research communications
S,4S)-2,5-diazoniabicyclo[2.2.1]heptane dibromide
of (1aDepartment of Crystallography, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 St. Petersburg, Russian Federation, and bDepartment of Genetics and Biotechnology, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 St. Petersburg, Russian Federation
*Correspondence e-mail: sergei.britvin@spbu.ru
The cage of 2,5-diazabicyclo[2.2.1]heptane is frequently employed in synthetic chemistry as a rigid bicyclic counterpart of the piperazine ring. The 2,5-diazabicyclo[2.2.1]heptane scaffold is incorporated into a variety of compounds having pharmacological and catalytic applications. The unsubstituted parent ring of the system, 2,5-diazabicyclo[2.2.1]heptane itself, has not been structurally characterized. We herein report on the molecular structure of the parent ring in (1S,4S)-2,5-diazoniabicyclo[2.2.1]heptane dibromide, C5H12N22+·2Br−. The contains two crystallographically independent cages of 2,5-diazabicyclo[2.2.1]heptane. Each cage is protonated at the two nitrogen sites. The overall charge balance is maintained by four crystallographically independent bromide ions. In the crystal, the components of the structure are linked via a complex three-dimensional network of N—H⋯Br hydrogen bonds.
Keywords: crystal structure; 2,5-diazabicyclo[2.2.1]heptane; bicyclic amine; diamine; piperazine; bridged heterocycle.
CCDC reference: 1578911
1. Chemical context
Derivatives of the bicyclic nucleus of 2,5-diazabicyclo[2.2.1]heptane comprise a wide family of biochemically active compounds (Murineddu et al., 2012), including antibiotics (McGuirk et al., 1992; Remuzon et al., 1993), vasodilating (López-Ortiz et al., 2014) and antitumor agents (Hamblett et al., 2007; Shchekotikhin et al., 2014; Gerstenberger et al., 2016; Laskar et al., 2017). A broad range of these compounds have been found to exhibit potency as nicotinic acetylcholine receptor ligands (Toma et al., 2002; Artali et al., 2005; Bunnelle et al., 2007; Anderson et al., 2008; Li et al., 2010; Beinat et al., 2015; Bertrand et al., 2015). As a result of the occurrence of two chiral centers, 2,5-diazabicyclo[2.2.1]heptanes are utilized as chiral scaffolds in asymmetric catalysis (Jordis et al., 1999; González-Olvera et al., 2008; Castillo et al., 2013; Díaz-de-Villegas et al., 2014; Avila-Ortiz et al., 2015). The diamine system of 2,5-diazabicyclo[2.2.1]heptane is traditionally included in screening libraries as a rigid counterpart of the flexible piperazine ring (Siebeneicher et al., 2016; Dam et al., 2016; Cernak et al., 2017; Llona-Minguez et al., 2017; Wei et al., 2017). As a consequence, numerous synthetic routes for the preparation of 2,5-diazabicyclo[2.2.1]heptane derivatives have been introduced (see: Portoghese & Mikhail, 1966; Jordis et al., 1990; Yakovlev et al., 2000; Fiorelli et al., 2005; Beinat et al., 2013; Cui et al., 2015; Choi et al., 2016 and the references cited therein). At the same time, the reported structural data on 2,5-diazabicyclo[2.2.1]heptane derivatives are surprisingly scarce (see the Database survey). Moreover, the parent ring of unsubstituted 2,5-diazabicyclo[2.2.1]heptane has not been structurally characterized. In the framework of current research on caged heterocyclic systems (Britvin & Lotnyk, 2015; Britvin et al., 2016; 2017a,b; Britvin & Rumyantsev, 2017b), we herein describe the molecular structure of 2,5-diazabicyclo[2.2.1]heptane (Fig. 1) in its dihydrobromide salt, (1S,4S)-2,5-diazoniabicyclo[2.2.1]heptane dibromide (1).
2. Structural commentary
The 1 contains two structurally independent cages of 2,5-diazabicyclo[2.2.1]heptane (Fig. 2). The molecular geometries of the cages are statistically different: the biggest discrepancy, 0.044 Å, is observed for N2⋯N5 [2.868 (3) Å] and N2A⋯N5A [2.912 (3) Å], whereas the distances between the bridgehead C atoms C1⋯C4 [2.220 (4) Å] and C1A⋯C4A [2.226 (4) Å] are statistically the same (see the Supporting information). Therefore, in spite of bridge-imparted rigidity, the hexagonal ring of 2,5-diazabicyclo[2.2.1]heptane can be affected by some geometric distortions. The framework of 2,5-diazabicyclo[2.2.1]heptane is frequently considered to be the bicyclic counterpart of piperazine where the occurrence of the C1–C7–C4 bridge imparts rigidity to the hexagonal ring (Kiely et al., 1991; Beinat et al., 2013; 2015). It is worth noting that the bicyclic bridged structure of 2,5-diazabicyclo[2.2.1]heptane determines the boat conformation of its cage (Fig. 1). Contrary to that, the piperazine ring is flexible and can adopt four different conformations: chair, boat, twist-boat and half-boat, the former being the energetically most favourable (SenGupta et al., 2014). A comparison of the hexagonal rings of 2,5-diazabicyclo[2.2.1]heptane and the chair conformer of piperazine (Fig. 2) shows that the interatomic distances between the opposing nitrogen atoms are remarkably close. The latter feature can be important because the nitrogen sites are known to be pharmacophores frequently determining the biochemical activity of piperazine derivatives (Patel & Park, 2013). Therefore, the implication of the 2,5-diazabicyclo[2.2.1]heptane scaffold as a piperazine analogue in screening libraries looks quite reasonable from the structural point of view.
of3. Supramolecular features
In the 1, the protonated nitrogen sites in the two symmetrically non-equivalent 2,5-diazabicyclo[2.2.1]heptane cages are counter balanced by the four structurally independent bromide ions. This results in the emergence of a complicated network of hydrogen bonds (Fig. 3). Hydrogen-bonded amine molecules are arranged into infinite slabs parallel to (100). The slabs are linked by N—H⋯Br hydrogen bonds into a three-dimensional network. The full listing of N—H⋯Br bonds is given in Table 1. This three-dimensional net of hydrogen bonds is much more complex than the flat `zigzag' hydrogen bonding occurring in the geometrically similar cage of 7-azabicyclo[2.2.1]heptane (7-azanorbornane) (Britvin & Rumyantsev, 2017a).
of4. Database survey
In spite of extensive studies of 2,5-diazabicyclo[2.2.1]heptane derivatives (see the Chemical context), there are just 14 structures which comprise this bicyclic system in the Cambridge Structural Database (CSD version 5.38, May 2017; Groom et al., 2016). Jordis et al. (1999) reported a series of substituted (1S,4S)-2,5-diazabicyclo[2.2.1]heptanes and provided the first of the 1,2,5-substituted derivative. Lauteslager et al. (2001) carried out a comparative study of chromophores containing piperazine and 2,5-diazabicyclo[2.2.1]heptane groups. Apart from the majority of the latest studies, which are devoted to different aspects of the organic chemistry of the title scaffold (Alvaro et al., 2007; Mereiter et al., 2007; Krasnov et al., 2008; Melgar-Fernández et al., 2008; Wu et al., 2011), Pérez et al. (2011) and Castillo et al. (2013) have reported the first examples of coordination compounds between copper(II) and substituted 2,5-diazabicyclo[2.2.1]heptanes. To the best of our knowledge, no structural data on the unsubstituted parent ring of 2,5-diazabicyclo[2.2.1]heptane have been reported.
5. Synthesis and crystallization
(1S,4S)-Diazabicyclo[2.2.1]heptane dihydrobromide (1) was obtained from Sigma–Aldrich and found to be analytically pure [analysis calculated for C5H12Br2N2 (259.97): C 23.10, H 4.65, N 10.78; found C 23.03, H 4.71, N 10.69]. NMR spectra (Bruker Avance 400 spectrometer, using SiMe4 as an external standard) are consistent with the previously published data (Melgar-Fernández et al., 2008) and confirm the purity of the substance (atomic numbering according to Fig. 1): 1H NMR (400.13 MHz, D2O): δ = 4.67 (d, 2H, CH at C1 and C4), 3.65–3.57 (m, 4H, CH2 at C3 and C6), 2.29 (s, 2H, CH2 at C7). 13C{1H} NMR (100.62 MHz, D2O): δ = 56.36 (s, NCHCH2, C1 and C4), 47.09 (s, NCH2CH, C3 and C6), 34.73 (s, CHCH2CH, C7). Crystals of 1 suitable for structural study were obtained by slow evaporation of a saturated aqueous solution at room temperature.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms at nitrogen sites (i.e. those involved in hydrogen bonding) were freely refined whereas hydrogen atoms at all carbon centers were treated with fixed Uiso(H) = 1.2Ueq(C) and riding coordinates (C—H = 0.97–0.98 Å).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1578911
https://doi.org/10.1107/S2056989017015870/lh5858sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017015870/lh5858Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017015870/lh5858Isup3.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989017015870/lh5858Isup4.cml
Data collection: APEX2 (Bruker, 2015); cell
SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C5H12N22+·2Br− | Dx = 2.064 Mg m−3 |
Mr = 259.99 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 9887 reflections |
a = 9.7298 (6) Å | θ = 2.5–31.5° |
b = 11.8643 (5) Å | µ = 9.61 mm−1 |
c = 14.4933 (7) Å | T = 100 K |
V = 1673.07 (15) Å3 | Block, colourless |
Z = 8 | 0.2 × 0.08 × 0.05 mm |
F(000) = 1008 |
Bruker APEXII CCD diffractometer | 4031 independent reflections |
Radiation source: fine focus sealed tube | 3959 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
φ and ω scans | θmax = 28.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | h = −12→12 |
k = −13→15 | |
15838 measured reflections | l = −19→17 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.014 | w = 1/[σ2(Fo2) + (0.0162P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.035 | (Δ/σ)max = 0.001 |
S = 1.02 | Δρmax = 0.53 e Å−3 |
4031 reflections | Δρmin = −0.34 e Å−3 |
195 parameters | Absolute structure: Flack x determined using 1676 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: 0.009 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5925 (3) | 0.3998 (2) | 0.37609 (18) | 0.0160 (5) | |
H1 | 0.6722 | 0.4501 | 0.3797 | 0.019* | |
N2 | 0.4926 (2) | 0.4270 (2) | 0.29906 (15) | 0.0143 (4) | |
H2A | 0.479 (3) | 0.505 (3) | 0.2960 (18) | 0.011 (7)* | |
H2B | 0.519 (4) | 0.403 (3) | 0.245 (3) | 0.038 (11)* | |
C3 | 0.3610 (3) | 0.3669 (2) | 0.32592 (18) | 0.0162 (5) | |
H3A | 0.3377 | 0.3084 | 0.2818 | 0.019* | |
H3B | 0.2848 | 0.4192 | 0.3310 | 0.019* | |
C4 | 0.3987 (3) | 0.3168 (3) | 0.41995 (18) | 0.0183 (6) | |
H4 | 0.3203 | 0.2983 | 0.4596 | 0.022* | |
N5 | 0.4954 (2) | 0.2198 (2) | 0.40090 (17) | 0.0167 (5) | |
H5A | 0.454 (3) | 0.170 (3) | 0.361 (2) | 0.024 (9)* | |
H5B | 0.504 (3) | 0.186 (3) | 0.446 (2) | 0.013 (8)* | |
C6 | 0.6277 (3) | 0.2749 (2) | 0.36993 (18) | 0.0158 (5) | |
H6A | 0.6511 | 0.2534 | 0.3073 | 0.019* | |
H6B | 0.7033 | 0.2557 | 0.4106 | 0.019* | |
C7 | 0.4971 (3) | 0.4045 (2) | 0.45944 (18) | 0.0205 (6) | |
H7A | 0.4546 | 0.4778 | 0.4678 | 0.025* | |
H7B | 0.5411 | 0.3802 | 0.5161 | 0.025* | |
C1A | 0.6072 (3) | 0.8241 (2) | 0.59473 (17) | 0.0139 (5) | |
H1A | 0.6918 | 0.8624 | 0.5758 | 0.017* | |
N2A | 0.4792 (2) | 0.8628 (2) | 0.54520 (15) | 0.0141 (4) | |
H2AA | 0.478 (4) | 0.844 (3) | 0.486 (2) | 0.033 (10)* | |
H2AB | 0.476 (3) | 0.935 (3) | 0.5432 (19) | 0.010 (7)* | |
C3A | 0.3626 (2) | 0.8184 (2) | 0.60478 (19) | 0.0160 (5) | |
H3AA | 0.3103 | 0.7610 | 0.5726 | 0.019* | |
H3AB | 0.3011 | 0.8786 | 0.6233 | 0.019* | |
C4A | 0.4384 (3) | 0.7687 (2) | 0.68803 (18) | 0.0152 (5) | |
H4A | 0.3835 | 0.7635 | 0.7446 | 0.018* | |
N5A | 0.5014 (2) | 0.6592 (2) | 0.65645 (16) | 0.0154 (4) | |
H5AA | 0.437 (3) | 0.612 (3) | 0.631 (2) | 0.019 (8)* | |
H5AB | 0.534 (3) | 0.629 (3) | 0.698 (2) | 0.021 (9)* | |
C6A | 0.6121 (3) | 0.6950 (2) | 0.58809 (17) | 0.0163 (5) | |
H6AA | 0.5907 | 0.6694 | 0.5262 | 0.020* | |
H6AB | 0.7015 | 0.6662 | 0.6059 | 0.020* | |
C7A | 0.5656 (3) | 0.8433 (2) | 0.69531 (17) | 0.0161 (5) | |
H7AA | 0.6328 | 0.8149 | 0.7389 | 0.019* | |
H7AB | 0.5439 | 0.9214 | 0.7087 | 0.019* | |
Br1 | 0.52194 (2) | 0.62674 (2) | 0.88905 (2) | 0.01450 (6) | |
Br2 | 0.22116 (2) | 0.51516 (2) | 0.60873 (2) | 0.01567 (6) | |
Br3 | 0.46504 (3) | 0.70005 (2) | 0.35710 (2) | 0.01494 (6) | |
Br4 | 0.26144 (3) | 0.04454 (2) | 0.32745 (2) | 0.01680 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0142 (12) | 0.0157 (14) | 0.0181 (13) | −0.0018 (10) | −0.0058 (10) | 0.0015 (10) |
N2 | 0.0145 (10) | 0.0138 (12) | 0.0148 (10) | 0.0003 (9) | 0.0011 (8) | 0.0031 (9) |
C3 | 0.0109 (11) | 0.0191 (14) | 0.0185 (12) | −0.0006 (10) | 0.0001 (10) | 0.0020 (11) |
C4 | 0.0136 (12) | 0.0217 (15) | 0.0195 (12) | 0.0003 (10) | 0.0063 (10) | 0.0044 (11) |
N5 | 0.0191 (11) | 0.0135 (12) | 0.0174 (11) | −0.0037 (9) | −0.0026 (9) | 0.0043 (9) |
C6 | 0.0125 (11) | 0.0177 (14) | 0.0173 (13) | 0.0002 (10) | −0.0025 (9) | 0.0005 (10) |
C7 | 0.0285 (15) | 0.0199 (15) | 0.0130 (12) | 0.0033 (11) | −0.0022 (10) | −0.0030 (10) |
C1A | 0.0107 (11) | 0.0138 (14) | 0.0173 (13) | −0.0008 (9) | −0.0006 (9) | 0.0023 (10) |
N2A | 0.0172 (11) | 0.0115 (12) | 0.0135 (10) | 0.0008 (9) | −0.0007 (8) | 0.0004 (8) |
C3A | 0.0108 (11) | 0.0168 (14) | 0.0206 (13) | 0.0024 (9) | −0.0019 (9) | 0.0010 (11) |
C4A | 0.0143 (12) | 0.0164 (14) | 0.0150 (12) | −0.0014 (10) | 0.0001 (9) | 0.0016 (10) |
N5A | 0.0148 (10) | 0.0141 (11) | 0.0173 (11) | −0.0008 (9) | −0.0031 (8) | 0.0034 (9) |
C6A | 0.0147 (12) | 0.0163 (14) | 0.0178 (12) | 0.0029 (10) | 0.0008 (9) | 0.0006 (10) |
C7A | 0.0173 (12) | 0.0147 (14) | 0.0162 (12) | −0.0020 (10) | −0.0027 (10) | 0.0012 (10) |
Br1 | 0.01665 (12) | 0.01277 (12) | 0.01407 (12) | −0.00094 (9) | −0.00018 (9) | −0.00022 (9) |
Br2 | 0.01471 (12) | 0.01456 (13) | 0.01775 (11) | −0.00228 (9) | −0.00073 (10) | 0.00003 (10) |
Br3 | 0.01588 (12) | 0.01335 (13) | 0.01560 (12) | 0.00039 (9) | 0.00032 (9) | 0.00008 (9) |
Br4 | 0.01390 (12) | 0.01434 (13) | 0.02214 (12) | −0.00278 (9) | 0.00270 (9) | −0.00030 (10) |
C1—H1 | 0.9800 | C3A—H3AA | 0.9700 |
C1—N2 | 1.516 (3) | C3A—H3AB | 0.9700 |
C1—C6 | 1.523 (4) | C3A—C4A | 1.532 (4) |
C1—C7 | 1.525 (4) | C4A—H4A | 0.9800 |
N2—H2A | 0.93 (3) | C4A—N5A | 1.508 (3) |
N2—H2B | 0.87 (4) | C4A—C7A | 1.525 (4) |
N2—C3 | 1.516 (3) | N5A—H5AA | 0.91 (3) |
C3—H3A | 0.9700 | N5A—H5AB | 0.77 (3) |
C3—H3B | 0.9700 | N5A—C6A | 1.523 (3) |
C3—C4 | 1.532 (4) | C6A—H6AA | 0.9700 |
C4—H4 | 0.9800 | C6A—H6AB | 0.9700 |
C4—N5 | 1.512 (4) | C7A—H7AA | 0.9700 |
C4—C7 | 1.525 (4) | C7A—H7AB | 0.9700 |
N5—H5A | 0.92 (3) | N2—N5 | 2.868 (3) |
N5—H5B | 0.78 (3) | N2A—N5A | 2.912 (3) |
N5—C6 | 1.512 (3) | C1—C4 | 2.220 (4) |
C6—H6A | 0.9700 | C1A—C4A | 2.226 (4) |
C6—H6B | 0.9700 | C3—C6 | 2.887 (4) |
C7—H7A | 0.9700 | C3A—C6A | 2.845 (4) |
C7—H7B | 0.9700 | N2—C7 | 2.340 (4) |
C1A—H1A | 0.9800 | N2A—C7A | 2.344 (3) |
C1A—N2A | 1.509 (3) | N5—C7 | 2.350 (4) |
C1A—C6A | 1.535 (4) | N5A—C7A | 2.340 (4) |
C1A—C7A | 1.530 (3) | C3—C7 | 2.387 (4) |
N2A—H2AA | 0.89 (3) | C3A—C7A | 2.390 (4) |
N2A—H2AB | 0.86 (3) | C6—C7 | 2.380 (4) |
N2A—C3A | 1.521 (3) | C6A—C7A | 2.391 (4) |
N2—C1—H1 | 114.7 | N2A—C1A—H1A | 114.8 |
N2—C1—C6 | 107.9 (2) | N2A—C1A—C6A | 107.4 (2) |
N2—C1—C7 | 100.66 (19) | N2A—C1A—C7A | 101.0 (2) |
C6—C1—H1 | 114.7 | C6A—C1A—H1A | 114.8 |
C6—C1—C7 | 102.7 (2) | C7A—C1A—H1A | 114.8 |
C7—C1—H1 | 114.7 | C7A—C1A—C6A | 102.5 (2) |
C1—N2—H2A | 109.5 (17) | C1A—N2A—H2AA | 113 (2) |
C1—N2—H2B | 114 (3) | C1A—N2A—H2AB | 111 (2) |
C1—N2—C3 | 104.64 (19) | C1A—N2A—C3A | 103.90 (18) |
H2A—N2—H2B | 109 (3) | H2AA—N2A—H2AB | 102 (3) |
C3—N2—H2A | 111.1 (18) | C3A—N2A—H2AA | 117 (2) |
C3—N2—H2B | 109 (3) | C3A—N2A—H2AB | 110 (2) |
N2—C3—H3A | 111.4 | N2A—C3A—H3AA | 111.2 |
N2—C3—H3B | 111.4 | N2A—C3A—H3AB | 111.2 |
N2—C3—C4 | 102.0 (2) | N2A—C3A—C4A | 102.76 (19) |
H3A—C3—H3B | 109.2 | H3AA—C3A—H3AB | 109.1 |
C4—C3—H3A | 111.4 | C4A—C3A—H3AA | 111.2 |
C4—C3—H3B | 111.4 | C4A—C3A—H3AB | 111.2 |
C3—C4—H4 | 114.9 | C3A—C4A—H4A | 114.9 |
N5—C4—C3 | 106.4 (2) | N5A—C4A—C3A | 106.7 (2) |
N5—C4—H4 | 114.9 | N5A—C4A—H4A | 114.9 |
N5—C4—C7 | 101.4 (2) | N5A—C4A—C7A | 101.0 (2) |
C7—C4—C3 | 102.7 (2) | C7A—C4A—C3A | 102.9 (2) |
C7—C4—H4 | 114.9 | C7A—C4A—H4A | 114.9 |
C4—N5—H5A | 110 (2) | C4A—N5A—H5AA | 112 (2) |
C4—N5—H5B | 108 (2) | C4A—N5A—H5AB | 109 (3) |
C4—N5—C6 | 104.7 (2) | C4A—N5A—C6A | 104.2 (2) |
H5A—N5—H5B | 104 (3) | H5AA—N5A—H5AB | 108 (3) |
C6—N5—H5A | 118 (2) | C6A—N5A—H5AA | 113.2 (19) |
C6—N5—H5B | 113 (2) | C6A—N5A—H5AB | 110 (2) |
C1—C6—H6A | 111.3 | C1A—C6A—H6AA | 111.3 |
C1—C6—H6B | 111.3 | C1A—C6A—H6AB | 111.3 |
N5—C6—C1 | 102.2 (2) | N5A—C6A—C1A | 102.4 (2) |
N5—C6—H6A | 111.3 | N5A—C6A—H6AA | 111.3 |
N5—C6—H6B | 111.3 | N5A—C6A—H6AB | 111.3 |
H6A—C6—H6B | 109.2 | H6AA—C6A—H6AB | 109.2 |
C1—C7—C4 | 93.4 (2) | C1A—C7A—H7AA | 113.0 |
C1—C7—H7A | 113.0 | C1A—C7A—H7AB | 113.0 |
C1—C7—H7B | 113.0 | C4A—C7A—C1A | 93.6 (2) |
C4—C7—H7A | 113.0 | C4A—C7A—H7AA | 113.0 |
C4—C7—H7B | 113.0 | C4A—C7A—H7AB | 113.0 |
H7A—C7—H7B | 110.4 | H7AA—C7A—H7AB | 110.4 |
C1—N2—C3—C4 | 3.2 (3) | C1A—N2A—C3A—C4A | 5.5 (3) |
N2—C1—C6—N5 | −71.1 (2) | N2A—C1A—C6A—N5A | −74.2 (2) |
N2—C1—C7—C4 | 56.3 (2) | N2A—C1A—C7A—C4A | 56.7 (2) |
N2—C3—C4—N5 | −73.1 (2) | N2A—C3A—C4A—N5A | −75.1 (2) |
N2—C3—C4—C7 | 33.0 (3) | N2A—C3A—C4A—C7A | 30.8 (3) |
C3—C4—N5—C6 | 71.2 (2) | C3A—C4A—N5A—C6A | 67.9 (2) |
C3—C4—C7—C1 | −55.1 (2) | C3A—C4A—C7A—C1A | −53.4 (2) |
C4—N5—C6—C1 | 0.8 (3) | C4A—N5A—C6A—C1A | 4.5 (2) |
N5—C4—C7—C1 | 54.9 (2) | N5A—C4A—C7A—C1A | 56.8 (2) |
C6—C1—N2—C3 | 69.0 (2) | C6A—C1A—N2A—C3A | 67.2 (2) |
C6—C1—C7—C4 | −55.1 (2) | C6A—C1A—C7A—C4A | −54.1 (2) |
C7—C1—N2—C3 | −38.2 (2) | C7A—C1A—N2A—C3A | −39.8 (2) |
C7—C1—C6—N5 | 34.7 (2) | C7A—C1A—C6A—N5A | 31.7 (2) |
C7—C4—N5—C6 | −35.9 (2) | C7A—C4A—N5A—C6A | −39.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···Br3 | 0.93 (3) | 2.49 (3) | 3.358 (2) | 156 (2) |
N5—H5A···Br4 | 0.92 (3) | 2.44 (3) | 3.261 (2) | 148 (3) |
N5—H5B···Br1i | 0.78 (3) | 2.50 (3) | 3.242 (2) | 161 (3) |
N2A—H2AA···Br3 | 0.89 (3) | 2.53 (4) | 3.344 (2) | 152 (3) |
N2A—H2AB···Br1ii | 0.86 (3) | 2.48 (3) | 3.273 (2) | 155 (2) |
N5A—H5AA···Br2 | 0.91 (3) | 2.42 (3) | 3.292 (2) | 160 (3) |
N5A—H5AB···Br1 | 0.77 (3) | 2.77 (3) | 3.399 (2) | 140 (3) |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+1, y+1/2, −z+3/2. |
Acknowledgements
The authors thank the X-ray Diffraction Center and Center for Magnetic Resonance of Saint-Petersburg State University for instrumental and computational resources.
Funding information
Funding for this research was provided by: Saint-Petersburg State University (grant No. 0.37.235.2015).
References
Alvaro, G., Di Fabio, R., Gualandi, A., Fiorelli, C., Monari, M., Savoia, D. & Zoli, L. (2007). Tetrahedron, 63, 12446–12453. Web of Science CSD CrossRef CAS
Anderson, D. J., Bunnelle, W., Surber, B., Du, J., Surowy, C., Tribollet, E., Marguerat, A., Bertrand, D. & Gopalakrishnan, M. (2008). J. Pharmacol. Exp. Ther. 324, 179–187. Web of Science CrossRef PubMed CAS
Artali, R., Bombieri, G. & Meneghetti, F. (2005). Farmaco, 60, 313–320. CrossRef PubMed CAS
Avila-Ortiz, C. G., Lopez-Ortiz, M., Vega-Penaloza, A., Regla, I. & Juaristi, E. (2015). Asymm. Catal. 2, 37–44. CAS
Beinat, C., Banister, S. D., McErlean, C. S. P. & Kassiou, M. (2013). Tetrahedron Lett. 54, 5345–5347. Web of Science CrossRef CAS
Beinat, C., Reekie, T., Banister, S. D., O'Brien-Brown, J., Xie, T., Olson, T. T., Xiao, Y., Harvey, A., O'Connor, S., Coles, C., Grishin, A., Kolesik, P., Tsanaktsidis, J. & Kassiou, M. (2015). Eur. J. Med. Chem. 95, 277–301. Web of Science CrossRef CAS PubMed
Bertrand, D., Lee, C.-H. L., Flood, D., Marger, F. & Donnelly-Roberts, D. (2015). Pharmacol. Rev. 67, 1025–1073. Web of Science CrossRef CAS PubMed
Britvin, S. N. & Lotnyk, A. (2015). J. Am. Chem. Soc. 137, 5526–5535. Web of Science CSD CrossRef CAS PubMed
Britvin, S. N. & Rumyantsev, A. M. (2017a). Acta Cryst. E73, 1385–1388. Web of Science CSD CrossRef IUCr Journals
Britvin, S. N. & Rumyantsev, A. M. (2017b). Acta Cryst. E73, 1712–1715. Web of Science CrossRef IUCr Journals
Britvin, S. N., Rumyantsev, A. M., Silyutina, A. A. & Padkina, M. V. (2017a). ChemistrySelect, 2, 8721–8725. Web of Science CSD CrossRef CAS
Britvin, S. N., Rumyantsev, A. M., Zobnina, A. E. & Padkina, M. V. (2016). Chem. Eur. J. 22, 14227–14235. Web of Science CSD CrossRef CAS PubMed
Britvin, S. N., Rumyantsev, A. M., Zobnina, A. E. & Padkina, M. V. (2017b). J. Mol. Struct. 1130, 395–399. Web of Science CSD CrossRef CAS
Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bujak, M. (2015). Cryst. Growth Des. 15, 1295–1302. Web of Science CSD CrossRef CAS
Bunnelle, W. H., Daanen, J. F., Ryther, K. B., Schrimpf, M. R., Dart, M. J., Gelain, A., Meyer, M. D., Frost, J. M., Anderson, D. J., Buckley, M., Curzon, P., Cao, Y.-J., Puttfarcken, P., Searle, X., Ji, J., Putman, C. B., Surowy, C., Toma, L. & Barlocco, D. (2007). J. Med. Chem. 50, 3627–3644. Web of Science CrossRef PubMed CAS
Castillo, I., Pérez, V., Monsalvo, I., Demare, P. & Regla, I. (2013). Inorg. Chem. Commun. 38, 1–4. Web of Science CSD CrossRef CAS
Cernak, T., Gesmundo, N. J., Dykstra, K., Yu, Y., Wu, Z., Shi, Z.-C., Vachal, P., Sperbeck, D., He, S., Murphy, B. A., Sonatore, L., Williams, S., Madeira, M., Verras, A., Reiter, M., Lee, C. H., Cuff, J., Sherer, E. C., Kuethe, J., Goble, S., Perrotto, N., Pinto, S., Shen, D.-M., Nargund, R., Balkovec, J., DeVita, R. J. & Dreher, S. D. (2017). J. Med. Chem. 60, 3594–3605. Web of Science CrossRef CAS PubMed
Choi, C., Nuhant, P., Mousseau, J. J., Yang, X., Gerstenberger, B. S., Williams, J. M. & Wright, S. W. (2016). Org. Lett. 18, 5748–5751. Web of Science CSD CrossRef CAS PubMed
Cui, B., Yu, J., Yu, F.-C., Li, Y.-M., Chang, K.-J. & Shen, Y. (2015). RSC Adv. 5, 10386–10392. Web of Science CrossRef CAS
Dam, J. H., Bender, D., Peters, D. & Någren, K. (2016). Nucl. Med. Biol. 43, 42–51. Web of Science CrossRef CAS PubMed
Díaz-de-Villegas, M. D., Gálvez, J. A., Badorrey, R. & López-Ram-de-Víu, P. (2014). Adv. Synth. Catal. 356, 3261–3288.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals
Fiorelli, C., Marchioro, C., Martelli, G., Monari, M. & Savoia, D. (2005). Eur. J. Org. Chem. 2005, 3987–3993. Web of Science CSD CrossRef
Gerstenberger, B. S., Trzupek, J. D., Tallant, C., Fedorov, O., Filippakopoulos, P., Brennan, P. E., Fedele, V., Martin, S., Picaud, S., Rogers, C., Parikh, M., Taylor, A., Samas, B., O'Mahony, A., Berg, E., Pallares, G., Torrey, A. D., Treiber, D. K., Samardjiev, I. J., Nasipak, B. T., Padilla-Benavides, T., Wu, Q., Imbalzano, A. N., Nickerson, J. A., Bunnage, M. E., Müller, S., Knapp, S. & Owen, D. R. (2016). J. Med. Chem. 59, 4800–4811. Web of Science CSD CrossRef CAS PubMed
González-Olvera, R., Demare, P., Regla, I. & Juaristi, E. (2008). Arkivoc, 6, 61–72.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals
Hamblett, C. L., Methot, J. L., Mampreian, D. M., Sloman, D. L., Stanton, M. G., Kral, A. M., Fleming, J. C., Cruz, J. C., Chenard, M., Ozerova, N., Hitz, A. M., Wang, H., Deshmukh, S. V., Nazef, N., Harsch, A., Hughes, B., Dahlberg, W. K., Szewczak, A. A., Middleton, R. E., Mosley, R. T., Secrist, J. P. & Miller, T. A. (2007). Bioorg. Med. Chem. Lett. 17, 5300–5309. Web of Science CrossRef PubMed CAS
Jordis, U., Kesselgruber, M., Nerdinger, S. & Mereiter, K. (1999). Mendeleev Commun. 9, 147–148. CSD CrossRef
Jordis, U., Sauter, F., Siddiqi, S. M., Küenburg, B. & Bhattacharya, K. (1990). Synthesis, pp. 925–930. CrossRef
Kiely, J. S., Hutt, M. P., Culbertson, T. P., Bucsh, R. A., Worth, D. F., Lesheski, L. E., Gogliotti, R. D., Sesnie, J. C., Solomon, M. & Mich, T. F. (1991). J. Med. Chem. 34, 656–663. CrossRef PubMed CAS Web of Science
Krasnov, V., Nizova, I. A., Vigorov, A. Yu., Matveeva, T. V., Levit, G. L., Slepukhin, P. A., Ezhikova, M. A. & Kodess, M. I. (2008). Eur. J. Org. Chem. pp. 1802–1810. Web of Science CSD CrossRef
Laskar, S., Sánchez-Sánchez, L., López-Ortiz, M., López-Muñoz, H., Escobar-Sánchez, M. L., Sánchez, A. T. & Regla, I. (2017). J. Enzyme Inhib. Med. Chem. 32, 1129–1135. Web of Science CrossRef CAS PubMed
Lauteslager, X. Y., van Stokkum, I. M., van Ramesdonk, H. J., Bebelaar, D., Fraanje, J., Goubitz, K., Schenk, H., Brouwer, A. M. & Verhoeven, J. W. (2001). Eur. J. Org. Chem. pp. 3105–3118. CrossRef
Li, T., Bunnelle, W. H., Ryther, K. B., Anderson, D. J., Malysz, J., Helfrich, R., Grønlien, J. H., Håkerud, M., Peters, D., Schrimpf, M. R., Gopalakrishnan, M. & Ji, J. (2010). Bioorg. Med. Chem. Lett. 20, 3636–3639. Web of Science CrossRef CAS PubMed
Llona-Minguez, S., Höglund, A., Ghassemian, A., Desroses, M., Calderón-Montaño, J. M., Burgos Morón, E., Valerie, N. C. K., Wiita, E., Almlöf, I., Koolmeister, T., Mateus, A., Cazares-Körner, C., Sanjiv, K., Homan, E., Loseva, O., Baranczewski, P., Darabi, M., Mehdizadeh, A., Fayezi, S., Jemth, A.-S., Warpman Berglund, U., Sigmundsson, K., Lundbäck, T., Jenmalm Jensen, A., Artursson, P., Scobie, M. & Helleday, T. (2017). J. Med. Chem. 60, 4279–4292. Web of Science CAS PubMed
López-Ortiz, M., Monsalvo, I., Demare, P., Paredes, C., Mascher, D., Hernández, C., Hernández, M. & Regla, I. (2014). Chem. Biol. Drug Des. 83, 710–720. Web of Science PubMed
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals
McGuirk, P. R., Jefson, M. R., Mann, D. D., Elliott, N. C., Chang, P., Cisek, E. P., Cornell, C. P., Gootz, T. D., Haskell, S. L., Hindahl, M. S., LaFleur, L. J., Rosenfeld, M. J., Shryock, T. R., Silvia, A. M. & Weber, F. H. (1992). J. Med. Chem. 35, 611–620. CrossRef PubMed CAS Web of Science
Melgar-Fernández, R., González-Olvera, R., Olivares-Romero, J. L., González-López, V., Romero-Ponce, L., del Refugio Ramírez-Zárate, M., Demare, P., Regla, I. & Juaristi, E. (2008). Eur. J. Org. Chem. pp. 655–672.
Mereiter, K., Skubak, J. & Jordis, U. (2007). Private communication (deposition number 664942). CCDC, Cambridge, England.
Murineddu, G., Asproni, B., Pinna, G., Curzu, M. M., Dore, A., Pau, A., Deligia, F. & Pinna, G. A. (2012). Curr. Med. Chem. 19, 5342–5363. CrossRef CAS PubMed
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals
Patel, R. V. & Park, S. W. (2013). Mini Rev. Med. Chem. 13, 1579–1601. CrossRef CAS PubMed
Pérez, V., Monsalvo, I., Demare, P., Gómez-Vidales, V., Regla, I. & Castillo, I. (2011). Inorg. Chem. Commun. 14, 389–391.
Portoghese, P. S. & Mikhail, A. A. (1966). J. Org. Chem. 31, 1059–1062. CrossRef CAS Web of Science
Remuzon, P., Bouzard, D., Clemencin, C., Dussy, C., Jacquet, J. P., Fung-Tome, J. & Kessler, R. E. (1993). Eur. J. Med. Chem. 28, 455–461. CrossRef CAS Web of Science
SenGupta, S., Maiti, N., Chadha, R. & Kapoor, S. (2014). Chem. Phys. 436–437, 55–62. Web of Science CrossRef CAS
Shchekotikhin, A. E., Glazunova, V. A., Dezhenkova, L. G., Luzikov, Y. N., Buyanov, V. N., Treshalina, H. M., Lesnaya, N. A., Romanenko, V. I., Kaluzhny, D. N., Balzarini, J., Agama, K., Pommier, Y., Shtil, A. A. & Preobrazhenskaya, M. N. (2014). Eur. J. Med. Chem. 86, 797–805. Web of Science CrossRef CAS PubMed
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Siebeneicher, H., Bauser, M., Buchmann, B., Heisler, I., Müller, T., Neuhaus, R., Rehwinkel, H., Telser, J. & Zorn, L. (2016). Bioorg. Med. Chem. Lett. 26, 1732–1737. Web of Science CrossRef CAS PubMed
Toma, L., Quadrelli, P., Bunnelle, W. H., Anderson, D. J., Meyer, M. D., Cignarella, G., Gelain, A. & Barlocco, D. (2002). J. Med. Chem. 45, 4011–4017. Web of Science CrossRef PubMed CAS
Wei, M., Zhang, X., Wang, X., Song, Z., Ding, J., Meng, L.-H. & Zhang, A. (2017). Eur. J. Med. Chem. 125, 1156–1171. Web of Science CrossRef CAS PubMed
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals
Wu, C., Zhang, J., Li, P., Zhang, J. & Wu, J. (2011). Acta Cryst. E67, o272. Web of Science CSD CrossRef IUCr Journals
Yakovlev, M. E., Lobanov, P. S. & Potekhin, A. A. (2000). Chem. Heterocycl. Compd, 36, 429–431. CrossRef CAS
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.