research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-(4,4-di­fluoro-5,7-di­methyl-4-bora-3a,4a-di­aza-s-indacen-3-yl)propanoic acid

CROSSMARK_Color_square_no_text.svg

aOsaka University of Pharmaceutical Sciences, Nasahara, Osaka 569-1094, Japan
*Correspondence e-mail: t.kato@gly.oups.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 10 November 2017; accepted 24 November 2017; online 30 November 2017)

The crystal structure of the title compound, C14H15BF2N2O2, which comprises a boron–dipyrromethene (BODIPY) backbone and a propionic acid group, has been determined at 100 K. The BODIPY fused-ring system is nearly planar, with a maximum deviation from the mean plane of 0.032 (2) Å. In the crystal, pairs of O—H⋯O hydrogen bonds connect the mol­ecules, forming inversion dimers. The dimers are linked via C—H⋯O hydrogen bonds, forming a tape along the a axis. The tapes are stacked along the c axis through C—H⋯F hydrogen bonds and ππ inter­actions.

1. Chemical context

Boron–dipyrromethene (BODIPY) dyes have promising applications in material sciences for labeling biomolecules such as peptides, proteins, lipids and nucleic acids. BODIPY dyes have many advantages over other dyes, such as robustness against light and chemicals, high absorption coefficients and fluorescence quantum yields, narrow emission bandwidths, and so on (Boens et al., 2012[Boens, N., Leen, V. & Dehaen, W. (2012). Chem. Soc. Rev. 41, 1130-1172.]). Moreover, their spectroscopic and photophysical properties are easy to tune by attachment of some residues at the appropriate positions of the di­fluoro­boron dipyrromethene moiety (Loudet & Burgess, 2007[Loudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891-4932.]; Ulrich et al., 2008[Ulrich, G., Ziessel, R. & Harriman, A. (2008). Angew. Chem. Int. Ed. 47, 1184-1201.]). Herein we report the crystal structure of the title compound (Fig. 1[link]) having the BODIPY fragment.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

2. Structural commentary

The title compound is composed of a boron–dipyrromethene (BODIPY) backbone and a propionic acid group. The BODIPY fused-ring system is nearly planar, with a maximum deviation from the mean plane of 0.032 (2) Å for atom N4. The bond lengths in the BODIPY framework indicate the strongly delocalized π-system nature [C—C = 1.374 (2)–1.425 (2) Å and C—N = 1.346 (2)–1.401 (2) Å; Fig. 1[link]]. There are weak intra­molecular C—H⋯F hydrogen bonds present (C11—H11A⋯F1 and C13—H13B⋯F1; Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the N5/C5–C7/C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯F1 0.96 2.52 3.146 (2) 123
C13—H13B⋯F1 0.97 2.49 3.096 (2) 120
C11—H11B⋯F2i 0.96 2.42 3.311 (2) 154
C6—H6⋯Cg2i 0.93 2.82 3.664 (1) 152
O16—H16⋯O15ii 0.91 (2) 1.75 (2) 2.648 (2) 175 (2)
C2—H2⋯O16iii 0.93 2.57 3.479 (2) 168
C14—H14A⋯F1iv 0.97 2.43 3.125 (2) 128
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+3; (iii) -x, -y+1, -z+3; (iv) x, y, z+1.

3. Supra­molecular features

Packing diagrams of the title compound are shown in Figs. 2[link]–4[link][link]. A pair of O—H⋯O hydrogen bonds between the carb­oxy­lic acid groups of opposite-facing mol­ecules connect the two mol­ecules (O16—H16⋯O15ii; symmetry code as in Table 1[link]), forming inversion dimers (Fig. 2[link]), and these dimers are linked into a tape structure along the a-axis direction via C—H⋯O hydrogen bonds (C2—H2⋯O16iii; symmetry code as in Table 1[link]). Furthermore, extended stacking of the tapes along the c-axis direction forms a layer parallel to the ac plane (Fig. 3[link]) via C—H⋯F hydrogen bonds (C14—H14A⋯F1iv; symmetry code as in Table 1[link]) and ππ inter­actions [Cg1⋯Cg2iv = 3.7802 (8) Å; symmetry code: (iv) x, y, z + 1; Cg1 and Cg 2 are the centroids of the N4/C1–C3/C9 and N5/C5–C7/C10 five-membered rings, respectively]. Between the layers, inter­molecular C—H⋯F and C—H⋯π inter­actions (C11—H11B⋯F2i and C6—H6⋯Cg2i; symmetry code as in Table 1[link]) are observed (Fig. 4[link]).

[Figure 2]
Figure 2
A packing diagram of the title compound, showing the O16—H16⋯O15ii and C2—H2⋯O16iii inter­actions (dashed blue lines). [Symmetry codes: (ii) −x + 1, −y + 1, −z + 3; (iii) −x, −y + 1, −z + 3.]
[Figure 3]
Figure 3
A packing diagram of the title compound, showing the C14—H14A⋯F1iv and ππ (Cg1⋯Cg2iv and Cg2⋯Cg1v) inter­actions (dashed blue lines). [Symmetry codes: (iv) x, y, z + 1; (v) x, y, z − 1.]
[Figure 4]
Figure 4
A packing diagram of the title compound, showing the C11—H11B⋯F2i and C6—H6⋯Cg2i inter­actions (dashed blue lines). [Symmetry code: (i) x, −y + [{3\over 2}], z − [{1\over 2}].]

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for BODIPY (4,4-di­fluoro-4-bora-3a,4a-di­aza-s-indacenes) derivatives yielded 806 hits. Until 2001, there were only five reports [CSD refcode OCEBIL10 (Bonfiglio et al., 1983[Bonfiglio, J. V., Bonnett, R., Buckley, D. G., Hamzetash, D., Hursthouse, M. B., Malik, K. M. A., McDonagh, A. F. & Trotter, J. (1983). Tetrahedron, 39, 1865-1874.]), JEHFUX (Picou et al., 1990[Picou, C. L., Stevens, E. D., Shah, M. & Boyer, J. H. (1990). Acta Cryst. C46, 1148-1150.]), RETLUX (Kollmannsberger et al., 1997[Kollmannsberger, M., Gareis, T., Heinl, S., Daub, J. & Breu, J. (1997). Angew. Chem. Int. Ed. Engl. 36, 1333-1335.]), QAQTOR (Chen et al., 1999[Chen, J., Reibenspies, J., Derecskei-Kovacs, A. & Burgess, K. (1999). Chem. Commun. pp. 2501-2502.]) and XEJQAE (Burghart et al., 1999[Burghart, A., Kim, H., Welch, M. B., Thoresen, L. H., Reibenspies, J., Burgess, K., Bergström, F. & Johansson, L. B. A. (1999). J. Org. Chem. 64, 7813-7819.])], but as the utility of BODIPY dyes was recognized, structural reports increased significantly. In all cases, the nearly planar BODIPY skeleton is modified with various functional groups, but no compound having a carb­oxy­lic acid directly attached to the BODIPY skeleton has been reported.

5. Synthesis and crystallization

The title compound was synthesized according to a previously described method (Giessler et al., 2010[Giessler, K., Griesser, H., Göhringer, D., Sabirov, T. & Richert, C. (2010). Eur. J. Org. Chem. pp. 3611-3620.]; Bihovsky & Pendrak, 1996[Bihovsky, R. & Pendrak, I. (1996). Bioorg. Med. Chem. Lett. 6, 1541-1542.]). The compound was purified by column chromatography. Single crystals were obtained by slow evaporation from a mixed solution of cyclo­hexa­ne/di­chloro­methane (1:1 vv) at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atom of the carboxyl group was refined freely, while the other H atoms were placed in geometrically idealized positions (C—H = 0.93–0.97 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for methyl­ene and aromatic H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C14H15BF2N2O2
Mr 292.09
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 7.9474 (3), 27.3202 (9), 6.3886 (2)
β (°) 103.903 (3)
V3) 1346.48 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.97
Crystal size (mm) 0.35 × 0.17 × 0.13
 
Data collection
Diffractometer Rigaku Oxford Diffraction XtaLAB Pro: Kappa single and P200K
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Corporation, Yarnton, England.])
Tmin, Tmax 0.739, 0.878
No. of measured, independent and observed [I > 2σ(I)] reflections 7185, 2650, 2441
Rint 0.024
(sin θ/λ)max−1) 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.093, 1.06
No. of reflections 2650
No. of parameters 196
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.19
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Corporation, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

3-(4,4-Difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacen-3-yl)propanoic acid top
Crystal data top
C14H15BF2N2O2F(000) = 608
Mr = 292.09Dx = 1.441 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 7.9474 (3) ÅCell parameters from 4875 reflections
b = 27.3202 (9) Åθ = 6.6–73.9°
c = 6.3886 (2) ŵ = 0.97 mm1
β = 103.903 (3)°T = 100 K
V = 1346.48 (8) Å3Plate, red
Z = 40.35 × 0.17 × 0.13 mm
Data collection top
Rigaku Oxford Diffraction XtaLAB Pro: Kappa single and P200K
diffractometer
2650 independent reflections
Radiation source: rotated anode2441 reflections with I > 2σ(I)
Detector resolution: 8.336 pixels mm-1Rint = 0.024
ω scansθmax = 74.1°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
h = 99
Tmin = 0.739, Tmax = 0.878k = 3333
7185 measured reflectionsl = 77
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.5604P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2650 reflectionsΔρmax = 0.20 e Å3
196 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.13158 (9)0.60985 (3)0.65315 (12)0.0255 (2)
F20.08937 (9)0.67726 (3)0.84017 (12)0.02436 (19)
B40.00668 (17)0.64191 (5)0.6943 (2)0.0198 (3)
N40.12985 (13)0.61414 (4)0.78542 (17)0.0199 (2)
N50.09242 (13)0.66655 (4)0.48014 (16)0.0191 (2)
O150.39633 (12)0.54006 (4)1.32206 (16)0.0290 (2)
O160.28087 (13)0.49056 (4)1.52940 (16)0.0290 (2)
H160.395 (3)0.4817 (8)1.583 (4)0.060 (6)*
C10.38942 (17)0.58795 (5)0.8312 (2)0.0247 (3)
H10.5079750.5829220.8110310.030*
C20.26001 (17)0.56942 (5)0.9971 (2)0.0251 (3)
H20.2757260.5496061.1092670.030*
C30.10063 (17)0.58593 (5)0.9655 (2)0.0218 (3)
C50.02424 (16)0.69272 (5)0.3422 (2)0.0207 (3)
C60.15801 (17)0.70826 (5)0.1669 (2)0.0224 (3)
H60.1438740.7267140.0499510.027*
C70.31272 (17)0.69140 (5)0.1990 (2)0.0221 (3)
C80.37630 (16)0.64040 (5)0.5064 (2)0.0217 (3)
H80.4955940.6402250.4498400.026*
C90.30802 (16)0.61578 (5)0.6990 (2)0.0212 (3)
C100.27228 (16)0.66503 (5)0.3973 (2)0.0204 (3)
C110.16412 (16)0.70348 (5)0.3788 (2)0.0240 (3)
H11A0.2253570.6887060.5116990.036*
H11B0.1818630.7382520.3866120.036*
H11C0.2066670.6904120.2618760.036*
C120.48969 (17)0.69906 (6)0.0566 (2)0.0284 (3)
H12A0.5477300.7245110.1155970.043*
H12B0.5549990.6692560.0478160.043*
H12C0.4799890.7083390.0849270.043*
C130.07910 (17)0.57591 (5)1.0954 (2)0.0251 (3)
H13A0.1282470.6060011.1645370.030*
H13B0.1498800.5655590.9990900.030*
C140.08684 (17)0.53691 (5)1.2669 (2)0.0230 (3)
H14A0.0294540.5489531.3746140.028*
H14B0.0250200.5080351.2011090.028*
C150.26966 (17)0.52318 (5)1.3743 (2)0.0235 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0230 (4)0.0268 (4)0.0273 (4)0.0073 (3)0.0073 (3)0.0027 (3)
F20.0249 (4)0.0249 (4)0.0224 (4)0.0054 (3)0.0041 (3)0.0017 (3)
B40.0182 (6)0.0208 (7)0.0202 (7)0.0013 (5)0.0043 (5)0.0005 (5)
N40.0197 (5)0.0185 (5)0.0210 (5)0.0004 (4)0.0040 (4)0.0006 (4)
N50.0181 (5)0.0197 (5)0.0201 (5)0.0009 (4)0.0057 (4)0.0000 (4)
O150.0257 (5)0.0280 (5)0.0309 (5)0.0027 (4)0.0021 (4)0.0099 (4)
O160.0272 (5)0.0309 (5)0.0283 (5)0.0031 (4)0.0058 (4)0.0120 (4)
C10.0222 (6)0.0252 (7)0.0279 (7)0.0020 (5)0.0081 (5)0.0016 (5)
C20.0281 (7)0.0235 (6)0.0246 (7)0.0020 (5)0.0079 (5)0.0036 (5)
C30.0257 (6)0.0181 (6)0.0214 (6)0.0003 (5)0.0054 (5)0.0002 (5)
C50.0219 (6)0.0194 (6)0.0222 (6)0.0016 (5)0.0078 (5)0.0005 (5)
C60.0245 (6)0.0228 (6)0.0210 (6)0.0029 (5)0.0077 (5)0.0031 (5)
C70.0225 (6)0.0223 (6)0.0213 (6)0.0035 (5)0.0053 (5)0.0005 (5)
C80.0179 (6)0.0224 (6)0.0244 (6)0.0009 (5)0.0045 (5)0.0012 (5)
C90.0187 (6)0.0212 (6)0.0239 (6)0.0001 (5)0.0054 (5)0.0005 (5)
C100.0182 (6)0.0215 (6)0.0215 (6)0.0025 (5)0.0045 (5)0.0006 (5)
C110.0208 (6)0.0251 (7)0.0274 (7)0.0006 (5)0.0081 (5)0.0014 (5)
C120.0224 (6)0.0363 (8)0.0258 (7)0.0057 (6)0.0044 (5)0.0046 (6)
C130.0246 (6)0.0223 (6)0.0262 (7)0.0015 (5)0.0016 (5)0.0041 (5)
C140.0258 (6)0.0207 (6)0.0215 (6)0.0002 (5)0.0035 (5)0.0000 (5)
C150.0290 (7)0.0193 (6)0.0209 (6)0.0012 (5)0.0034 (5)0.0008 (5)
Geometric parameters (Å, º) top
F1—B41.3953 (15)C6—C71.3738 (18)
F2—B41.3926 (16)C6—H60.9300
B4—N41.5479 (17)C7—C101.4253 (18)
B4—N51.5579 (17)C7—C121.4948 (18)
N4—C31.3575 (16)C8—C101.3781 (18)
N4—C91.3915 (16)C8—C91.3926 (18)
N5—C51.3458 (16)C8—H80.9300
N5—C101.4006 (16)C11—H11A0.9600
O15—C151.2243 (16)C11—H11B0.9600
O16—C151.3197 (16)C11—H11C0.9600
O16—H160.92 (2)C12—H12A0.9600
C1—C21.3833 (19)C12—H12B0.9600
C1—C91.4047 (18)C12—H12C0.9600
C1—H10.9300C13—C141.5189 (18)
C2—C31.4042 (18)C13—H13A0.9700
C2—H20.9300C13—H13B0.9700
C3—C131.4948 (18)C14—C151.4978 (18)
C5—C61.4117 (18)C14—H14A0.9700
C5—C111.4878 (17)C14—H14B0.9700
F2—B4—F1108.59 (10)N4—C9—C8120.64 (11)
F2—B4—N4110.42 (10)N4—C9—C1108.39 (11)
F1—B4—N4110.96 (10)C8—C9—C1130.90 (12)
F2—B4—N5110.23 (10)C8—C10—N5120.33 (11)
F1—B4—N5109.78 (10)C8—C10—C7131.45 (12)
N4—B4—N5106.86 (10)N5—C10—C7108.22 (11)
C3—N4—C9107.77 (11)C5—C11—H11A109.5
C3—N4—B4127.19 (11)C5—C11—H11B109.5
C9—N4—B4124.98 (10)H11A—C11—H11B109.5
C5—N5—C10107.65 (10)C5—C11—H11C109.5
C5—N5—B4127.34 (10)H11A—C11—H11C109.5
C10—N5—B4125.02 (10)H11B—C11—H11C109.5
C15—O16—H16109.7 (14)C7—C12—H12A109.5
C2—C1—C9107.09 (12)C7—C12—H12B109.5
C2—C1—H1126.5H12A—C12—H12B109.5
C9—C1—H1126.5C7—C12—H12C109.5
C1—C2—C3107.61 (11)H12A—C12—H12C109.5
C1—C2—H2126.2H12B—C12—H12C109.5
C3—C2—H2126.2C3—C13—C14113.36 (11)
N4—C3—C2109.13 (11)C3—C13—H13A108.9
N4—C3—C13121.36 (11)C14—C13—H13A108.9
C2—C3—C13129.50 (12)C3—C13—H13B108.9
N5—C5—C6109.54 (11)C14—C13—H13B108.9
N5—C5—C11123.37 (12)H13A—C13—H13B107.7
C6—C5—C11127.08 (12)C15—C14—C13111.89 (11)
C7—C6—C5108.12 (11)C15—C14—H14A109.2
C7—C6—H6125.9C13—C14—H14A109.2
C5—C6—H6125.9C15—C14—H14B109.2
C6—C7—C10106.47 (11)C13—C14—H14B109.2
C6—C7—C12127.39 (12)H14A—C14—H14B107.9
C10—C7—C12126.14 (12)O15—C15—O16123.19 (12)
C10—C8—C9121.93 (12)O15—C15—C14123.47 (12)
C10—C8—H8119.0O16—C15—C14113.34 (11)
C9—C8—H8119.0
F2—B4—N4—C362.77 (16)C5—C6—C7—C100.11 (15)
F1—B4—N4—C357.69 (16)C5—C6—C7—C12179.56 (13)
N5—B4—N4—C3177.34 (11)C3—N4—C9—C8176.99 (11)
F2—B4—N4—C9114.21 (13)B4—N4—C9—C85.53 (19)
F1—B4—N4—C9125.33 (12)C3—N4—C9—C10.32 (14)
N5—B4—N4—C95.68 (16)B4—N4—C9—C1177.16 (11)
F2—B4—N5—C562.94 (16)C10—C8—C9—N41.75 (19)
F1—B4—N5—C556.64 (16)C10—C8—C9—C1178.37 (13)
N4—B4—N5—C5177.05 (11)C2—C1—C9—N40.17 (15)
F2—B4—N5—C10117.07 (12)C2—C1—C9—C8176.77 (13)
F1—B4—N5—C10123.35 (12)C9—C8—C10—N50.94 (19)
N4—B4—N5—C102.94 (16)C9—C8—C10—C7178.50 (13)
C9—C1—C2—C30.03 (15)C5—N5—C10—C8179.99 (11)
C9—N4—C3—C20.34 (14)B4—N5—C10—C80.00 (18)
B4—N4—C3—C2177.06 (12)C5—N5—C10—C70.43 (14)
C9—N4—C3—C13178.81 (11)B4—N5—C10—C7179.55 (11)
B4—N4—C3—C133.79 (19)C6—C7—C10—C8179.68 (13)
C1—C2—C3—N40.23 (15)C12—C7—C10—C80.6 (2)
C1—C2—C3—C13178.83 (13)C6—C7—C10—N50.19 (14)
C10—N5—C5—C60.51 (14)C12—C7—C10—N5179.87 (12)
B4—N5—C5—C6179.48 (11)N4—C3—C13—C14170.06 (11)
C10—N5—C5—C11178.33 (11)C2—C3—C13—C148.9 (2)
B4—N5—C5—C111.69 (19)C3—C13—C14—C15172.63 (11)
N5—C5—C6—C70.39 (15)C13—C14—C15—O153.02 (18)
C11—C5—C6—C7178.39 (12)C13—C14—C15—O16177.79 (11)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the N5/C5–C7/C10 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11A···F10.962.523.146 (2)123
C13—H13B···F10.972.493.096 (2)120
C11—H11B···F2i0.962.423.311 (2)154
C6—H6···Cg2i0.932.823.664 (1)152
O16—H16···O15ii0.91 (2)1.75 (2)2.648 (2)175 (2)
C2—H2···O16iii0.932.573.479 (2)168
C14—H14A···F1iv0.972.433.125 (2)128
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+3; (iii) x, y+1, z+3; (iv) x, y, z+1.
 

Funding information

This work was performed in part under the Cooperative Research Program of the Institute for Protein Research, Osaka University (CR-16–05).

References

First citationBihovsky, R. & Pendrak, I. (1996). Bioorg. Med. Chem. Lett. 6, 1541–1542.  CrossRef CAS
First citationBoens, N., Leen, V. & Dehaen, W. (2012). Chem. Soc. Rev. 41, 1130–1172.  Web of Science CrossRef CAS PubMed
First citationBonfiglio, J. V., Bonnett, R., Buckley, D. G., Hamzetash, D., Hursthouse, M. B., Malik, K. M. A., McDonagh, A. F. & Trotter, J. (1983). Tetrahedron, 39, 1865–1874.  CrossRef CAS
First citationBurghart, A., Kim, H., Welch, M. B., Thoresen, L. H., Reibenspies, J., Burgess, K., Bergström, F. & Johansson, L. B. A. (1999). J. Org. Chem. 64, 7813–7819.  CrossRef CAS
First citationChen, J., Reibenspies, J., Derecskei-Kovacs, A. & Burgess, K. (1999). Chem. Commun. pp. 2501–2502.  CrossRef
First citationGiessler, K., Griesser, H., Göhringer, D., Sabirov, T. & Richert, C. (2010). Eur. J. Org. Chem. pp. 3611–3620.
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationKollmannsberger, M., Gareis, T., Heinl, S., Daub, J. & Breu, J. (1997). Angew. Chem. Int. Ed. Engl. 36, 1333–1335.  CrossRef CAS
First citationLoudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891–4932.  Web of Science CrossRef PubMed CAS
First citationPicou, C. L., Stevens, E. D., Shah, M. & Boyer, J. H. (1990). Acta Cryst. C46, 1148–1150.  CSD CrossRef CAS Web of Science IUCr Journals
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Corporation, Yarnton, England.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationUlrich, G., Ziessel, R. & Harriman, A. (2008). Angew. Chem. Int. Ed. 47, 1184–1201.  Web of Science CrossRef CAS
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds