. & Farag, A. (2017b). Nucleosides Nucleotides Nucleic Acids, 36, 198–212.  Web of Science CrossRef CAS PubMed
First citationElgemeie, G. H. & Mohamed, M. A. (2006). Synth. Commun. 36, 1025–1038.  Web of Science CrossRef CAS
First citationElgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017a). Nucleosides Nucleotides Nucleic Acids, 36, 213–223.  Web of Science CrossRef CAS PubMed
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Abingdon, UK.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSiemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, Wisconsin USA.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds