research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of aqua­(1H-pyrazole-κN2)(pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)copper(II) dihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

Edited by H. Ishida, Okayama University, Japan (Received 3 November 2017; accepted 10 November 2017; online 17 November 2017)

In the title compound, [Cu(C7H3NO4)(C3H4N2)(H2O)]·2H2O, the CuII atom is coordinated by three O atoms and two N atoms, provided by a tridentate pyridine-2,6-di­carboxyl­ate (pdc), one pyrazole and one water ligand, forming a slightly distorted square-pyramidal geometry [range of O—Cu—O and O—Cu—N bond angles = 79.55 (8)–166.22 (10)°]. The water mol­ecule is positioned at the apical position. In the crystal, the complex mol­ecule and the two crystallographically independent non-coordinating water mol­ecules are linked into a supra­molecular layer structure parallel to the ab plane via O—H⋯O and N—H⋯O hydrogen bonds.

1. Chemical context

Metal complexes with the tridentate ligand 2,6-bis­[(1H-pyrazol-1-yl)meth­yl]pyridine are known to be catalysts of polyethyl­ene polymerization (Singh et al., 2003[Singh, S., Mishra, V., Mukherjee, J., Seethalekshmi, N. & Mukherjee, R. (2003). Dalton Trans. pp. 3392-3397.]; Watson et al., 1987[Watson, A. A., House, D. A. & Steel, P. J. (1987). Inorg. Chim. Acta, 130, 167-176.]; Son et al., 2014[Son, K., Woo, J. O., Kim, D. & Kang, S. K. (2014). Acta Cryst. E70, o973.]; Kim & Kang, 2015[Kim, D. & Kang, S. K. (2015). Acta Cryst. E71, m79-m80.]). 2,6-Bis[(1H-pyrazol-1-yl)meth­yl]pyridine was oxidized to pyridine-2,6-di­carboxyl­ate (pdc) by metal nitrate (Unuigboje & Anyile, 2007[Unuigboje, A. & Anyile, N. (2007). J. Chem. Soc. Nigeria, 32, 203-210.]). The pdc mol­ecule has been recognized as a component of bacterial spores, and is also useful in a variety of processes as an enzyme inhibitor, plant preservative and food sanitizer (Cui et al., 2011[Cui, G.-H., Liu, T.-F. & Peng, X. (2011). J. Chem. Crystallogr. 41, 322-327.]). The pdc mol­ecule has been selected as a primary dibasic tridentate ligand and a metal complex with pdc was reported to be a new chemical sensor (Mistri et al., 2013[Mistri, S., Zangrando, E. & Manna, S. C. (2013). Inorg. Chim. Acta, 405, 331-338.]). Attention has been paid to the design of various N-donor ligands with special structural properties in order to investigate the specific stereochemical requirements of a particular metal-binding site (Mukherjee, 2000[Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151-218.]). Various substituted N-donor heterocyclic ligands such as imidazole and pyrazole have been selected as a second ligand, so that the structural and electronic effects on the biologically important Cu—N bond could be probed (Ang et al., 1991[Ang, H. G., Kwik, W. L., Hanson, G. R., Crowther, J. A., McPartlin, M. & Choi, N. (1991). J. Chem. Soc. Dalton Trans. pp. 3193-3201.]; Chen et al., 2011[Chen, T. T., Shang, Y. F., Xi, X., Zhang, Y. H. & Wang, N. P. (2011). Acta Cryst. E67, m809.]; Lin et al., 2009[Lin, Y.-Y., Yu, Y.-P., Liu, B.-X. & Zhang, L.-J. (2009). Acta Cryst. E65, m279.]; Liu et al., 2005[Liu, S.-H., Li, Y.-Z. & Meng, Q.-J. (2005). Acta Cryst. E61, m1183-m1184.]). As part of these continuing studies, the title complex has been synthesized and characterized by single crystal X-ray diffraction.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The CuII atom is coordinated by three O atoms and two N atoms from tridentate pyridine-2,6-di­carboxyl­ate (pdc), pyrazole and water ligands. The coordination geometry around the CuII atom is a distorted square pyramid as indicated by the τ value of 0.113 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The CuII atom lies in the center of the basal plane defined by two nitro­gen atoms (N2 from pdc and N14 from pyrazole) and two oxygen atoms (O9 and O12 from pdc). The plane including the CuII atom is almost planar, with an r.m.s. deviation of 0.0847 Å from the corresponding least-squares plane defined by the five constituent atoms. The pyrazole ring is twisted by 66.61 (10)° from the basal plane. The apical Cu1—O19 bond length of 2.217 (2) Å is much longer than those of the basal Cu—O lengths [Cu1—O9 = 2.026 (2) Å and Cu1—O12 = 2.058 (2) Å].

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids for non-H atoms. H atoms are drawn as small spheres of arbitrary radii. The O—H⋯O hydrogen bonds are indicated by dashed lines.

3. Supra­molecular features

In the crystal, O—H⋯O hydrogen bonds (O19—H19B⋯O21, O20—H20B⋯O13 and O20—H20A⋯O10iii; symmetry code as in Table 1[link]) link the complex mol­ecule to the non-coordinating water mol­ecules (Fig. 1[link]). Two crystallographically independent non-coordinating water mol­ecules are also linked to each other by O—H⋯O hydrogen bonds (O21—H21A⋯O20iv and O21—H21B⋯O20v; Table 1[link]). Adjacent complex mol­ecules are connected by other O—H⋯O and N—H⋯O hydrogen bonds (N15—H15⋯O12i and O19—H19A⋯O9ii; Table 1[link]). The above-mentioned inter­molecular inter­actions stabilize and link the components into a two-dimensional network parallel to the ab plane (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O19—H19B⋯O21 0.75 (4) 2.09 (5) 2.831 (5) 169 (4)
O20—H20B⋯O13 0.70 (5) 2.12 (5) 2.807 (4) 172 (6)
N15—H15⋯O12i 0.93 (4) 1.93 (4) 2.832 (3) 164 (4)
O19—H19A⋯O9ii 0.70 (5) 2.12 (5) 2.805 (3) 165 (5)
O20—H20A⋯O10iii 0.78 (5) 2.01 (5) 2.784 (4) 171 (5)
O21—H21A⋯O20iv 0.91 (6) 2.05 (6) 2.933 (5) 163 (5)
O21—H21B⋯O20v 0.81 (6) 2.17 (6) 2.938 (5) 161 (6)
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) x-1, y+1, z; (iv) x, y-1, z; (v) x+1, y-1, z.
[Figure 2]
Figure 2
Part of the packing diagram of the title compound, showing mol­ecules linked by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds (dashed lines).

4. Database survey

A search of the Cambridge Structural Database (Version 5.37 with two updates, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) returned 1448 entries for crystal structures related to the name pyridine-2,6-di­carboxyl­ato. Most of them are crystal structures of metal complexes. However, there are only four entries with a secondary ligand of a pyrazolyl derivative bonded to a transition metal, viz. a Cu complex (Lin et al., 2009[Lin, Y.-Y., Yu, Y.-P., Liu, B.-X. & Zhang, L.-J. (2009). Acta Cryst. E65, m279.]; Wang et al., 2014[Wang, Y.-F., Li, Z., Sun, Y.-C. & Zhao, J.-S. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 277-281.]) and Zn and Co complexes (Zhang et al., 2011[Zhang, C. S., Li, J., Hou, K. L., Xing, Y. H. & Shi, Z. (2011). Spectrochim. Acta Part A, 78, 777-782.]).

5. Synthesis and crystallization

A solution of copper nitrate trihydrate (0.072 g, 0.3 mmol) in aceto­nitrile (5 ml) was added to a solution of 2,6-bis­[(1H-pyra­zol-1-yl)meth­yl]pyridine (0.072 g, 0.3 mmol) in aceto­nitrile (5 ml) in a high-pressure vessel. After sealing the high-pressure vessel, the resulting solution was stirred for three days at 403 K. The precipitate formed was removed by filtration, and the filtrate was washed with aceto­nitrile and di­chloro­methane to get a dark-green powder. Single crystals of the title compound were obtained from its aqueous solution by slow evaporation of the solvent at 333 K within five days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms of the water mol­ecules and the NH group were located in a difference-Fourier map and refined freely [refined distances; O—H = 0.70 (5)–0.91 (6) Å and N—H = 0.93 (4) Å]. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C7H3NO4)(C3H4N2)(H2O)]·2H2O
Mr 350.77
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 5.2171 (9), 8.9249 (16), 15.309 (3)
α, β, γ (°) 105.289 (8), 94.523 (8), 93.295 (9)
V3) 683.2 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.64
Crystal size (mm) 0.25 × 0.23 × 0.12
 
Data collection
Diffractometer Bruker SMART CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.546, 0.726
No. of measured, independent and observed [I > 2σ(I)] reflections 15587, 3312, 3110
Rint 0.024
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 1.15
No. of reflections 3312
No. of parameters 214
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.68, −0.53
Computer programs: SMART and SAINT (Bruker, 2012[Bruker (2012). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Aqua(1H-pyrazole-κN2)(pyridine-2,6-dicarboxylato-κ3O2,N,O6)copper(II) dihydrate top
Crystal data top
[Cu(C7H3NO4)(C3H4N2)(H2O)]·2H2OZ = 2
Mr = 350.77F(000) = 358
Triclinic, P1Dx = 1.705 Mg m3
a = 5.2171 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9249 (16) ÅCell parameters from 9694 reflections
c = 15.309 (3) Åθ = 2.4–28.2°
α = 105.289 (8)°µ = 1.64 mm1
β = 94.523 (8)°T = 296 K
γ = 93.295 (9)°Block, green
V = 683.2 (2) Å30.25 × 0.23 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3110 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
φ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 66
Tmin = 0.546, Tmax = 0.726k = 1111
15587 measured reflectionsl = 2020
3312 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0181P)2 + 1.271P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
3312 reflectionsΔρmax = 0.68 e Å3
214 parametersΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.72303 (6)0.46457 (4)0.26827 (2)0.02692 (10)
N20.6036 (4)0.3633 (2)0.14415 (14)0.0245 (4)
C30.7285 (5)0.2455 (3)0.09966 (17)0.0262 (5)
C40.6564 (6)0.1715 (3)0.00900 (19)0.0332 (6)
H40.74440.08950.02240.040*
C50.4473 (6)0.2238 (3)0.03373 (19)0.0363 (6)
H50.39420.17620.09470.044*
C60.3182 (6)0.3459 (3)0.01379 (19)0.0328 (6)
H60.17780.38070.01430.039*
C70.4036 (5)0.4151 (3)0.10435 (17)0.0253 (5)
C80.9466 (5)0.2086 (3)0.16040 (18)0.0288 (5)
O90.9876 (4)0.3056 (2)0.23975 (13)0.0327 (4)
O101.0648 (5)0.0935 (3)0.13212 (15)0.0443 (5)
C110.2971 (5)0.5503 (3)0.16952 (18)0.0282 (5)
O120.4307 (4)0.6002 (2)0.24738 (13)0.0319 (4)
O130.0961 (4)0.6013 (3)0.14620 (15)0.0417 (5)
N140.8880 (4)0.6023 (3)0.38160 (16)0.0330 (5)
N151.1120 (5)0.6903 (3)0.39067 (18)0.0409 (6)
H151.218 (8)0.680 (5)0.344 (3)0.066 (12)*
C161.1553 (7)0.7888 (4)0.4734 (2)0.0530 (9)
H161.29630.86160.49440.064*
C170.9590 (8)0.7642 (5)0.5214 (2)0.0583 (10)
H170.93780.81500.58140.070*
C180.7951 (7)0.6469 (4)0.4620 (2)0.0492 (8)
H180.64170.60530.47650.059*
O190.4765 (5)0.3250 (3)0.33442 (17)0.0397 (5)
H19A0.356 (9)0.304 (5)0.309 (3)0.061 (15)*
H19B0.521 (8)0.246 (5)0.333 (3)0.057 (14)*
O200.0431 (7)0.9056 (3)0.2509 (2)0.0657 (8)
H20A0.061 (10)0.952 (6)0.215 (4)0.079*
H20B0.042 (10)0.828 (6)0.226 (4)0.079*
O210.5720 (7)0.0147 (4)0.3314 (3)0.0839 (11)
H21A0.420 (11)0.039 (7)0.303 (4)0.101*
H21B0.676 (12)0.028 (7)0.299 (4)0.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02439 (16)0.03062 (17)0.02206 (16)0.00556 (12)0.00065 (11)0.00077 (12)
N20.0246 (10)0.0259 (10)0.0219 (10)0.0018 (8)0.0023 (8)0.0047 (8)
C30.0272 (12)0.0239 (11)0.0268 (12)0.0010 (9)0.0047 (10)0.0053 (9)
C40.0398 (15)0.0276 (13)0.0290 (13)0.0014 (11)0.0078 (11)0.0011 (10)
C50.0445 (16)0.0381 (15)0.0217 (12)0.0033 (12)0.0001 (11)0.0023 (11)
C60.0340 (14)0.0364 (14)0.0279 (13)0.0002 (11)0.0028 (11)0.0107 (11)
C70.0239 (12)0.0269 (12)0.0253 (12)0.0010 (9)0.0025 (9)0.0075 (9)
C80.0277 (13)0.0292 (13)0.0306 (13)0.0043 (10)0.0054 (10)0.0089 (10)
O90.0276 (9)0.0372 (10)0.0306 (10)0.0083 (8)0.0014 (7)0.0042 (8)
O100.0511 (13)0.0405 (12)0.0425 (12)0.0220 (10)0.0085 (10)0.0083 (9)
C110.0279 (13)0.0290 (12)0.0294 (13)0.0057 (10)0.0036 (10)0.0097 (10)
O120.0311 (10)0.0336 (10)0.0277 (9)0.0107 (8)0.0012 (7)0.0012 (8)
O130.0366 (11)0.0424 (12)0.0448 (12)0.0166 (9)0.0044 (9)0.0089 (9)
N140.0282 (11)0.0387 (13)0.0280 (11)0.0003 (9)0.0003 (9)0.0029 (10)
N150.0372 (14)0.0487 (15)0.0299 (13)0.0047 (11)0.0072 (10)0.0011 (11)
C160.053 (2)0.054 (2)0.0371 (17)0.0137 (16)0.0027 (15)0.0095 (15)
C170.059 (2)0.072 (2)0.0294 (16)0.0077 (19)0.0098 (15)0.0112 (16)
C180.0427 (18)0.068 (2)0.0308 (15)0.0053 (16)0.0080 (13)0.0026 (15)
O190.0297 (12)0.0496 (14)0.0428 (13)0.0017 (10)0.0000 (10)0.0188 (11)
O200.096 (2)0.0400 (14)0.0618 (19)0.0135 (16)0.0016 (16)0.0158 (13)
O210.070 (2)0.0589 (19)0.106 (3)0.0035 (16)0.021 (2)0.0010 (18)
Geometric parameters (Å, º) top
Cu1—N21.913 (2)C11—O131.231 (3)
Cu1—N141.944 (2)C11—O121.288 (3)
Cu1—O92.0255 (19)N14—C181.329 (4)
Cu1—O122.0577 (19)N14—N151.347 (3)
Cu1—O192.217 (2)N15—C161.331 (4)
N2—C31.328 (3)N15—H150.93 (4)
N2—C71.333 (3)C16—C171.346 (5)
C3—C41.382 (4)C16—H160.9300
C3—C81.519 (4)C17—C181.388 (5)
C4—C51.394 (4)C17—H170.9300
C4—H40.9300C18—H180.9300
C5—C61.384 (4)O19—H19A0.70 (5)
C5—H50.9300O19—H19B0.75 (4)
C6—C71.386 (4)O20—H20A0.78 (5)
C6—H60.9300O20—H20B0.70 (5)
C7—C111.513 (4)O21—H21A0.91 (6)
C8—O101.226 (3)O21—H21B0.81 (6)
C8—O91.286 (3)
N2—Cu1—N14166.22 (10)O10—C8—O9125.9 (3)
N2—Cu1—O980.44 (8)O10—C8—C3119.8 (2)
N14—Cu1—O9100.39 (9)O9—C8—C3114.3 (2)
N2—Cu1—O1279.55 (8)C8—O9—Cu1114.62 (16)
N14—Cu1—O1297.91 (9)O13—C11—O12125.8 (2)
O9—Cu1—O12159.43 (8)O13—C11—C7119.7 (2)
N2—Cu1—O1998.60 (9)O12—C11—C7114.5 (2)
N14—Cu1—O1995.05 (10)C11—O12—Cu1114.43 (16)
O9—Cu1—O1994.79 (9)C18—N14—N15105.1 (2)
O12—Cu1—O1992.87 (9)C18—N14—Cu1129.0 (2)
C3—N2—C7122.1 (2)N15—N14—Cu1125.41 (19)
C3—N2—Cu1118.43 (17)C16—N15—N14111.1 (3)
C7—N2—Cu1119.42 (17)C16—N15—H15126 (3)
N2—C3—C4121.0 (2)N14—N15—H15122 (3)
N2—C3—C8111.8 (2)N15—C16—C17108.0 (3)
C4—C3—C8127.3 (2)N15—C16—H16126.0
C3—C4—C5117.7 (3)C17—C16—H16126.0
C3—C4—H4121.1C16—C17—C18105.3 (3)
C5—C4—H4121.1C16—C17—H17127.4
C6—C5—C4120.6 (3)C18—C17—H17127.4
C6—C5—H5119.7N14—C18—C17110.5 (3)
C4—C5—H5119.7N14—C18—H18124.7
C5—C6—C7118.3 (3)C17—C18—H18124.7
C5—C6—H6120.9Cu1—O19—H19A110 (4)
C7—C6—H6120.9Cu1—O19—H19B115 (3)
N2—C7—C6120.3 (2)H19A—O19—H19B101 (5)
N2—C7—C11111.7 (2)H20A—O20—H20B103 (6)
C6—C7—C11128.0 (2)H21A—O21—H21B102 (5)
C7—N2—C3—C40.4 (4)C4—C3—C8—O9173.6 (3)
Cu1—N2—C3—C4177.8 (2)O10—C8—O9—Cu1172.0 (2)
C7—N2—C3—C8179.6 (2)C3—C8—O9—Cu17.5 (3)
Cu1—N2—C3—C82.3 (3)N2—C7—C11—O13172.6 (2)
N2—C3—C4—C50.5 (4)C6—C7—C11—O137.5 (4)
C8—C3—C4—C5179.4 (3)N2—C7—C11—O126.4 (3)
C3—C4—C5—C60.1 (4)C6—C7—C11—O12173.5 (3)
C4—C5—C6—C70.5 (4)O13—C11—O12—Cu1171.0 (2)
C3—N2—C7—C60.2 (4)C7—C11—O12—Cu17.9 (3)
Cu1—N2—C7—C6178.3 (2)C18—N14—N15—C161.2 (4)
C3—N2—C7—C11179.7 (2)Cu1—N14—N15—C16170.8 (3)
Cu1—N2—C7—C111.6 (3)N14—N15—C16—C171.2 (5)
C5—C6—C7—N20.6 (4)N15—C16—C17—C180.7 (5)
C5—C6—C7—C11179.2 (3)N15—N14—C18—C170.7 (4)
N2—C3—C8—O10173.0 (3)Cu1—N14—C18—C17170.9 (3)
C4—C3—C8—O106.9 (4)C16—C17—C18—N140.0 (5)
N2—C3—C8—O96.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O19—H19B···O210.75 (4)2.09 (5)2.831 (5)169 (4)
O20—H20B···O130.70 (5)2.12 (5)2.807 (4)172 (6)
N15—H15···O12i0.93 (4)1.93 (4)2.832 (3)164 (4)
O19—H19A···O9ii0.70 (5)2.12 (5)2.805 (3)165 (5)
O20—H20A···O10iii0.78 (5)2.01 (5)2.784 (4)171 (5)
O21—H21A···O20iv0.91 (6)2.05 (6)2.933 (5)163 (5)
O21—H21B···O20v0.81 (6)2.17 (6)2.938 (5)161 (6)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x1, y+1, z; (iv) x, y1, z; (v) x+1, y1, z.
 

Funding information

This work was supported by research fund of Chungnam National University.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science
First citationAng, H. G., Kwik, W. L., Hanson, G. R., Crowther, J. A., McPartlin, M. & Choi, N. (1991). J. Chem. Soc. Dalton Trans. pp. 3193–3201.  CSD CrossRef Web of Science
First citationBruker (2012). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChen, T. T., Shang, Y. F., Xi, X., Zhang, Y. H. & Wang, N. P. (2011). Acta Cryst. E67, m809.  Web of Science CSD CrossRef IUCr Journals
First citationCui, G.-H., Liu, T.-F. & Peng, X. (2011). J. Chem. Crystallogr. 41, 322–327.  Web of Science CSD CrossRef CAS
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationKim, D. & Kang, S. K. (2015). Acta Cryst. E71, m79–m80.  Web of Science CSD CrossRef IUCr Journals
First citationLin, Y.-Y., Yu, Y.-P., Liu, B.-X. & Zhang, L.-J. (2009). Acta Cryst. E65, m279.  Web of Science CSD CrossRef IUCr Journals
First citationLiu, S.-H., Li, Y.-Z. & Meng, Q.-J. (2005). Acta Cryst. E61, m1183–m1184.  Web of Science CSD CrossRef IUCr Journals
First citationMistri, S., Zangrando, E. & Manna, S. C. (2013). Inorg. Chim. Acta, 405, 331–338.  Web of Science CSD CrossRef CAS
First citationMukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218.  Web of Science CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSingh, S., Mishra, V., Mukherjee, J., Seethalekshmi, N. & Mukherjee, R. (2003). Dalton Trans. pp. 3392–3397.  Web of Science CSD CrossRef
First citationSon, K., Woo, J. O., Kim, D. & Kang, S. K. (2014). Acta Cryst. E70, o973.  CSD CrossRef IUCr Journals
First citationUnuigboje, A. & Anyile, N. (2007). J. Chem. Soc. Nigeria, 32, 203–210.  CAS
First citationWang, Y.-F., Li, Z., Sun, Y.-C. & Zhao, J.-S. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 277–281.  Web of Science CSD CrossRef CAS
First citationWatson, A. A., House, D. A. & Steel, P. J. (1987). Inorg. Chim. Acta, 130, 167–176.  CSD CrossRef CAS Web of Science
First citationZhang, C. S., Li, J., Hou, K. L., Xing, Y. H. & Shi, Z. (2011). Spectrochim. Acta Part A, 78, 777–782.  Web of Science CSD CrossRef

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds