research communications
H-pyrazole-κN2)(pyridine-2,6-dicarboxylato-κ3O2,N,O6)copper(II) dihydrate
of aqua(1aDepartment of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr
In the title compound, [Cu(C7H3NO4)(C3H4N2)(H2O)]·2H2O, the CuII atom is coordinated by three O atoms and two N atoms, provided by a tridentate pyridine-2,6-dicarboxylate (pdc), one pyrazole and one water ligand, forming a slightly distorted square-pyramidal geometry [range of O—Cu—O and O—Cu—N bond angles = 79.55 (8)–166.22 (10)°]. The water molecule is positioned at the apical position. In the crystal, the complex molecule and the two crystallographically independent non-coordinating water molecules are linked into a supramolecular layer structure parallel to the ab plane via O—H⋯O and N—H⋯O hydrogen bonds.
CCDC reference: 1584872
1. Chemical context
Metal complexes with the tridentate ligand 2,6-bis[(1H-pyrazol-1-yl)methyl]pyridine are known to be catalysts of polyethylene polymerization (Singh et al., 2003; Watson et al., 1987; Son et al., 2014; Kim & Kang, 2015). 2,6-Bis[(1H-pyrazol-1-yl)methyl]pyridine was oxidized to pyridine-2,6-dicarboxylate (pdc) by metal nitrate (Unuigboje & Anyile, 2007). The pdc molecule has been recognized as a component of bacterial spores, and is also useful in a variety of processes as an plant preservative and food sanitizer (Cui et al., 2011). The pdc molecule has been selected as a primary dibasic tridentate ligand and a metal complex with pdc was reported to be a new chemical sensor (Mistri et al., 2013). Attention has been paid to the design of various N-donor ligands with special structural properties in order to investigate the specific stereochemical requirements of a particular metal-binding site (Mukherjee, 2000). Various substituted N-donor heterocyclic ligands such as imidazole and pyrazole have been selected as a second ligand, so that the structural and electronic effects on the biologically important Cu—N bond could be probed (Ang et al., 1991; Chen et al., 2011; Lin et al., 2009; Liu et al., 2005). As part of these continuing studies, the title complex has been synthesized and characterized by single crystal X-ray diffraction.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The CuII atom is coordinated by three O atoms and two N atoms from tridentate pyridine-2,6-dicarboxylate (pdc), pyrazole and water ligands. The coordination geometry around the CuII atom is a distorted square pyramid as indicated by the τ value of 0.113 (Addison et al., 1984). The CuII atom lies in the center of the basal plane defined by two nitrogen atoms (N2 from pdc and N14 from pyrazole) and two oxygen atoms (O9 and O12 from pdc). The plane including the CuII atom is almost planar, with an r.m.s. deviation of 0.0847 Å from the corresponding least-squares plane defined by the five constituent atoms. The pyrazole ring is twisted by 66.61 (10)° from the basal plane. The apical Cu1—O19 bond length of 2.217 (2) Å is much longer than those of the basal Cu—O lengths [Cu1—O9 = 2.026 (2) Å and Cu1—O12 = 2.058 (2) Å].
3. Supramolecular features
In the crystal, O—H⋯O hydrogen bonds (O19—H19B⋯O21, O20—H20B⋯O13 and O20—H20A⋯O10iii; symmetry code as in Table 1) link the complex molecule to the non-coordinating water molecules (Fig. 1). Two crystallographically independent non-coordinating water molecules are also linked to each other by O—H⋯O hydrogen bonds (O21—H21A⋯O20iv and O21—H21B⋯O20v; Table 1). Adjacent complex molecules are connected by other O—H⋯O and N—H⋯O hydrogen bonds (N15—H15⋯O12i and O19—H19A⋯O9ii; Table 1). The above-mentioned intermolecular interactions stabilize and link the components into a two-dimensional network parallel to the ab plane (Fig. 2).
4. Database survey
A search of the Cambridge Structural Database (Version 5.37 with two updates, Groom et al., 2016) returned 1448 entries for crystal structures related to the name pyridine-2,6-dicarboxylato. Most of them are crystal structures of metal complexes. However, there are only four entries with a secondary ligand of a pyrazolyl derivative bonded to a transition metal, viz. a Cu complex (Lin et al., 2009; Wang et al., 2014) and Zn and Co complexes (Zhang et al., 2011).
5. Synthesis and crystallization
A solution of copper nitrate trihydrate (0.072 g, 0.3 mmol) in acetonitrile (5 ml) was added to a solution of 2,6-bis[(1H-pyrazol-1-yl)methyl]pyridine (0.072 g, 0.3 mmol) in acetonitrile (5 ml) in a high-pressure vessel. After sealing the high-pressure vessel, the resulting solution was stirred for three days at 403 K. The precipitate formed was removed by filtration, and the filtrate was washed with acetonitrile and dichloromethane to get a dark-green powder. Single crystals of the title compound were obtained from its aqueous solution by slow evaporation of the solvent at 333 K within five days.
6. Refinement
Crystal data, data collection and structure . H atoms of the water molecules and the NH group were located in a difference-Fourier map and refined freely [refined distances; O—H = 0.70 (5)–0.91 (6) Å and N—H = 0.93 (4) Å]. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1584872
https://doi.org/10.1107/S2056989017016231/is5480sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017016231/is5480Isup2.hkl
Data collection: SMART (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).[Cu(C7H3NO4)(C3H4N2)(H2O)]·2H2O | Z = 2 |
Mr = 350.77 | F(000) = 358 |
Triclinic, P1 | Dx = 1.705 Mg m−3 |
a = 5.2171 (9) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.9249 (16) Å | Cell parameters from 9694 reflections |
c = 15.309 (3) Å | θ = 2.4–28.2° |
α = 105.289 (8)° | µ = 1.64 mm−1 |
β = 94.523 (8)° | T = 296 K |
γ = 93.295 (9)° | Block, green |
V = 683.2 (2) Å3 | 0.25 × 0.23 × 0.12 mm |
Bruker SMART CCD area-detector diffractometer | 3110 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.024 |
φ and ω scans | θmax = 28.3°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −6→6 |
Tmin = 0.546, Tmax = 0.726 | k = −11→11 |
15587 measured reflections | l = −20→20 |
3312 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.035 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.088 | w = 1/[σ2(Fo2) + (0.0181P)2 + 1.271P] where P = (Fo2 + 2Fc2)/3 |
S = 1.15 | (Δ/σ)max < 0.001 |
3312 reflections | Δρmax = 0.68 e Å−3 |
214 parameters | Δρmin = −0.52 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.72303 (6) | 0.46457 (4) | 0.26827 (2) | 0.02692 (10) | |
N2 | 0.6036 (4) | 0.3633 (2) | 0.14415 (14) | 0.0245 (4) | |
C3 | 0.7285 (5) | 0.2455 (3) | 0.09966 (17) | 0.0262 (5) | |
C4 | 0.6564 (6) | 0.1715 (3) | 0.00900 (19) | 0.0332 (6) | |
H4 | 0.7444 | 0.0895 | −0.0224 | 0.040* | |
C5 | 0.4473 (6) | 0.2238 (3) | −0.03373 (19) | 0.0363 (6) | |
H5 | 0.3942 | 0.1762 | −0.0947 | 0.044* | |
C6 | 0.3182 (6) | 0.3459 (3) | 0.01379 (19) | 0.0328 (6) | |
H6 | 0.1778 | 0.3807 | −0.0143 | 0.039* | |
C7 | 0.4036 (5) | 0.4151 (3) | 0.10435 (17) | 0.0253 (5) | |
C8 | 0.9466 (5) | 0.2086 (3) | 0.16040 (18) | 0.0288 (5) | |
O9 | 0.9876 (4) | 0.3056 (2) | 0.23975 (13) | 0.0327 (4) | |
O10 | 1.0648 (5) | 0.0935 (3) | 0.13212 (15) | 0.0443 (5) | |
C11 | 0.2971 (5) | 0.5503 (3) | 0.16952 (18) | 0.0282 (5) | |
O12 | 0.4307 (4) | 0.6002 (2) | 0.24738 (13) | 0.0319 (4) | |
O13 | 0.0961 (4) | 0.6013 (3) | 0.14620 (15) | 0.0417 (5) | |
N14 | 0.8880 (4) | 0.6023 (3) | 0.38160 (16) | 0.0330 (5) | |
N15 | 1.1120 (5) | 0.6903 (3) | 0.39067 (18) | 0.0409 (6) | |
H15 | 1.218 (8) | 0.680 (5) | 0.344 (3) | 0.066 (12)* | |
C16 | 1.1553 (7) | 0.7888 (4) | 0.4734 (2) | 0.0530 (9) | |
H16 | 1.2963 | 0.8616 | 0.4944 | 0.064* | |
C17 | 0.9590 (8) | 0.7642 (5) | 0.5214 (2) | 0.0583 (10) | |
H17 | 0.9378 | 0.8150 | 0.5814 | 0.070* | |
C18 | 0.7951 (7) | 0.6469 (4) | 0.4620 (2) | 0.0492 (8) | |
H18 | 0.6417 | 0.6053 | 0.4765 | 0.059* | |
O19 | 0.4765 (5) | 0.3250 (3) | 0.33442 (17) | 0.0397 (5) | |
H19A | 0.356 (9) | 0.304 (5) | 0.309 (3) | 0.061 (15)* | |
H19B | 0.521 (8) | 0.246 (5) | 0.333 (3) | 0.057 (14)* | |
O20 | 0.0431 (7) | 0.9056 (3) | 0.2509 (2) | 0.0657 (8) | |
H20A | 0.061 (10) | 0.952 (6) | 0.215 (4) | 0.079* | |
H20B | 0.042 (10) | 0.828 (6) | 0.226 (4) | 0.079* | |
O21 | 0.5720 (7) | 0.0147 (4) | 0.3314 (3) | 0.0839 (11) | |
H21A | 0.420 (11) | −0.039 (7) | 0.303 (4) | 0.101* | |
H21B | 0.676 (12) | −0.028 (7) | 0.299 (4) | 0.101* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02439 (16) | 0.03062 (17) | 0.02206 (16) | 0.00556 (12) | −0.00065 (11) | 0.00077 (12) |
N2 | 0.0246 (10) | 0.0259 (10) | 0.0219 (10) | 0.0018 (8) | 0.0023 (8) | 0.0047 (8) |
C3 | 0.0272 (12) | 0.0239 (11) | 0.0268 (12) | 0.0010 (9) | 0.0047 (10) | 0.0053 (9) |
C4 | 0.0398 (15) | 0.0276 (13) | 0.0290 (13) | 0.0014 (11) | 0.0078 (11) | 0.0011 (10) |
C5 | 0.0445 (16) | 0.0381 (15) | 0.0217 (12) | −0.0033 (12) | −0.0001 (11) | 0.0023 (11) |
C6 | 0.0340 (14) | 0.0364 (14) | 0.0279 (13) | −0.0002 (11) | −0.0028 (11) | 0.0107 (11) |
C7 | 0.0239 (12) | 0.0269 (12) | 0.0253 (12) | 0.0010 (9) | 0.0025 (9) | 0.0075 (9) |
C8 | 0.0277 (13) | 0.0292 (13) | 0.0306 (13) | 0.0043 (10) | 0.0054 (10) | 0.0089 (10) |
O9 | 0.0276 (9) | 0.0372 (10) | 0.0306 (10) | 0.0083 (8) | −0.0014 (7) | 0.0042 (8) |
O10 | 0.0511 (13) | 0.0405 (12) | 0.0425 (12) | 0.0220 (10) | 0.0085 (10) | 0.0083 (9) |
C11 | 0.0279 (13) | 0.0290 (12) | 0.0294 (13) | 0.0057 (10) | 0.0036 (10) | 0.0097 (10) |
O12 | 0.0311 (10) | 0.0336 (10) | 0.0277 (9) | 0.0107 (8) | 0.0012 (7) | 0.0012 (8) |
O13 | 0.0366 (11) | 0.0424 (12) | 0.0448 (12) | 0.0166 (9) | −0.0044 (9) | 0.0089 (9) |
N14 | 0.0282 (11) | 0.0387 (13) | 0.0280 (11) | −0.0003 (9) | 0.0003 (9) | 0.0029 (10) |
N15 | 0.0372 (14) | 0.0487 (15) | 0.0299 (13) | −0.0047 (11) | 0.0072 (10) | −0.0011 (11) |
C16 | 0.053 (2) | 0.054 (2) | 0.0371 (17) | −0.0137 (16) | 0.0027 (15) | −0.0095 (15) |
C17 | 0.059 (2) | 0.072 (2) | 0.0294 (16) | −0.0077 (19) | 0.0098 (15) | −0.0112 (16) |
C18 | 0.0427 (18) | 0.068 (2) | 0.0308 (15) | −0.0053 (16) | 0.0080 (13) | 0.0026 (15) |
O19 | 0.0297 (12) | 0.0496 (14) | 0.0428 (13) | 0.0017 (10) | 0.0000 (10) | 0.0188 (11) |
O20 | 0.096 (2) | 0.0400 (14) | 0.0618 (19) | 0.0135 (16) | 0.0016 (16) | 0.0158 (13) |
O21 | 0.070 (2) | 0.0589 (19) | 0.106 (3) | 0.0035 (16) | −0.021 (2) | 0.0010 (18) |
Cu1—N2 | 1.913 (2) | C11—O13 | 1.231 (3) |
Cu1—N14 | 1.944 (2) | C11—O12 | 1.288 (3) |
Cu1—O9 | 2.0255 (19) | N14—C18 | 1.329 (4) |
Cu1—O12 | 2.0577 (19) | N14—N15 | 1.347 (3) |
Cu1—O19 | 2.217 (2) | N15—C16 | 1.331 (4) |
N2—C3 | 1.328 (3) | N15—H15 | 0.93 (4) |
N2—C7 | 1.333 (3) | C16—C17 | 1.346 (5) |
C3—C4 | 1.382 (4) | C16—H16 | 0.9300 |
C3—C8 | 1.519 (4) | C17—C18 | 1.388 (5) |
C4—C5 | 1.394 (4) | C17—H17 | 0.9300 |
C4—H4 | 0.9300 | C18—H18 | 0.9300 |
C5—C6 | 1.384 (4) | O19—H19A | 0.70 (5) |
C5—H5 | 0.9300 | O19—H19B | 0.75 (4) |
C6—C7 | 1.386 (4) | O20—H20A | 0.78 (5) |
C6—H6 | 0.9300 | O20—H20B | 0.70 (5) |
C7—C11 | 1.513 (4) | O21—H21A | 0.91 (6) |
C8—O10 | 1.226 (3) | O21—H21B | 0.81 (6) |
C8—O9 | 1.286 (3) | ||
N2—Cu1—N14 | 166.22 (10) | O10—C8—O9 | 125.9 (3) |
N2—Cu1—O9 | 80.44 (8) | O10—C8—C3 | 119.8 (2) |
N14—Cu1—O9 | 100.39 (9) | O9—C8—C3 | 114.3 (2) |
N2—Cu1—O12 | 79.55 (8) | C8—O9—Cu1 | 114.62 (16) |
N14—Cu1—O12 | 97.91 (9) | O13—C11—O12 | 125.8 (2) |
O9—Cu1—O12 | 159.43 (8) | O13—C11—C7 | 119.7 (2) |
N2—Cu1—O19 | 98.60 (9) | O12—C11—C7 | 114.5 (2) |
N14—Cu1—O19 | 95.05 (10) | C11—O12—Cu1 | 114.43 (16) |
O9—Cu1—O19 | 94.79 (9) | C18—N14—N15 | 105.1 (2) |
O12—Cu1—O19 | 92.87 (9) | C18—N14—Cu1 | 129.0 (2) |
C3—N2—C7 | 122.1 (2) | N15—N14—Cu1 | 125.41 (19) |
C3—N2—Cu1 | 118.43 (17) | C16—N15—N14 | 111.1 (3) |
C7—N2—Cu1 | 119.42 (17) | C16—N15—H15 | 126 (3) |
N2—C3—C4 | 121.0 (2) | N14—N15—H15 | 122 (3) |
N2—C3—C8 | 111.8 (2) | N15—C16—C17 | 108.0 (3) |
C4—C3—C8 | 127.3 (2) | N15—C16—H16 | 126.0 |
C3—C4—C5 | 117.7 (3) | C17—C16—H16 | 126.0 |
C3—C4—H4 | 121.1 | C16—C17—C18 | 105.3 (3) |
C5—C4—H4 | 121.1 | C16—C17—H17 | 127.4 |
C6—C5—C4 | 120.6 (3) | C18—C17—H17 | 127.4 |
C6—C5—H5 | 119.7 | N14—C18—C17 | 110.5 (3) |
C4—C5—H5 | 119.7 | N14—C18—H18 | 124.7 |
C5—C6—C7 | 118.3 (3) | C17—C18—H18 | 124.7 |
C5—C6—H6 | 120.9 | Cu1—O19—H19A | 110 (4) |
C7—C6—H6 | 120.9 | Cu1—O19—H19B | 115 (3) |
N2—C7—C6 | 120.3 (2) | H19A—O19—H19B | 101 (5) |
N2—C7—C11 | 111.7 (2) | H20A—O20—H20B | 103 (6) |
C6—C7—C11 | 128.0 (2) | H21A—O21—H21B | 102 (5) |
C7—N2—C3—C4 | 0.4 (4) | C4—C3—C8—O9 | 173.6 (3) |
Cu1—N2—C3—C4 | −177.8 (2) | O10—C8—O9—Cu1 | −172.0 (2) |
C7—N2—C3—C8 | −179.6 (2) | C3—C8—O9—Cu1 | 7.5 (3) |
Cu1—N2—C3—C8 | 2.3 (3) | N2—C7—C11—O13 | −172.6 (2) |
N2—C3—C4—C5 | −0.5 (4) | C6—C7—C11—O13 | 7.5 (4) |
C8—C3—C4—C5 | 179.4 (3) | N2—C7—C11—O12 | 6.4 (3) |
C3—C4—C5—C6 | 0.1 (4) | C6—C7—C11—O12 | −173.5 (3) |
C4—C5—C6—C7 | 0.5 (4) | O13—C11—O12—Cu1 | 171.0 (2) |
C3—N2—C7—C6 | 0.2 (4) | C7—C11—O12—Cu1 | −7.9 (3) |
Cu1—N2—C7—C6 | 178.3 (2) | C18—N14—N15—C16 | −1.2 (4) |
C3—N2—C7—C11 | −179.7 (2) | Cu1—N14—N15—C16 | 170.8 (3) |
Cu1—N2—C7—C11 | −1.6 (3) | N14—N15—C16—C17 | 1.2 (5) |
C5—C6—C7—N2 | −0.6 (4) | N15—C16—C17—C18 | −0.7 (5) |
C5—C6—C7—C11 | 179.2 (3) | N15—N14—C18—C17 | 0.7 (4) |
N2—C3—C8—O10 | 173.0 (3) | Cu1—N14—C18—C17 | −170.9 (3) |
C4—C3—C8—O10 | −6.9 (4) | C16—C17—C18—N14 | 0.0 (5) |
N2—C3—C8—O9 | −6.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O19—H19B···O21 | 0.75 (4) | 2.09 (5) | 2.831 (5) | 169 (4) |
O20—H20B···O13 | 0.70 (5) | 2.12 (5) | 2.807 (4) | 172 (6) |
N15—H15···O12i | 0.93 (4) | 1.93 (4) | 2.832 (3) | 164 (4) |
O19—H19A···O9ii | 0.70 (5) | 2.12 (5) | 2.805 (3) | 165 (5) |
O20—H20A···O10iii | 0.78 (5) | 2.01 (5) | 2.784 (4) | 171 (5) |
O21—H21A···O20iv | 0.91 (6) | 2.05 (6) | 2.933 (5) | 163 (5) |
O21—H21B···O20v | 0.81 (6) | 2.17 (6) | 2.938 (5) | 161 (6) |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) x−1, y+1, z; (iv) x, y−1, z; (v) x+1, y−1, z. |
Funding information
This work was supported by research fund of Chungnam National University.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science
Ang, H. G., Kwik, W. L., Hanson, G. R., Crowther, J. A., McPartlin, M. & Choi, N. (1991). J. Chem. Soc. Dalton Trans. pp. 3193–3201. CSD CrossRef Web of Science
Bruker (2012). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, T. T., Shang, Y. F., Xi, X., Zhang, Y. H. & Wang, N. P. (2011). Acta Cryst. E67, m809. Web of Science CSD CrossRef IUCr Journals
Cui, G.-H., Liu, T.-F. & Peng, X. (2011). J. Chem. Crystallogr. 41, 322–327. Web of Science CSD CrossRef CAS
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals
Kim, D. & Kang, S. K. (2015). Acta Cryst. E71, m79–m80. Web of Science CSD CrossRef IUCr Journals
Lin, Y.-Y., Yu, Y.-P., Liu, B.-X. & Zhang, L.-J. (2009). Acta Cryst. E65, m279. Web of Science CSD CrossRef IUCr Journals
Liu, S.-H., Li, Y.-Z. & Meng, Q.-J. (2005). Acta Cryst. E61, m1183–m1184. Web of Science CSD CrossRef IUCr Journals
Mistri, S., Zangrando, E. & Manna, S. C. (2013). Inorg. Chim. Acta, 405, 331–338. Web of Science CSD CrossRef CAS
Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218. Web of Science CrossRef CAS
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Singh, S., Mishra, V., Mukherjee, J., Seethalekshmi, N. & Mukherjee, R. (2003). Dalton Trans. pp. 3392–3397. Web of Science CSD CrossRef
Son, K., Woo, J. O., Kim, D. & Kang, S. K. (2014). Acta Cryst. E70, o973. CSD CrossRef IUCr Journals
Unuigboje, A. & Anyile, N. (2007). J. Chem. Soc. Nigeria, 32, 203–210. CAS
Wang, Y.-F., Li, Z., Sun, Y.-C. & Zhao, J.-S. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 277–281. Web of Science CSD CrossRef CAS
Watson, A. A., House, D. A. & Steel, P. J. (1987). Inorg. Chim. Acta, 130, 167–176. CSD CrossRef CAS Web of Science
Zhang, C. S., Li, J., Hou, K. L., Xing, Y. H. & Shi, Z. (2011). Spectrochim. Acta Part A, 78, 777–782. Web of Science CSD CrossRef
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.