research communications
Stoichiometric and polymorphic salt of imidazolium picrate monohydrate
aRenmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
*Correspondence e-mail: lingliliu573@126.com
The H-imidazol-3-ium 2,4,6-trinitrophenolate monohydrate, C4H7N2+·C6H2N3O7−·H2O, contains one imidazolium cation, one picrate anion and one solvent water molecule of crystallization. The phenolic proton has been transferred to an imidazole N atom. In the crystal, the components are linked by N—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional network which is further consolidated by weak C—H⋯O hydrogen bonds. In addition, π–π stacking interactions occur between pairs of imidazolium cations and picrate anions. If only the classical N—H⋯O and O—H⋯O hydrogen bonds are considered, the component ions are linked into a three-dimensional threefold interpenetrating network of the topological type utp [or (10,3)-d]. Hirshfeld surface analysis indicates the is mainly stabilized by H⋯·O contacts of the hydrogen bonds.
of the title salt, 1Keywords: crystal structure; co-crystal salt; imidazole; picric acid.
CCDC reference: 1585713
1. Chemical context
Co-crystallization, which is the crystallization of more than one solid component into a new compound, is widely involved in the research fields of active pharmaceuticals (Aitipamula et al., 2015; Weyna et al., 2012; Robinson, 2010; Arenas-García et al., 2010) and crystal engineering (Manoj et al., 2014). Imidazole is an often used intermediate in pharmaceutical and chemical synthesis. Its crystallization characteristics can facilitate organic synthesis and theoretical prediction. Picric acid is a strong organic proton-donating reagent which can favor the crystallization of some basic organic complexes. By controlling one specific crystallization condition such as solvent, temperature, pressure or molar ratio of the raw materials, some polymorphs can be obtained with the same ingredients. For instance, two imidazolium picrate salts have been reported that were crystallized from chloroform (Soriano-García et al., 1990) or dry acetonitrile (Moreno-Fuquen et al., 2011). The crystal packing in these two analogs is completely different because of their different stoichiometric compositions. In order to further research the factors affecting this crystallization process, the crystallization solvent has been adjusted to be methanol (95%). Interestingly, some yellow needle-shaped crystals were obtained after two days on the side of the vessel and when the solvent had almost evaporated, several yellow block-shaped crystals formed at the bottom of the vessel (Fig. 1a and 1b). The results of X-ray diffraction indicates that the structure of the block-shaped crystals is the same as that reported by Moreno-Fuquen et al. (2011). Herein, the of the needle-shaped crystals is reported.
2. Structural commentary
The contains one imidazolium cation, a picrate anion and one solvent water molecule of crystallization (Fig. 2). The phenolic proton has been transferred to a imidazole nitrogen atom, forming the solvated 1:1 salt. In the picrate anion of (I), the C—Ophenol bond distance is 1.250 (2) Å, which is shorter by ca 0.08 Å than the value of 1.33 (2) Å in the protonated species (Bertolasi et al., 2011). Also, the two neighboring C—C bonds [1.447 (3) Å for C1—C2 and C1—C6], are significantly different from those in a benzene ring with delocalized C C bonds. The C2—C1—C6 angle [110.56 (16)°] is smaller by ca 11.3° than the averaged value of the other five ring inner angles [121.8 (1)°]. This deviation of bonds and angles can mainly be attributed to the electron-withdrawing effects of the three nitro groups, which can delocalize the negative charge on the phenolate O1 atom over the whole π-conjugated system. The nitro groups, N1/O2/O3, N2/O4/O5 and N3/O6/O7, are twisted from the central benzene ring by dihedral angles of 43.3 (3), 4.2 (3) and 48.5 (3)°, respectively. In the imidazolium cation, the C7—N4 [1.329 (3) Å] and C7—N5 [1.331 (3) Å] bond distances are the same due to the delocalizing effect and similar to those observed in other salts (Soriano-García et al., 1990; Moreno-Fuquen et al., 2011).
of the title compound (I)3. Supramolecular features
In the crystal of (I), the three components are linked into a three-dimensional network by N—H⋯O and O—H⋯O hydrogen bonds (Table 1, Fig. 3). In order to understand the structure simply, we can analyze it in the terms below. Firstly, the imidazolium cations, picrate anions and water molecules are linked by each three N—H⋯O and three O—H⋯O hydrogen bonds, forming a three-dimensional framework structure (Fig. 3; Spek, 2003, 2009). It is worthy mentioning that if both the water molecule and the picrate anion are regarded as 3-connected nodes by hydrogen-bonding and the imidazole cation as a 2-connected node, then the three-dimensional framework can be viewed topologically as a 3-connected utp network with a short Schläfli symbol of (103)-d (Blatov et al., 2014; Baburin & Blatov, 2007) (Fig. 3). Secondly, the three-dimensional hydrogen-bonded framework is consolidated by π–π interactions between pairs of imidazolium cations and picrate anions, both with centroid-to-centroid distances of 3.553 (4) Å, and weak intermolecular C—H⋯O interactions (Table 1). It should be mentioned that the short O2⋯O7( − x, y − , + z) contact of 2.837 (4) Å may be the result of an inclined NO2⋯π(NO2) interaction (Daszkiewicz, 2013)
4. Hirshfeld surface analysis
An alternative way to asses the intermolecular interactions quantitatively around one specific molecule is through Hirshfeld surface analysis (Wolff et al., 2012; McKinnon et al., 2004). The Hirshfeld surface can define the environment of each crystallographically independent molecule within a crystal. Fingerprint plots (Fig. 4) and show that for the picrate anion 55.2% and 8.8% of the area is concerned with the O⋯H (hydrogen-bonding) and C⋯C (π–π interaction) contacts, respectively. In the imidazole cation, 51.5% and 9.7% of the area is concerned with the the O⋯H (hydrogen-bonding) and C⋯C/N (π–π interaction) contacts, respectively. This quantitative analysis of the intermolecular interactions again shows that the three-dimensional network is defined mainly by hydrogen bonds.
5. Database survey
A search of the Cambridge Structural Database (CSD version 5.37 plus one update, Groom et al., 2016) indicates some analogs have been reported, viz. BEZGEU (Dhanabal et al., 2013), QAKYOS (Dutkiewicz et al., 2011), QAKGUG (Moreno-Fuquen et al., 2011) and SEZREU (Soriano-García et al., 1990). A structural comparison between these compounds indicates that the two nitrogen atoms in the imidazolium cations are preferably hydrogen-bonded to the picrate anions, in which they can be in a bifurcated or a linear mode. For instance, in the 1:1 organic salt imidazolium picrate (QAKGUG; Moreno-Fuquen et al., 2011), the imidazole N7 atom is linearly hydrogen-bonded to the phenolate oxygen atom O1. However, in the 1:2 salt (SEZREU; Soriano-García et al., 1990), the imidazole N1 atom is involved in bifuracted hydrogen bonding to the phenolate O1 and nitro O2 atoms. Both of these compounds crystallize in orthorhombic space groups (Pbca or P212121). Further research about in this system is being carried out in our lab.
6. Synthesis and crystallization
All the reagents and solvents were used as obtained without further purification. Equivalent molar amounts of imidazole (1.0 mmol, 68.0 mg) and picric acid (1.0 mmol, 229.0 mg) were dissolved in 95% methanol (40.0 ml). The mixture was stirred for half an hour at ambient temperature and then filtered. The resulting yellow solution was kept in air for two weeks. Yellow needle-shaped crystals of (I) suitable for single-crystal X-ray formed on the side of the vessel after two days. The crystals were separated manually (yield: 75%, ca 0.24 g).
7. Refinement
Crystal data, data collection and structure are summarized in Table 2. H atoms bonded to C atoms were positioned geometrically with C—H = 0.93 Å (aromatic) and refined in riding mode [Uiso(H) = 1.2Ueq(C)]. H atoms bonded to N and O atoms were found in difference-Fourier maps and refined freely with constraints of Uiso(H)= 1.2Ueq(N) or 1.5Ueq(N).
details of compound (I)
|
Supporting information
CCDC reference: 1585713
https://doi.org/10.1107/S2056989017016401/lh5861sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017016401/lh5861Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017016401/lh5861Isup3.cml
Data collection: APEX2 (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C3H5N2+·C6H2N3O7−·H2O | Dx = 1.697 Mg m−3 |
Mr = 315.21 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 4015 reflections |
a = 21.577 (11) Å | θ = 2.3–31.2° |
b = 3.5533 (18) Å | µ = 0.15 mm−1 |
c = 16.096 (8) Å | T = 100 K |
V = 1234.0 (11) Å3 | Needle, yellow |
Z = 4 | 0.40 × 0.04 × 0.02 mm |
F(000) = 648 |
Bruker APEXII CCD diffractometer | 3367 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.038 |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | θmax = 31.0°, θmin = 1.9° |
Tmin = 0.937, Tmax = 0.997 | h = −28→30 |
11664 measured reflections | k = −4→5 |
3837 independent reflections | l = −23→22 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.035 | w = 1/[σ2(Fo2) + (0.0494P)2 + 0.0144P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.086 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.35 e Å−3 |
3837 reflections | Δρmin = −0.22 e Å−3 |
211 parameters | Absolute structure: Flack x determined using 1456 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.4 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.67480 (9) | −0.0182 (6) | 0.64727 (12) | 0.0122 (3) | |
C2 | 0.72241 (9) | 0.0454 (6) | 0.70899 (11) | 0.0125 (4) | |
C3 | 0.78154 (9) | 0.1698 (6) | 0.69303 (11) | 0.0131 (4) | |
H3 | 0.8106 | 0.2010 | 0.7368 | 0.016* | |
C4 | 0.79782 (9) | 0.2488 (6) | 0.61128 (12) | 0.0128 (3) | |
C5 | 0.75625 (8) | 0.1917 (6) | 0.54609 (12) | 0.0133 (4) | |
H5 | 0.7681 | 0.2377 | 0.4902 | 0.016* | |
C6 | 0.69788 (9) | 0.0674 (6) | 0.56500 (12) | 0.0125 (3) | |
C8 | 0.48877 (9) | 0.4718 (7) | 0.77357 (13) | 0.0172 (4) | |
H8 | 0.4715 | 0.4535 | 0.7194 | 0.021* | |
C9 | 0.46050 (9) | 0.3770 (7) | 0.84591 (13) | 0.0181 (4) | |
H9 | 0.4197 | 0.2809 | 0.8522 | 0.022* | |
N1 | 0.70790 (8) | −0.0342 (5) | 0.79547 (11) | 0.0143 (3) | |
N2 | 0.85824 (8) | 0.4007 (5) | 0.59405 (11) | 0.0150 (3) | |
N3 | 0.65576 (8) | 0.0095 (5) | 0.49511 (11) | 0.0149 (3) | |
C7 | 0.55452 (10) | 0.5801 (7) | 0.87530 (13) | 0.0172 (4) | |
H7 | 0.5908 | 0.6495 | 0.9049 | 0.021* | |
N4 | 0.50257 (9) | 0.4472 (6) | 0.90866 (12) | 0.0170 (3) | |
H4 | 0.4957 (14) | 0.398 (9) | 0.9649 (19) | 0.020* | |
N5 | 0.54696 (8) | 0.5991 (5) | 0.79335 (11) | 0.0157 (3) | |
H5A | 0.5763 (13) | 0.682 (8) | 0.7586 (18) | 0.019* | |
O1 | 0.62270 (6) | −0.1576 (5) | 0.66176 (9) | 0.0156 (3) | |
O4 | 0.89440 (7) | 0.4486 (5) | 0.65267 (10) | 0.0226 (3) | |
O5 | 0.87159 (7) | 0.4829 (5) | 0.52189 (10) | 0.0226 (4) | |
O8 | 0.50725 (7) | 0.6717 (6) | 0.57776 (10) | 0.0214 (3) | |
H8A | 0.4849 (16) | 0.841 (10) | 0.594 (2) | 0.032* | |
H8B | 0.5441 (17) | 0.745 (10) | 0.595 (2) | 0.032* | |
O2 | 0.74665 (8) | −0.1992 (5) | 0.83731 (10) | 0.0227 (4) | |
O3 | 0.65759 (7) | 0.0718 (5) | 0.82223 (10) | 0.0219 (3) | |
O6 | 0.60348 (7) | 0.1417 (5) | 0.50023 (10) | 0.0222 (4) | |
O7 | 0.67538 (7) | −0.1656 (5) | 0.43500 (9) | 0.0211 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0097 (7) | 0.0125 (9) | 0.0143 (8) | 0.0002 (6) | 0.0006 (6) | 0.0003 (7) |
C2 | 0.0109 (8) | 0.0138 (10) | 0.0127 (8) | 0.0000 (7) | 0.0006 (6) | 0.0008 (7) |
C3 | 0.0099 (8) | 0.0138 (10) | 0.0157 (8) | 0.0014 (7) | −0.0005 (6) | −0.0006 (7) |
C4 | 0.0085 (7) | 0.0128 (9) | 0.0171 (8) | −0.0001 (6) | 0.0008 (6) | −0.0002 (6) |
C5 | 0.0115 (8) | 0.0135 (10) | 0.0148 (8) | −0.0003 (7) | 0.0010 (6) | 0.0006 (7) |
C6 | 0.0101 (8) | 0.0142 (10) | 0.0134 (8) | −0.0012 (7) | −0.0020 (6) | 0.0002 (7) |
C8 | 0.0135 (9) | 0.0198 (11) | 0.0182 (9) | −0.0029 (7) | 0.0000 (7) | −0.0001 (8) |
C9 | 0.0125 (8) | 0.0203 (11) | 0.0215 (9) | −0.0020 (8) | 0.0028 (7) | 0.0004 (8) |
N1 | 0.0133 (8) | 0.0159 (9) | 0.0138 (7) | −0.0034 (6) | −0.0006 (6) | −0.0001 (6) |
N2 | 0.0097 (7) | 0.0151 (9) | 0.0203 (8) | 0.0000 (6) | 0.0013 (6) | 0.0000 (7) |
N3 | 0.0129 (8) | 0.0181 (9) | 0.0136 (7) | −0.0029 (6) | −0.0025 (5) | 0.0031 (6) |
C7 | 0.0132 (9) | 0.0198 (11) | 0.0185 (9) | 0.0008 (7) | 0.0013 (7) | −0.0004 (8) |
N4 | 0.0143 (7) | 0.0193 (9) | 0.0176 (8) | 0.0004 (7) | 0.0034 (6) | 0.0004 (7) |
N5 | 0.0122 (8) | 0.0184 (9) | 0.0163 (7) | −0.0012 (6) | 0.0021 (6) | 0.0006 (7) |
O1 | 0.0095 (6) | 0.0210 (8) | 0.0163 (6) | −0.0035 (5) | −0.0002 (5) | 0.0011 (6) |
O4 | 0.0112 (6) | 0.0316 (10) | 0.0248 (7) | −0.0045 (6) | −0.0036 (6) | 0.0025 (7) |
O5 | 0.0166 (7) | 0.0318 (10) | 0.0195 (7) | −0.0063 (6) | 0.0057 (6) | −0.0003 (6) |
O8 | 0.0122 (7) | 0.0340 (10) | 0.0181 (7) | 0.0016 (7) | −0.0005 (5) | −0.0032 (7) |
O2 | 0.0228 (8) | 0.0294 (10) | 0.0158 (7) | 0.0039 (7) | −0.0032 (6) | 0.0040 (7) |
O3 | 0.0141 (7) | 0.0333 (10) | 0.0182 (7) | −0.0005 (6) | 0.0056 (6) | −0.0026 (6) |
O6 | 0.0124 (7) | 0.0318 (10) | 0.0224 (7) | 0.0042 (6) | −0.0030 (5) | 0.0031 (7) |
O7 | 0.0187 (7) | 0.0287 (10) | 0.0159 (6) | −0.0031 (6) | −0.0002 (6) | −0.0056 (6) |
C1—O1 | 1.250 (2) | C9—N4 | 1.381 (3) |
C1—C2 | 1.447 (3) | C9—H9 | 0.9500 |
C1—C6 | 1.447 (3) | N1—O2 | 1.223 (2) |
C2—C3 | 1.374 (3) | N1—O3 | 1.227 (2) |
C2—N1 | 1.455 (3) | N2—O5 | 1.232 (2) |
C3—C4 | 1.391 (3) | N2—O4 | 1.236 (2) |
C3—H3 | 0.9500 | N3—O6 | 1.225 (2) |
C4—C5 | 1.395 (3) | N3—O7 | 1.226 (3) |
C4—N2 | 1.438 (3) | C7—N4 | 1.329 (3) |
C5—C6 | 1.369 (3) | C7—N5 | 1.331 (3) |
C5—H5 | 0.9500 | C7—H7 | 0.9500 |
C6—N3 | 1.461 (3) | N4—H4 | 0.93 (3) |
C8—C9 | 1.357 (3) | N5—H5A | 0.89 (3) |
C8—N5 | 1.372 (3) | O8—H8A | 0.82 (4) |
C8—H8 | 0.9500 | O8—H8B | 0.88 (4) |
O1—C1—C2 | 124.91 (18) | C8—C9—H9 | 126.7 |
O1—C1—C6 | 124.28 (17) | N4—C9—H9 | 126.7 |
C2—C1—C6 | 110.56 (16) | O2—N1—O3 | 123.96 (18) |
C3—C2—C1 | 125.53 (17) | O2—N1—C2 | 118.23 (17) |
C3—C2—N1 | 116.18 (16) | O3—N1—C2 | 117.81 (17) |
C1—C2—N1 | 118.28 (17) | O5—N2—O4 | 122.65 (17) |
C2—C3—C4 | 118.43 (17) | O5—N2—C4 | 118.87 (17) |
C2—C3—H3 | 120.8 | O4—N2—C4 | 118.47 (16) |
C4—C3—H3 | 120.8 | O6—N3—O7 | 124.46 (18) |
C3—C4—C5 | 121.33 (17) | O6—N3—C6 | 117.85 (18) |
C3—C4—N2 | 119.15 (17) | O7—N3—C6 | 117.69 (17) |
C5—C4—N2 | 119.50 (17) | N4—C7—N5 | 108.37 (19) |
C6—C5—C4 | 118.12 (17) | N4—C7—H7 | 125.8 |
C6—C5—H5 | 120.9 | N5—C7—H7 | 125.8 |
C4—C5—H5 | 120.9 | C7—N4—C9 | 108.85 (19) |
C5—C6—C1 | 126.00 (17) | C7—N4—H4 | 126.4 (19) |
C5—C6—N3 | 116.53 (17) | C9—N4—H4 | 124.7 (19) |
C1—C6—N3 | 117.46 (16) | C7—N5—C8 | 108.99 (18) |
C9—C8—N5 | 107.10 (19) | C7—N5—H5A | 123.3 (18) |
C9—C8—H8 | 126.4 | C8—N5—H5A | 127.7 (18) |
N5—C8—H8 | 126.4 | H8A—O8—H8B | 102 (3) |
C8—C9—N4 | 106.69 (18) | ||
O1—C1—C2—C3 | 174.4 (2) | C3—C2—N1—O2 | −42.2 (3) |
C6—C1—C2—C3 | 0.0 (3) | C1—C2—N1—O2 | 136.7 (2) |
O1—C1—C2—N1 | −4.3 (3) | C3—C2—N1—O3 | 137.2 (2) |
C6—C1—C2—N1 | −178.67 (19) | C1—C2—N1—O3 | −44.0 (3) |
C1—C2—C3—C4 | 1.1 (3) | C3—C4—N2—O5 | −177.4 (2) |
N1—C2—C3—C4 | 179.82 (18) | C5—C4—N2—O5 | 1.2 (3) |
C2—C3—C4—C5 | −2.3 (3) | C3—C4—N2—O4 | 1.5 (3) |
C2—C3—C4—N2 | 176.28 (19) | C5—C4—N2—O4 | −179.89 (19) |
C3—C4—C5—C6 | 2.3 (3) | C5—C6—N3—O6 | −132.1 (2) |
N2—C4—C5—C6 | −176.28 (19) | C1—C6—N3—O6 | 49.1 (3) |
C4—C5—C6—C1 | −1.1 (3) | C5—C6—N3—O7 | 47.3 (3) |
C4—C5—C6—N3 | −179.77 (19) | C1—C6—N3—O7 | −131.5 (2) |
O1—C1—C6—C5 | −174.5 (2) | N5—C7—N4—C9 | 0.3 (3) |
C2—C1—C6—C5 | 0.0 (3) | C8—C9—N4—C7 | 0.0 (3) |
O1—C1—C6—N3 | 4.2 (3) | N4—C7—N5—C8 | −0.6 (3) |
C2—C1—C6—N3 | 178.65 (18) | C9—C8—N5—C7 | 0.6 (3) |
N5—C8—C9—N4 | −0.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4···O8i | 0.93 (3) | 1.83 (3) | 2.763 (3) | 172 (3) |
N5—H5A···O1ii | 0.89 (3) | 1.94 (3) | 2.812 (2) | 165 (3) |
N5—H5A···O3ii | 0.89 (3) | 2.46 (3) | 2.956 (3) | 116 (2) |
O8—H8A···O4iii | 0.82 (4) | 2.29 (4) | 3.034 (2) | 151 (3) |
O8—H8B···O1ii | 0.88 (4) | 2.04 (4) | 2.899 (2) | 165 (3) |
O8—H8B···O6ii | 0.88 (4) | 2.44 (4) | 2.943 (3) | 117 (3) |
C5—H5···O2iv | 0.95 | 2.49 | 3.383 (3) | 157 |
C7—H7···O5v | 0.95 | 2.37 | 3.187 (3) | 144 |
C7—H7···O3ii | 0.95 | 2.47 | 2.955 (3) | 112 |
C8—H8···O4vi | 0.95 | 2.44 | 3.188 (3) | 135 |
C8—H8···O8 | 0.95 | 2.53 | 3.255 (3) | 133 |
C9—H9···O7vii | 0.95 | 2.48 | 3.349 (3) | 152 |
Symmetry codes: (i) −x+1, −y+1, z+1/2; (ii) x, y+1, z; (iii) x−1/2, −y+3/2, z; (iv) −x+3/2, y+1/2, z−1/2; (v) −x+3/2, y+1/2, z+1/2; (vi) x−1/2, −y+1/2, z; (vii) −x+1, −y, z+1/2. |
Funding information
The author thanks Renmin Hospital of Wuhan University for the financial support.
References
Aitipamula, S., Mapp, L. K., Wong, A. B. H., Chow, P. S. & Tan, R. B. H. (2015). CrystEngComm, 17, 9323–9335. Web of Science CSD CrossRef CAS
Arenas-García, J. I., Herrera-Ruiz, D., Mondragón-Vásquez, K., Morales-Rojas, H. & Höpfl, H. (2010). Cryst. Growth Des. 10, 3732–3742.
Baburin, I. A. & Blatov, V. A. (2007). Acta Cryst. B63, 791–802. Web of Science CrossRef CAS IUCr Journals
Bertolasi, V., Gilli, P. & Gilli, G. (2011). Cryst. Growth Des. 11, 2724–2735. Web of Science CSD CrossRef CAS
Blatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576–3586. Web of Science CrossRef CAS
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2001). APEX2, SAINT & SADABS . Bruker AXS, Inc., Madison, Wisconsin, USA.
Daszkiewicz, M. (2013). CrystEngComm, 15, 10427–10430. Web of Science CrossRef CAS
Dhanabal, T., Sethuram, M., Amirthaganesan, G. & Das, S. K. (2013). J. Mol. Struct. 1045, 112–123. Web of Science CSD CrossRef CAS
Dutkiewicz, G., Samshuddin, S., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2011). Acta Cryst. E67, o235. Web of Science CSD CrossRef IUCr Journals
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals
Manoj, K., Tamura, R., Takahashi, H. & Tsue, H. (2014). CrystEngComm, 16, 5811–5819. Web of Science CSD CrossRef CAS
McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. Web of Science CrossRef CAS IUCr Journals
Moreno-Fuquen, R., De Almeida Santos, R. & Aguirre, L. (2011). Acta Cryst. E67, o139. Web of Science CSD CrossRef IUCr Journals
Robinson, D. I. (2010). Org. Process Res. Dev. 14, 946–959. Web of Science CrossRef CAS
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Soriano-García, M., Schatz-Levine, M., Toscano, R. A. & Villena Iribe, R. (1990). Acta Cryst. C46, 1556–1558. CSD CrossRef Web of Science IUCr Journals
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals
Weyna, D. R., Cheney, M. L., Shan, N., Hanna, M., Wojtas, Ł. & Zaworotko, M. J. (2012). CrystEngComm, 14, 2377–2380. Web of Science CSD CrossRef CAS
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.