research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 2,6-di­bromo-4-methyl­benzo­nitrile and 2,6-di­bromo-4-methyl­phenyl isocyanide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN 55455, USA
*Correspondence e-mail: nolan001@umn.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 27 October 2017; accepted 15 November 2017; online 21 November 2017)

In the title crystals, C8H5Br2N, which are isomorphous, the steric bulk of the methyl group causes neighboring mol­ecules to become mutually inclined. This prevents the formation of planar or nearly planar sheets, which were observed in the tri­chloro and tri­bromo analogs. Instead of CN/NC⋯Br contacts, tetra­meric Br⋯Br contacts are observed. These contacts form tetra­gonally puckered sheets parallel to (001). The CN/NC and methyl groups are grouped at the peaks and troughs. Both mol­ecules lie across crystallographic mirror planes; thus, the methyl H atoms are disordered over two sets of sites with equal occupancy. The title nitrile is a redetermination. The refinement converged at R[F2 > 2σ(F2)] = 0.020, whereas the original determination [Gleason & Britton, (1976[Gleason, W. B. & Britton, D. (1976). Cryst. Struct. Commun. 5, 229-232.]). Cryst. Struct. Commun. 5, 229–232] had R = 0.112.

1. Chemical context

As part of an ongoing study of cyano–halo short contacts, the para-Br atom of 2,4,6-tri­bromo­benzo­nitrile (van Rij & Britton, 1972[Rij, C. van & Britton, D. (1981). Cryst. Struct. Commun. 10, 175-178.]) was replaced by a methyl group (Gleason & Britton, 1976[Gleason, W. B. & Britton, D. (1976). Cryst. Struct. Commun. 5, 229-232.]), giving 2,6-di­bromo-4-methyl­benzo­nitrile (RCN). The methyl group was bulky enough to disrupt the planar sheet structure that was observed in the tri­bromo nitrile. As of the most recent update of the Cambridge Structural Database (CSD; Version 5.37, Feb 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), RCN remains the only example of a 2,6-dihalobenzo­nitrile with a methyl group at the 4-position. Most of the examples with polyatomic 4-substituents are fluorinated benzo­nitriles, with applications including tuning the fluoride affinity of phospho­ranes (Solyntjes et al., 2016[Solyntjes, S., Neumann, B., Stammler, H.-G., Ignat'ev, N. & Hoge, B. (2016). Eur. J. Inorg. Chem. 2016, 3999-4010.]), study of magnetostructural correlation (Thomson et al., 2012[Thomson, R. I., Pask, C. M., Lloyd, G. O., Mito, M. & Rawson, J. M. (2012). Chem. Eur. J. 18, 8629-8633.]), and use as metal ligands (Díaz-Álvarez et al., 2006[Díaz-Álvarez, A. E., Crochet, P., Zablocka, M., Cadierno, V., Duhayon, C., Gimeno, J. & Majoral, J.-P. (2006). New J. Chem. 30, 1295-1306.]). The chlorinated and brominated entries are either bis(carbo­nitriles) [(I), Fig. 1[link]; Britton, 1981[Britton, D. (1981). Cryst. Struct. Commun. 10, 1501-1508.]; Hirshfeld, 1984[Hirshfeld, F. L. (1984). Acta Cryst. B40, 484-492.]; van Rij & Britton, 1981[Britton, D. (1981). Cryst. Struct. Commun. 10, 1501-1508.]] or 4-carb­oxy analogs [(II); Britton, 2012[Britton, D. (2012). J. Chem. Crystallogr. 42, 851-855.]; Noland et al., 2017[Noland, W. E., Rieger, J. L., Tu, Z. H. & Tritch, K. J. (2017). Acta Cryst. E73, 1743-1746.]]. All of these 4-substituents have stronger inter­actions than a methyl group, and exhibit different packing motifs than RCN. The comparison of corresponding nitriles and isocyanides is a rare opportunity to explore the subtle differences between mol­ecules that are both isomeric and isoelectronic. In the 2,6-dihaloaryl series, there are only three prior examples in the CSD. The tri­chloro and tri­bromo pairs [(III); Pink et al., 2000[Pink, M., Britton, D., Noland, W. E. & Pinnow, M. J. (2000). Acta Cryst. C56, 1271-1273.]; Britton et al., 2016[Britton, D., Noland, W. E. & Tritch, K. J. (2016). Acta Cryst. E72, 178-183.]] are polytypic, and the penta­fluoro pair [(IV), Fig. 1[link]; Bond et al., 2001[Bond, A. D., Davies, J. E., Griffiths, J. & Rawson, J. M. (2001). Acta Cryst. E57, o231-o233.]; Lentz & Preugschat, 1993[Lentz, D. & Preugschat, D. (1993). Acta Cryst. C49, 52-54.]] is isomorphous. The question arose as to whether RCN and its isocyanide (2,6-di­bromo-4-methyl­phenyl isocyanide, RNC) would be isomorphous, polytypic, or polymorphic. A single crystal of RNC and a redetermination of RCN are presented.

[Scheme 1]
[Figure 1]
Figure 1
Contextual compounds.

2. Structural commentary

RNC and the redetermination of RCN are isomorphous with the original RCN structure (Gleason & Britton, 1976[Gleason, W. B. & Britton, D. (1976). Cryst. Struct. Commun. 5, 229-232.]). The mol­ecular structures of RCN (Fig. 2[link]a) and RNC (Fig. 2[link]b) are nearly planar. The two crystals described herein were pseudo-enanti­omorphic, roughly being enanti­omorphs with swapped cyano C and N atoms, hence the reflected ellipsoid orientations between RCN and RNC. For RCN, the mean deviation from the plane of best fit for the benzene ring (C1–C4) is 0.002 (3) Å. For RNC, this deviation (C11–C14) is 0.001 (2) Å. These planes are roughly parallel to (33[\overline{2}]).

[Figure 2]
Figure 2
The mol­ecular structures of (a) RCN and (b) RNC, with atom labeling and displacement ellipsoids at the 50% probability level. Unlabeled atoms are generated by the (−[{1\over 2}] + y, [{1\over 2}] + x, z) and ([{1\over 2}] − y, −[{1\over 2}] + x, z) symmetry operations, respectively. For the methyl H atoms, only one of the two mirror-related disorder sites is shown.

3. Supra­molecular features

The methyl group is sufficiently bulky to prevent planar ribbons or inversion dimers of the types found in the tri­bromo analogs. Instead, neighboring mol­ecules of RCN and RNC adopt a mutually inclined arrangement. The inclination between best-fit planes for adjacent mol­ecules of RCN is 38.3 (3)°, and 41.0 (2)° for RNC. This mol­ecular arrangement prevents CN⋯Br and NC⋯Br contacts, but is probably affected by the formation of R44(4) rings of Br⋯Br contacts (Table 1[link]). Each Br atom participates both as a donor (narrow C—Br⋯Br angle) and an acceptor (wide C—Br⋯Br angle). Each mol­ecule participates in two such R44(4) rings, forming R44(24) rings. The result is a tetra­gonally puckered sheet structure parallel to (001) (Fig. 3[link]). This is similar to the sheet structure reported for 2,6-di­bromo­benzo­nitrile (Britton et al., 2000[Britton, D., Noland, W. E. & Pinnow, M. J. (2000). Acta Cryst. B56, 822-827.]), although without the methyl group, the sheets were nearly planar. As future work, we plan to find whether this packing motif changes when the Br atoms are replaced with I atoms.

Table 1
Contact geometry (Å, °)

C—Br⋯Br C—Br Br⋯Br C—Br⋯Br
C2—Br2⋯Br2i 1.899 (5) 3.5575 (7) 96.8 (2)
C2—Br2⋯Br2ii 1.899 (5) 3.5575 (7) 176.41 (7)
C12—Br12⋯Br12i 1.895 (4) 3.575 (1) 97.8 (1)
C12—Br12⋯Br12ii 1.895 (4) 3.575 (1) 175.7 (1)
Symmetry codes: (i) 1 − y, x, 1 − z; (ii) y, 1 − x, 1 − z.
[Figure 3]
Figure 3
The sheet structure of RNC, viewed along [0[\overline{1}]3]. The Br⋯Br contacts are represented as pink dotted lines.

4. Synthesis and crystallization

The synthesis of RCN and RNC is shown in Fig. 4[link].

[Figure 4]
Figure 4
The synthesis of RCN and RNC.

2,6-Di­bromo-4-methyl­aniline (V) was prepared from 4-methyl­aniline based on the work of Olivier (1926[Olivier, S. C. J. (1926). Recl Trav. Chim. Pays Bas, 45, 296-306.]).

RCN was prepared from (V) (980 mg) via the Sandmeyer cyanation procedure described by Britton et al. (2016[Britton, D., Noland, W. E. & Tritch, K. J. (2016). Acta Cryst. E72, 178-183.]; Fig. 4[link]), as a tan powder (898 mg, 88%). M.p. 434–435 K (lit. 429–431 K; Gleason & Britton, 1976[Gleason, W. B. & Britton, D. (1976). Cryst. Struct. Commun. 5, 229-232.]); Rf = 0.49 (SiO2 in 2:1 hexa­ne–ethyl acetate); 1H NMR (500 MHz, CD2Cl2) δ 7.490 (s, 2H, H3A), 2.380 (s, 3H, H6AC); 13C NMR (126 MHz, CD2Cl2) δ 147.1 (C4), 133.2 (C3), 126.6 (C2), 116.6 (C1 or C5), 116.1 (C5 or C1), 21.7 (C6); IR (KBr, cm−1) 3062, 2231, 1582, 1451, 1197, 857, 747; MS (EI, m/z) [M]+ calculated for C8H5Br2N 274.8763, found 274.8766.

2,6-Di­bromo-4-methyl­formanilide (VI) was prepared from (V) (997 mg) via the formyl­ation procedure described by Britton et al. (2016[Britton, D., Noland, W. E. & Tritch, K. J. (2016). Acta Cryst. E72, 178-183.]), performed at 60% scale, with di­chloro­methane instead of tetra­hydro­furan. The filter cake was recrystallized from toluene, giving white needles (1.00 g, 91%). M.p. 505–506 K; Rf = 0.27 (SiO2 in 2:1 hexa­ne–ethyl acetate); 1H NMR (500 MHz, (CD3)2SO; 2 conformers obs.) δ 9.993 (s, 1H; major), 9.743 (d, J = 10.9 Hz, 1H; minor), 8.270 (s, 1H; major), 8.021 (d, J = 11.1 Hz, 1H; minor), 7.623 (s, 2H; minor), 7.571 (s, 2H; major), 2.303 (s, 3H; both); 13C NMR (126 MHz, (CD3)2SO; 2 conformers obs.) δ 164.5 (1C; minor), 159.6 (1C; major), 140.9 (1C; minor), 140.7 (1C; major), 133.0 (2C; minor), 132.6 (2C; major), 131.9 (1C; minor), 131.8 (1C; major), 123.3 (2C; minor), 123.2 (2C; major), 19.8 (1C; both); IR (KBr, cm−1) 3247, 2927, 1656, 1511, 1152, 1060, 840, 747, 684; MS (ESI, m/z) [M–H] calculated for C8H7Br2NO 289.8822, found 289.8814.

RNC was prepared from (VI) (254 mg) via the amide dehydration procedure described by Britton et al. (2016[Britton, D., Noland, W. E. & Tritch, K. J. (2016). Acta Cryst. E72, 178-183.]), performed at 15% scale, as a beige powder (190 mg, 81%). M.p. 401–402 K; Rf = 0.53 (SiO2 in 3:1 hexa­ne–ethyl acetate); 1H NMR (400 MHz, CD2Cl2) δ 7.456 (s, 2H, H13), 2.346 (s, 3H, H16AC); 13C NMR (101 MHz, CD2Cl2) δ 172.7 (C15), 142.9 (C14), 133.2 (C13), 126.0 (C11), 120.8 (C12), 21.2 (C16); IR (KBr, cm−1) 3061, 2922, 2850, 2118, 1654, 1586, 1451, 1384, 1064, 857, 748, 701; MS (EI, m/z) [M]+ calculated for C8H5Br2N 274.8783, found 274.8784.

Crystallization: RCN and RNC crystals were grown by slow evaporation of di­chloro­methane solutions under ambient conditions. Crystals were collected by suction filtration when a small portion of the original solvent remained, and then they were washed with pentane.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. A direct-methods solution was calculated, followed by full-matrix least squares/difference-Fourier cycles. All H atoms were placed in calculated positions (C—H = 0.95 or 0.98 Å) and refined as riding atoms with Uiso(H) set to 1.2Ueq(C) for aryl H atoms and 1.5Ueq(C) for methyl H atoms. Because the mol­ecules lie across mirror planes, the methyl H atoms are disordered across two sets of sites with 1:1 occupancy.

Table 2
Experimental details

  RCN RNC
Crystal data
Chemical formula C8H5Br2N C8H5Br2N
Mr 274.95 274.95
Crystal system, space group Tetragonal, P[\overline{4}]21m Tetragonal, P[\overline{4}]21m
Temperature (K) 123 173
a, c (Å) 14.6731 (5), 3.9727 (1) 14.690 (5), 4.0703 (15)
V3) 855.32 (6) 878.3 (7)
Z 4 4
Radiation type Cu Kα Mo Kα
μ (mm−1) 11.46 9.16
Crystal size (mm) 0.50 × 0.07 × 0.04 0.40 × 0.14 × 0.08
 
Data collection
Diffractometer Bruker Venture PHOTON-II Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.314, 0.754 0.255, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 8444, 904, 902 10248, 1074, 1001
Rint 0.039 0.045
(sin θ/λ)max−1) 0.624 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.057, 1.27 0.023, 0.051, 1.14
No. of reflections 904 1074
No. of parameters 60 59
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.32 0.30, −0.51
Absolute structure Flack x determined using 348 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 381 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.02 (3) −0.024 (13)
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

3,5-Dibromo-4-methylbenzonitrile (RCN) top
Crystal data top
C8H5Br2NMelting point: 434 K
Mr = 274.95Cu Kα radiation, λ = 1.54178 Å
Tetragonal, P421mCell parameters from 2980 reflections
a = 14.6731 (5) Åθ = 4.3–74.0°
c = 3.9727 (1) ŵ = 11.46 mm1
V = 855.32 (6) Å3T = 123 K
Z = 4Needle, colourless
F(000) = 5200.50 × 0.07 × 0.04 mm
Dx = 2.135 Mg m3
Data collection top
Bruker Venture PHOTON-II
diffractometer
902 reflections with I > 2σ(I)
Radiation source: ImuS micro-focusRint = 0.039
φ and ω scansθmax = 74.2°, θmin = 6.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.314, Tmax = 0.754k = 1717
8444 measured reflectionsl = 44
904 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + 2.1952P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.020(Δ/σ)max = 0.001
wR(F2) = 0.057Δρmax = 0.37 e Å3
S = 1.27Δρmin = 0.32 e Å3
904 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
60 parametersExtinction coefficient: 0.0055 (4)
0 restraintsAbsolute structure: Flack x determined using 348 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.02 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2722 (3)0.7722 (3)0.357 (2)0.0156 (13)
C20.2985 (3)0.6837 (4)0.2695 (13)0.0177 (10)
Br20.41762 (3)0.64354 (3)0.38319 (19)0.0222 (2)
C30.2404 (3)0.6240 (3)0.1067 (15)0.0185 (9)
H3A0.26050.56450.04860.022*
C40.1517 (3)0.6517 (3)0.0283 (18)0.0189 (15)
C50.3328 (4)0.8328 (4)0.532 (2)0.0223 (17)
N10.3806 (3)0.8806 (3)0.676 (2)0.0309 (17)
C60.0866 (3)0.5866 (3)0.138 (2)0.0212 (13)
H6A0.03060.61900.19910.032*0.5
H6B0.07200.53690.01750.032*0.5
H6C0.11480.56150.34170.032*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0183 (18)0.0183 (18)0.010 (3)0.003 (2)0.000 (2)0.000 (2)
C20.015 (2)0.019 (2)0.019 (3)0.0001 (19)0.0034 (19)0.0025 (19)
Br20.0147 (3)0.0236 (3)0.0282 (3)0.00002 (17)0.0017 (2)0.0042 (3)
C30.018 (2)0.015 (2)0.022 (2)0.0001 (17)0.002 (3)0.003 (2)
C40.018 (2)0.018 (2)0.020 (4)0.005 (3)0.0031 (18)0.0031 (18)
C50.022 (2)0.022 (2)0.024 (4)0.002 (3)0.000 (2)0.000 (2)
N10.031 (2)0.031 (2)0.030 (4)0.009 (3)0.003 (2)0.003 (2)
C60.023 (2)0.023 (2)0.017 (3)0.005 (3)0.000 (2)0.000 (2)
Geometric parameters (Å, º) top
C1—C2i1.399 (6)C4—C3i1.398 (6)
C1—C21.399 (6)C4—C61.505 (10)
C1—C51.437 (10)C5—N11.145 (11)
C2—C31.383 (8)C6—H6A0.9800
C2—Br21.899 (5)C6—H6B0.9800
C3—C41.398 (6)C6—H6C0.9800
C3—H3A0.9500
C2i—C1—C2116.8 (7)C3i—C4—C6120.3 (3)
C2i—C1—C5121.6 (3)C3—C4—C6120.3 (3)
C2—C1—C5121.6 (3)N1—C5—C1179.0 (9)
C3—C2—C1122.3 (5)C4—C6—H6A109.5
C3—C2—Br2118.8 (4)C4—C6—H6B109.5
C1—C2—Br2118.9 (4)H6A—C6—H6B109.5
C2—C3—C4119.6 (5)C4—C6—H6C109.5
C2—C3—H3A120.2H6A—C6—H6C109.5
C4—C3—H3A120.2H6B—C6—H6C109.5
C3i—C4—C3119.5 (6)
C2i—C1—C2—C30.5 (10)C1—C2—C3—C40.7 (9)
C5—C1—C2—C3178.7 (7)Br2—C2—C3—C4178.5 (5)
C2i—C1—C2—Br2179.7 (4)C2—C3—C4—C3i1.9 (11)
C5—C1—C2—Br20.5 (9)C2—C3—C4—C6178.0 (6)
Symmetry code: (i) y1/2, x+1/2, z.
2,6-Dibromo-4-methylphenyl isocyanide (RNC) top
Crystal data top
C8H5Br2NMelting point: 401 K
Mr = 274.95Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421mCell parameters from 2995 reflections
a = 14.690 (5) Åθ = 2.8–26.9°
c = 4.0703 (15) ŵ = 9.16 mm1
V = 878.3 (7) Å3T = 173 K
Z = 4Needle, colourless
F(000) = 5200.40 × 0.14 × 0.08 mm
Dx = 2.079 Mg m3
Data collection top
Bruker APEXII CCD
diffractometer
1001 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.045
φ and ω scansθmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1819
Tmin = 0.255, Tmax = 0.746k = 1919
10248 measured reflectionsl = 55
1074 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0267P)2 + 0.0073P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.051(Δ/σ)max < 0.001
S = 1.14Δρmax = 0.30 e Å3
1074 reflectionsΔρmin = 0.51 e Å3
59 parametersAbsolute structure: Flack x determined using 381 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.024 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br120.64344 (3)0.58324 (2)0.38265 (14)0.03268 (14)
N110.8281 (2)0.6719 (2)0.5307 (11)0.0278 (11)
C110.7708 (2)0.7292 (2)0.3538 (15)0.0228 (11)
C120.6845 (3)0.7013 (3)0.2671 (9)0.0245 (8)
C130.6256 (2)0.7587 (2)0.0981 (10)0.0243 (8)
H13A0.56640.73820.04020.029*
C140.6535 (3)0.8465 (3)0.0132 (13)0.0237 (11)
C150.8753 (3)0.6247 (3)0.6829 (18)0.0474 (18)
C160.5894 (3)0.9106 (3)0.1624 (14)0.0328 (12)
H16A0.53180.87930.20650.049*0.5
H16B0.61690.93000.37030.049*0.5
H16C0.57810.96400.02410.049*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br120.0337 (2)0.02125 (19)0.0431 (2)0.00062 (15)0.0071 (2)0.0013 (2)
N110.0268 (15)0.0268 (15)0.030 (3)0.009 (2)0.0005 (13)0.0005 (13)
C110.0238 (15)0.0238 (15)0.021 (3)0.0067 (19)0.0031 (16)0.0031 (16)
C120.0267 (19)0.0202 (18)0.027 (2)0.0008 (16)0.0080 (16)0.0028 (15)
C130.0214 (17)0.0240 (17)0.0273 (19)0.0001 (14)0.0017 (18)0.0043 (19)
C140.0245 (16)0.0245 (16)0.022 (3)0.007 (2)0.0038 (14)0.0038 (14)
C150.048 (2)0.048 (2)0.046 (5)0.016 (3)0.002 (2)0.002 (2)
C160.0329 (18)0.0329 (18)0.033 (3)0.009 (3)0.0013 (18)0.0013 (18)
Geometric parameters (Å, º) top
Br12—C121.896 (4)C13—H13A0.9500
N11—C151.161 (8)C14—C13i1.396 (4)
N11—C111.391 (7)C14—C161.511 (7)
C11—C121.379 (5)C16—H16A0.9800
C11—C12i1.379 (5)C16—H16B0.9800
C12—C131.389 (6)C16—H16C0.9800
C13—C141.396 (4)
C15—N11—C11178.9 (6)C13—C14—C13i118.7 (5)
C12—C11—C12i118.7 (5)C13—C14—C16120.6 (2)
C12—C11—N11120.6 (3)C13i—C14—C16120.6 (2)
C12i—C11—N11120.6 (3)C14—C16—H16A109.5
C11—C12—C13121.3 (4)C14—C16—H16B109.5
C11—C12—Br12120.0 (3)H16A—C16—H16B109.5
C13—C12—Br12118.7 (3)C14—C16—H16C109.5
C12—C13—C14120.0 (4)H16A—C16—H16C109.5
C12—C13—H13A120.0H16B—C16—H16C109.5
C14—C13—H13A120.0
C12i—C11—C12—C130.5 (8)C11—C12—C13—C140.1 (6)
N11—C11—C12—C13178.2 (4)Br12—C12—C13—C14179.2 (3)
C12i—C11—C12—Br12179.8 (3)C12—C13—C14—C13i0.7 (7)
N11—C11—C12—Br121.1 (7)C12—C13—C14—C16178.3 (4)
Symmetry code: (i) y+3/2, x+3/2, z.
Contact geometry (Å, °). top
C—Br···BrC—BrBr···BrC—Br···Br
C2—Br2···Br2i1.899 (5)3.5575 (7)96.8 (2)
C2—Br2···Br2ii1.899 (5)3.5575 (7)176.41 (7)
C12—Br12···Br12i1.895 (4)3.575 (1)97.8 (1)
C12—Br12···Br12ii1.895 (4)3.575 (1)175.7 (1)
Symmetry codes: (i) 1 – y, x, 1 – z; (ii) y, 1 – x, 1 – z.
 

Acknowledgements

The authors thank Victor G. Young, Jr. (X-Ray Crystallographic Laboratory, University of Minnesota) for assistance with the crystallographic determination, the Wayland E. Noland Research Fellowship Fund at the University of Minnesota Foundation for generous financial support of this project, and Doyle Britton (deceased July 7, 2015) for providing the basis of this project. This work was taken in large part from the PhD thesis of KJT (Tritch, 2017[Tritch, K. J. (2017). PhD thesis, University of Minnesota, Minneapolis, MN, USA.]).

References

First citationBond, A. D., Davies, J. E., Griffiths, J. & Rawson, J. M. (2001). Acta Cryst. E57, o231–o233.  Web of Science CSD CrossRef IUCr Journals
First citationBritton, D. (1981). Cryst. Struct. Commun. 10, 1501–1508.  CAS
First citationBritton, D. (2012). J. Chem. Crystallogr. 42, 851–855.  CSD CrossRef CAS
First citationBritton, D., Noland, W. E. & Pinnow, M. J. (2000). Acta Cryst. B56, 822–827.  Web of Science CSD CrossRef CAS IUCr Journals
First citationBritton, D., Noland, W. E. & Tritch, K. J. (2016). Acta Cryst. E72, 178–183.  CSD CrossRef IUCr Journals
First citationBruker (2012). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.
First citationDíaz-Álvarez, A. E., Crochet, P., Zablocka, M., Cadierno, V., Duhayon, C., Gimeno, J. & Majoral, J.-P. (2006). New J. Chem. 30, 1295–1306.
First citationGleason, W. B. & Britton, D. (1976). Cryst. Struct. Commun. 5, 229–232.  CAS
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationHirshfeld, F. L. (1984). Acta Cryst. B40, 484–492.  CSD CrossRef CAS Web of Science IUCr Journals
First citationLentz, D. & Preugschat, D. (1993). Acta Cryst. C49, 52–54.  CSD CrossRef CAS Web of Science IUCr Journals
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals
First citationNoland, W. E., Rieger, J. L., Tu, Z. H. & Tritch, K. J. (2017). Acta Cryst. E73, 1743–1746.  CSD CrossRef IUCr Journals
First citationOlivier, S. C. J. (1926). Recl Trav. Chim. Pays Bas, 45, 296–306.  CrossRef CAS
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals
First citationPink, M., Britton, D., Noland, W. E. & Pinnow, M. J. (2000). Acta Cryst. C56, 1271–1273.  Web of Science CSD CrossRef CAS IUCr Journals
First citationRij, C. van & Britton, D. (1981). Cryst. Struct. Commun. 10, 175–178.
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSolyntjes, S., Neumann, B., Stammler, H.-G., Ignat'ev, N. & Hoge, B. (2016). Eur. J. Inorg. Chem. 2016, 3999–4010.  CSD CrossRef CAS
First citationThomson, R. I., Pask, C. M., Lloyd, G. O., Mito, M. & Rawson, J. M. (2012). Chem. Eur. J. 18, 8629–8633.  CSD CrossRef CAS PubMed
First citationTritch, K. J. (2017). PhD thesis, University of Minnesota, Minneapolis, MN, USA.
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds