research communications
μ-benzoato-κ2O:O′)bis(pyridine-3-carbonitrile-κN1)trizinc(II)
and Hirshfeld surface analysis of hexakis(aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemical Engineering, Kafkas University, 36100 Kars, Turkey, cDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, and dInternational Scientific Research Centre, Baku State University, 1148 Baku, Azerbaijan
*Correspondence e-mail: merzifon@hacettepe.edu.tr
The 3(C7H5O2)6(C6H4N2)2], contains one half of the complex molecule, i.e. one and a half ZnII cations, three benzoate (Bnz) and one pyridine-3-carbonitrile (Cpy) molecule; the Bnz anions act as bidentate ligands through the carboxylate O atoms, while the Cpy ligand acts as a monodentate N(pyridine)-bonding ligand. The complete centrosymmetric trinuclear complex thus comprises a linear array of three ZnII cations. The central ZnII cation shows an octahedral coordination and is bridged to each of the terminal ZnII cations by three Bnz anions. By additional coordination of the CPy ligand, the terminal ZnII cations adopt a trigonal–pyramidal coordination environment. In the crystal, the Bnz anions link to the Cpy N atoms via weak C—H⋯N hydrogen bonds, forming a two-dimensional network. C—H⋯π and π–π interactions [between the benzene and pyridine rings of adjacent molecules with an intercentroid distance of 3.850 (4) Å] help to consolidate a three-dimensional architecture. The Hirshfeld surface analysis confirms the role of H-atom contacts in establishing the packing.
of the title complex, [ZnCCDC reference: 1587257
1. Chemical context
The structure–function–coordination relationships of the arylcarboxylate ion in ZnII complexes of benzoic acid derivatives change depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the pH and temperature of synthesis (Shnulin et al., 1981). When pyridine and its derivatives are used instead of water molecules, the structure is completely different (Catterick et al., 1974). The solid-state structures of anhydrous Zinc(II) carboxylates include one-dimensional, two-dimensional and three-dimensional polymeric motifs of different types, while discrete monomeric complexes with octahedral or tetrahedral coordination geometry are found if water or other donor molecules are coordinated to Zn (Usubaliev et al., 1992). The of the title compound, (I), a trinuclear zinc complex with six benzoate anions and two neutral pyridine-3-carbonitrile ligands, was undertaken in order to compare the results obtained with those reported previously. In this context, we synthesized the ZnII-containing title compound, hexa(μ-benzoato-κ2O,O′)bis(pyridine-3-carbonitrile-κN)trizinc(II), [Zn3(C7H5O2)6(C6H4N2)2], and report herein its crystal and molecular structures as well as a Hirshfeld surface analysis.
2. Structural commentary
The molecular structure of the title complex (I) is formed by a centrosymmetric array of three ZnII cations, which are coordinated by six benzoate anions and two neutral pyridine-3-carbonitrile ligands. The middle ZnII cation occupies a special position and lies on a crystallographic inversion centre. The benzoate anions act as bidentate ligands, bridging two pairs of ZnII cations. The pyridine-3-carbonitrile ligands are monodentately coordinated through the pyridine N atoms (Fig. 1).
In the title complex, (I), the four carboxylate O atoms (O1, O3, O1i and O3i) of the two symmetry-related, bidentately coordinated benzoate anions around the Zn1 atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination sphere is completed by the two carboxylate O atoms (O5 and O5i) of the two symmetry-related, bidentately coordinated benzoate anions in the axial positions [symmetry code: (i) 1 − x, 2 − y, 1 − z] (Fig. 1, Table 1). On the other hand, the three carboxylate O atoms (O2, O4 and O6) of the three bidentately coordinated benzoate anions around the Zn2 atom form a slightly distorted triangular planar arrangement, while the slightly distorted trigonal–pyramidal coordination sphere is completed by the pyridine N atom (N1) of the monodentately coordinated neutral pyridine-3-carbonitrile ligand in the axial position (Fig. 1, Table 1). The sum of the bond angles O2—Zn2—O4 [117.1 (2)°], O2—Zn2—O6 [111.1 (2)°] and O4—Zn2—O6 [127.4 (2)°] in the basal plane around the Zn2 atom is 355.6°. This confirms that the Zn2 atom deviates from the O2/O4/O6 basal plane; the deviation is 0.2390 (6) Å. The Zn1⋯Zn2 separation in the title trinuclear molecule is 3.396 (2) Å and is comparable to the corresponding M—M distance (M is a metal) of 3.1845 (2) Å in the structurally related transition metal(II) complex [Zn3(benz)6(nia)2] (where benz = benzoate and nia = nicotinamide) (Zeleňák et al., 2004). The volume of the polyhedron of atoms (Zn1/Zn2/O1–O6/C1/C8/C15) is calculated to be 15.62 (5) Å3.
|
The Zn1 and Zn2 atoms lie [0.7337 (1) and −0.1793 (6) Å], [1.0911 (1) and −0.2676 (6) Å] and [1.3428 (1) and 0.0520 (7) Å] above and/or below of the planar (O1/O2/C1), (O3/O4/C8) and (O5/O6/C15) carboxylate groups, respectively. The (O1/O2/C1), (O3/O4/C8) and (O5/O6/C15) carboxylate groups are twisted away from the attached benzene (A, C2—C7; B, C9—C14; C, C16—C21) rings by 6.4 (3), 26.5 (3) and 5.1 (3)°, respectively, while the benzene and pyridine (D, N1/C22—C26) rings are oriented at dihedral angles of A/B = 76.2 (2), A/C = 82.9 (2), A/D = 6.2 (2), B/C = 89.2 (2), B/D = 70.0 (2) and C/D = 83.0 (2)°.
3. Supramolecular features
In the crystal, weak C—HBnz⋯NCpy (Bnz = benzoate and Cpy = pyridine-3-carbonitrile) hydrogen bonds (Table 2) link the molecules into a two-dimensional network parallel to (010) (Fig. 2). C—H⋯π and π–π interactions [between the benzene and pyridine rings of adjacent molecules with an inter-centroid distance of 3.850 (4) Å] help to consolidate a three-dimensional architecture.
4. Hirshfeld surface analysis
Visualization and exploration of intermolecular close contacts of a structure is invaluable, and this can be achieved using the Hirshfeld surface (HS) (Hirshfeld, 1977). HS analysis may be carried out to investigate the locations of atoms⋯atom short contacts with potential to form hydrogen bonds and π-stacking interactions.
In the HS with dnorm (Fig. 3), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the van der Waals radii, respectively. The bright-red spot appearing near Cpy-N2 indicates its role as the respective donor and/or acceptor in the dominant C—H⋯N hydrogen bond; it also appears as blue and/or red regions, respectively, corresponding to positive or negative potentials on the HS mapped over electrostatic potential (Fig. 4). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and/or blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 5 clearly suggests that there are π–π interactions in (I).
The overall two-dimensional fingerprint plot, Fig. 6a, and those delineated into H⋯C/C⋯H, H⋯N/N⋯H and C⋯C contacts are illustrated in Fig. 6 b–d, respectively, together with their relative contributions to the Hirshfeld surface. The widely scattered points of high density are due to the C—H⋯π interactions in the crystal, resulting in the fingerprint plot delineated into H⋯C/C⋯H contacts with 21.2% contribution to the HS, Fig. 6b. In the fingerprint plot delineated into H⋯N / N⋯H contacts, the 12.9% contribution to the HS arises from the C—H⋯N hydrogen bonding and is viewed as a pair of spikes with the tip at de + di ∼2.6 Å in Fig. 6c. Finally, the C⋯C contacts assigned to short interatomic C⋯C contacts and π–π stacking interactions with 9.7% contribution to the HS appear as an arrow-shaped distribution of points in Fig. 6d, with the vertex at de = di ∼1.65 Å.
The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯N/N⋯H and C⋯C interactions in Fig. 7a and b, respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The crystal packing is dominated by van der Waals interactions and hydrogen bonding.
5. Synthesis and crystallization
The title compound was prepared by the reaction of ZnSO4·7H2O (1.44 g, 5 mmol) in H2O (25 ml) and pyridine-3-carbonitrile (1.04 g, 10 mmol) in water (25 ml) with sodium benzoate (1.44 g, 10 mmol) in water (100 ml) at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving colourless single crystals (yield: 1.55 g, 82%).
6. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically with C—H = 0.93 Å and constrained to ride on their parent atoms [Uiso(H) = 1.2Ueq(C)].
details are summarized in Table 3Supporting information
CCDC reference: 1587257
https://doi.org/10.1107/S2056989017016899/nk2240sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017016899/nk2240Isup2.hkl
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).[Zn3(C6H5O2)6(C6H4N2)2] | F(000) = 2304 |
Mr = 1130.99 | Dx = 1.441 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 9334 reflections |
a = 21.7698 (4) Å | θ = 3.2–26.4° |
b = 10.7768 (2) Å | µ = 1.43 mm−1 |
c = 22.2272 (4) Å | T = 296 K |
V = 5214.70 (17) Å3 | Prism, colourless |
Z = 4 | 0.25 × 0.15 × 0.14 mm |
Bruker APEXII CCD diffractometer | 5205 independent reflections |
Radiation source: fine-focus sealed tube | 4090 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
φ and ω scans | θmax = 26.3°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −27→27 |
Tmin = 0.769, Tmax = 0.805 | k = −12→9 |
57535 measured reflections | l = −27→27 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.061 | H-atom parameters constrained |
wR(F2) = 0.136 | w = 1/[σ2(Fo2) + (0.P)2 + 23.0318P] where P = (Fo2 + 2Fc2)/3 |
S = 1.25 | (Δ/σ)max = 0.001 |
5205 reflections | Δρmax = 0.51 e Å−3 |
332 parameters | Δρmin = −0.53 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0033 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.5000 | 1.0000 | 0.5000 | 0.0328 (2) | |
Zn2 | 0.54302 (3) | 0.72121 (5) | 0.44260 (3) | 0.03771 (19) | |
O1 | 0.4419 (2) | 0.8554 (4) | 0.51623 (18) | 0.0620 (12) | |
O2 | 0.45578 (16) | 0.6924 (3) | 0.45634 (16) | 0.0465 (9) | |
O3 | 0.49893 (17) | 0.9704 (4) | 0.40584 (14) | 0.0465 (9) | |
O4 | 0.56537 (18) | 0.8269 (3) | 0.37406 (16) | 0.0488 (9) | |
O5 | 0.57926 (19) | 0.8901 (4) | 0.50701 (17) | 0.0606 (12) | |
O6 | 0.5925 (2) | 0.6912 (4) | 0.51883 (19) | 0.0621 (11) | |
N1 | 0.5624 (2) | 0.5518 (4) | 0.40092 (19) | 0.0405 (10) | |
N2 | 0.7379 (3) | 0.3920 (7) | 0.2993 (3) | 0.097 (2) | |
C1 | 0.4237 (2) | 0.7599 (5) | 0.4913 (2) | 0.0385 (11) | |
C2 | 0.3595 (2) | 0.7168 (5) | 0.5033 (2) | 0.0452 (12) | |
C3 | 0.3211 (3) | 0.7890 (7) | 0.5383 (3) | 0.074 (2) | |
H3 | 0.3343 | 0.8653 | 0.5529 | 0.089* | |
C4 | 0.2615 (4) | 0.7454 (11) | 0.5515 (5) | 0.112 (4) | |
H4 | 0.2352 | 0.7932 | 0.5749 | 0.135* | |
C5 | 0.2423 (4) | 0.6337 (12) | 0.5300 (5) | 0.115 (4) | |
H5 | 0.2029 | 0.6057 | 0.5386 | 0.137* | |
C6 | 0.2798 (4) | 0.5641 (9) | 0.4966 (4) | 0.100 (3) | |
H6 | 0.2663 | 0.4875 | 0.4826 | 0.120* | |
C7 | 0.3387 (3) | 0.6039 (7) | 0.4822 (3) | 0.0672 (18) | |
H7 | 0.3640 | 0.5545 | 0.4585 | 0.081* | |
C8 | 0.5356 (2) | 0.9277 (5) | 0.3681 (2) | 0.0383 (11) | |
C9 | 0.5447 (3) | 0.9980 (5) | 0.3106 (2) | 0.0414 (12) | |
C10 | 0.5983 (3) | 0.9883 (6) | 0.2789 (3) | 0.0588 (16) | |
H10 | 0.6289 | 0.9348 | 0.2923 | 0.071* | |
C11 | 0.6075 (4) | 1.0582 (7) | 0.2266 (3) | 0.078 (2) | |
H11 | 0.6445 | 1.0533 | 0.2058 | 0.094* | |
C12 | 0.5609 (4) | 1.1346 (7) | 0.2062 (3) | 0.077 (2) | |
H12 | 0.5664 | 1.1804 | 0.1712 | 0.092* | |
C13 | 0.5067 (4) | 1.1432 (6) | 0.2372 (3) | 0.0680 (19) | |
H13 | 0.4755 | 1.1946 | 0.2231 | 0.082* | |
C14 | 0.4982 (3) | 1.0756 (5) | 0.2896 (2) | 0.0516 (14) | |
H14 | 0.4615 | 1.0820 | 0.3107 | 0.062* | |
C15 | 0.5997 (2) | 0.8003 (6) | 0.5365 (2) | 0.0447 (13) | |
C16 | 0.6358 (2) | 0.8249 (5) | 0.5925 (2) | 0.0442 (12) | |
C17 | 0.6485 (3) | 0.9441 (6) | 0.6100 (3) | 0.0621 (16) | |
H17 | 0.6345 | 1.0107 | 0.5871 | 0.075* | |
C18 | 0.6823 (4) | 0.9651 (8) | 0.6621 (4) | 0.089 (2) | |
H18 | 0.6914 | 1.0458 | 0.6739 | 0.106* | |
C19 | 0.7022 (4) | 0.8669 (10) | 0.6959 (4) | 0.098 (3) | |
H19 | 0.7250 | 0.8815 | 0.7306 | 0.118* | |
C20 | 0.6892 (4) | 0.7477 (10) | 0.6794 (4) | 0.102 (3) | |
H20 | 0.7028 | 0.6814 | 0.7026 | 0.122* | |
C21 | 0.6555 (3) | 0.7270 (7) | 0.6276 (3) | 0.0717 (19) | |
H21 | 0.6459 | 0.6461 | 0.6163 | 0.086* | |
C22 | 0.6160 (2) | 0.5327 (5) | 0.3742 (2) | 0.0457 (13) | |
H22 | 0.6449 | 0.5962 | 0.3741 | 0.055* | |
C23 | 0.6306 (3) | 0.4213 (5) | 0.3463 (2) | 0.0478 (13) | |
C24 | 0.5872 (3) | 0.3277 (6) | 0.3463 (3) | 0.0590 (16) | |
H24 | 0.5956 | 0.2521 | 0.3278 | 0.071* | |
C25 | 0.5316 (3) | 0.3474 (5) | 0.3739 (3) | 0.0573 (16) | |
H25 | 0.5018 | 0.2857 | 0.3742 | 0.069* | |
C26 | 0.5208 (3) | 0.4603 (5) | 0.4012 (2) | 0.0465 (13) | |
H26 | 0.4834 | 0.4732 | 0.4204 | 0.056* | |
C27 | 0.6905 (3) | 0.4056 (7) | 0.3197 (3) | 0.0641 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0425 (4) | 0.0234 (4) | 0.0325 (4) | 0.0037 (3) | −0.0005 (3) | −0.0020 (3) |
Zn2 | 0.0439 (3) | 0.0301 (3) | 0.0391 (3) | 0.0032 (2) | −0.0002 (3) | −0.0042 (2) |
O1 | 0.082 (3) | 0.044 (2) | 0.060 (2) | −0.025 (2) | 0.026 (2) | −0.0145 (19) |
O2 | 0.0406 (19) | 0.044 (2) | 0.055 (2) | 0.0035 (16) | 0.0040 (17) | −0.0146 (17) |
O3 | 0.050 (2) | 0.060 (2) | 0.0294 (17) | 0.0131 (19) | 0.0000 (16) | −0.0042 (16) |
O4 | 0.067 (2) | 0.035 (2) | 0.044 (2) | 0.0047 (18) | 0.0064 (18) | −0.0003 (16) |
O5 | 0.059 (3) | 0.079 (3) | 0.044 (2) | 0.034 (2) | −0.0014 (19) | 0.007 (2) |
O6 | 0.074 (3) | 0.057 (3) | 0.056 (2) | −0.001 (2) | −0.015 (2) | −0.008 (2) |
N1 | 0.046 (2) | 0.033 (2) | 0.043 (2) | 0.0014 (19) | −0.0009 (19) | −0.0049 (18) |
N2 | 0.077 (4) | 0.122 (6) | 0.091 (5) | 0.026 (4) | 0.035 (4) | −0.009 (4) |
C1 | 0.043 (3) | 0.032 (3) | 0.041 (3) | −0.001 (2) | −0.002 (2) | 0.005 (2) |
C2 | 0.035 (3) | 0.047 (3) | 0.054 (3) | 0.006 (2) | −0.002 (2) | 0.012 (3) |
C3 | 0.057 (4) | 0.068 (5) | 0.098 (5) | 0.021 (3) | 0.023 (4) | 0.023 (4) |
C4 | 0.059 (5) | 0.129 (8) | 0.149 (9) | 0.039 (6) | 0.038 (6) | 0.048 (8) |
C5 | 0.031 (4) | 0.171 (11) | 0.141 (9) | −0.007 (5) | −0.008 (5) | 0.075 (9) |
C6 | 0.060 (5) | 0.121 (8) | 0.120 (7) | −0.050 (5) | −0.019 (5) | 0.037 (6) |
C7 | 0.062 (4) | 0.068 (4) | 0.071 (4) | −0.018 (3) | −0.010 (3) | 0.009 (4) |
C8 | 0.048 (3) | 0.034 (3) | 0.033 (2) | −0.003 (2) | −0.007 (2) | −0.005 (2) |
C9 | 0.057 (3) | 0.037 (3) | 0.030 (2) | −0.007 (3) | −0.002 (2) | −0.007 (2) |
C10 | 0.070 (4) | 0.059 (4) | 0.048 (3) | −0.002 (3) | 0.013 (3) | 0.001 (3) |
C11 | 0.097 (6) | 0.084 (5) | 0.055 (4) | −0.012 (5) | 0.021 (4) | 0.004 (4) |
C12 | 0.124 (7) | 0.067 (5) | 0.039 (3) | −0.016 (5) | −0.001 (4) | 0.010 (3) |
C13 | 0.095 (5) | 0.063 (4) | 0.046 (4) | −0.004 (4) | −0.019 (4) | 0.006 (3) |
C14 | 0.065 (4) | 0.049 (3) | 0.041 (3) | −0.002 (3) | −0.008 (3) | −0.002 (2) |
C15 | 0.033 (3) | 0.061 (4) | 0.039 (3) | 0.006 (2) | 0.001 (2) | −0.004 (3) |
C16 | 0.042 (3) | 0.052 (3) | 0.038 (3) | 0.005 (2) | −0.005 (2) | 0.001 (2) |
C17 | 0.059 (4) | 0.060 (4) | 0.067 (4) | 0.000 (3) | −0.008 (3) | −0.005 (3) |
C18 | 0.097 (6) | 0.090 (6) | 0.079 (5) | −0.019 (5) | −0.018 (5) | −0.025 (5) |
C19 | 0.088 (6) | 0.140 (9) | 0.066 (5) | −0.005 (6) | −0.040 (4) | −0.016 (5) |
C20 | 0.117 (7) | 0.112 (7) | 0.076 (5) | 0.026 (6) | −0.048 (5) | 0.006 (5) |
C21 | 0.086 (5) | 0.067 (4) | 0.062 (4) | 0.009 (4) | −0.030 (4) | 0.003 (3) |
C22 | 0.047 (3) | 0.044 (3) | 0.046 (3) | −0.003 (2) | −0.004 (2) | −0.005 (2) |
C23 | 0.052 (3) | 0.051 (3) | 0.041 (3) | 0.012 (3) | 0.007 (2) | −0.008 (2) |
C24 | 0.074 (4) | 0.041 (3) | 0.062 (4) | 0.007 (3) | 0.001 (3) | −0.015 (3) |
C25 | 0.062 (4) | 0.036 (3) | 0.074 (4) | −0.004 (3) | 0.003 (3) | −0.013 (3) |
C26 | 0.050 (3) | 0.040 (3) | 0.049 (3) | 0.006 (2) | 0.006 (2) | 0.001 (2) |
C27 | 0.068 (4) | 0.071 (4) | 0.054 (4) | 0.018 (3) | 0.014 (3) | −0.006 (3) |
Zn1—O1 | 2.039 (4) | C8—C9 | 1.500 (7) |
Zn1—O1i | 2.039 (4) | C9—C10 | 1.367 (8) |
Zn1—O3 | 2.117 (3) | C9—C14 | 1.393 (8) |
Zn1—O3i | 2.117 (3) | C10—C11 | 1.400 (9) |
Zn1—O5 | 2.099 (4) | C10—H10 | 0.9300 |
Zn1—O5i | 2.099 (4) | C11—C12 | 1.382 (10) |
Zn2—O2 | 1.948 (4) | C11—H11 | 0.9300 |
Zn2—O4 | 1.963 (4) | C12—C13 | 1.370 (10) |
Zn2—O5 | 2.446 (5) | C12—H12 | 0.9300 |
Zn2—O6 | 2.034 (4) | C13—C14 | 1.385 (8) |
Zn2—N1 | 2.091 (4) | C13—H13 | 0.9300 |
Zn2—C15 | 2.571 (5) | C14—H14 | 0.9300 |
O1—C1 | 1.235 (6) | C15—C16 | 1.494 (7) |
O2—C1 | 1.274 (6) | C16—C17 | 1.370 (8) |
O3—C8 | 1.245 (6) | C16—C21 | 1.381 (8) |
O4—C8 | 1.272 (6) | C17—C18 | 1.391 (9) |
O5—C15 | 1.251 (7) | C17—H17 | 0.9300 |
O6—C15 | 1.250 (7) | C18—C19 | 1.369 (12) |
N1—C22 | 1.326 (7) | C18—H18 | 0.9300 |
N1—C26 | 1.339 (7) | C19—C20 | 1.366 (12) |
N2—C27 | 1.138 (8) | C19—H19 | 0.9300 |
C1—C2 | 1.496 (7) | C20—C21 | 1.384 (9) |
C2—C7 | 1.381 (8) | C20—H20 | 0.9300 |
C2—C3 | 1.383 (8) | C21—H21 | 0.9300 |
C3—C4 | 1.411 (11) | C22—C23 | 1.387 (7) |
C3—H3 | 0.9300 | C22—H22 | 0.9300 |
C4—C5 | 1.361 (14) | C23—C24 | 1.382 (8) |
C4—H4 | 0.9300 | C23—C27 | 1.441 (8) |
C5—C6 | 1.335 (14) | C24—C25 | 1.373 (8) |
C5—H5 | 0.9300 | C24—H24 | 0.9300 |
C6—C7 | 1.388 (9) | C25—C26 | 1.379 (7) |
C6—H6 | 0.9300 | C25—H25 | 0.9300 |
C7—H7 | 0.9300 | C26—H26 | 0.9300 |
O1i—Zn1—O1 | 180.000 (1) | O3—C8—O4 | 124.9 (5) |
O1i—Zn1—O5 | 86.25 (19) | O3—C8—C9 | 118.2 (5) |
O1—Zn1—O5 | 93.75 (19) | O4—C8—C9 | 116.9 (5) |
O1i—Zn1—O5i | 93.75 (19) | C10—C9—C14 | 119.6 (5) |
O1—Zn1—O5i | 86.25 (19) | C10—C9—C8 | 120.9 (5) |
O5—Zn1—O5i | 180.000 (1) | C14—C9—C8 | 119.5 (5) |
O1i—Zn1—O3 | 86.97 (16) | C9—C10—C11 | 120.5 (7) |
O1—Zn1—O3 | 93.03 (16) | C9—C10—H10 | 119.7 |
O5—Zn1—O3 | 89.85 (14) | C11—C10—H10 | 119.7 |
O5i—Zn1—O3 | 90.15 (14) | C12—C11—C10 | 119.2 (7) |
O1i—Zn1—O3i | 93.03 (16) | C12—C11—H11 | 120.4 |
O1—Zn1—O3i | 86.97 (16) | C10—C11—H11 | 120.4 |
O5—Zn1—O3i | 90.15 (14) | C13—C12—C11 | 120.5 (6) |
O5i—Zn1—O3i | 89.85 (14) | C13—C12—H12 | 119.8 |
O3—Zn1—O3i | 180.000 (1) | C11—C12—H12 | 119.8 |
O2—Zn2—O4 | 117.11 (16) | C12—C13—C14 | 120.1 (7) |
O2—Zn2—O6 | 111.11 (17) | C12—C13—H13 | 119.9 |
O4—Zn2—O6 | 127.42 (18) | C14—C13—H13 | 119.9 |
O2—Zn2—N1 | 97.29 (16) | C13—C14—C9 | 120.0 (6) |
O4—Zn2—N1 | 96.46 (16) | C13—C14—H14 | 120.0 |
O6—Zn2—N1 | 97.08 (17) | C9—C14—H14 | 120.0 |
O2—Zn2—O5 | 109.96 (14) | O6—C15—O5 | 121.2 (5) |
O4—Zn2—O5 | 86.72 (15) | O6—C15—C16 | 119.7 (5) |
O6—Zn2—O5 | 57.31 (15) | O5—C15—C16 | 119.1 (5) |
N1—Zn2—O5 | 147.56 (15) | O6—C15—Zn2 | 51.1 (3) |
O2—Zn2—C15 | 113.20 (16) | O5—C15—Zn2 | 70.1 (3) |
O4—Zn2—C15 | 108.58 (17) | C16—C15—Zn2 | 170.7 (4) |
O6—Zn2—C15 | 28.58 (17) | C17—C16—C21 | 119.6 (6) |
N1—Zn2—C15 | 123.54 (17) | C17—C16—C15 | 120.6 (5) |
O5—Zn2—C15 | 28.74 (15) | C21—C16—C15 | 119.8 (5) |
C1—O1—Zn1 | 139.2 (4) | C16—C17—C18 | 119.7 (7) |
C1—O2—Zn2 | 122.6 (3) | C16—C17—H17 | 120.1 |
C8—O3—Zn1 | 135.6 (3) | C18—C17—H17 | 120.1 |
C8—O4—Zn2 | 116.7 (3) | C19—C18—C17 | 120.0 (8) |
C15—O5—Zn1 | 140.2 (4) | C19—C18—H18 | 120.0 |
C15—O5—Zn2 | 81.2 (3) | C17—C18—H18 | 120.0 |
Zn1—O5—Zn2 | 96.39 (16) | C20—C19—C18 | 120.9 (7) |
C15—O6—Zn2 | 100.3 (4) | C20—C19—H19 | 119.6 |
C22—N1—C26 | 118.9 (5) | C18—C19—H19 | 119.6 |
C22—N1—Zn2 | 120.8 (4) | C19—C20—C21 | 119.1 (8) |
C26—N1—Zn2 | 120.3 (4) | C19—C20—H20 | 120.4 |
O1—C1—O2 | 125.0 (5) | C21—C20—H20 | 120.4 |
O1—C1—C2 | 118.7 (5) | C16—C21—C20 | 120.8 (7) |
O2—C1—C2 | 116.3 (5) | C16—C21—H21 | 119.6 |
C7—C2—C3 | 119.2 (6) | C20—C21—H21 | 119.6 |
C7—C2—C1 | 121.3 (5) | N1—C22—C23 | 122.4 (5) |
C3—C2—C1 | 119.4 (6) | N1—C22—H22 | 118.8 |
C2—C3—C4 | 119.1 (8) | C23—C22—H22 | 118.8 |
C2—C3—H3 | 120.5 | C24—C23—C22 | 118.4 (5) |
C4—C3—H3 | 120.5 | C24—C23—C27 | 122.1 (5) |
C5—C4—C3 | 120.2 (9) | C22—C23—C27 | 119.5 (6) |
C5—C4—H4 | 119.9 | C25—C24—C23 | 119.3 (5) |
C3—C4—H4 | 119.9 | C25—C24—H24 | 120.4 |
C6—C5—C4 | 120.4 (8) | C23—C24—H24 | 120.4 |
C6—C5—H5 | 119.8 | C24—C25—C26 | 118.9 (6) |
C4—C5—H5 | 119.8 | C24—C25—H25 | 120.6 |
C5—C6—C7 | 121.3 (9) | C26—C25—H25 | 120.6 |
C5—C6—H6 | 119.4 | N1—C26—C25 | 122.2 (5) |
C7—C6—H6 | 119.4 | N1—C26—H26 | 118.9 |
C2—C7—C6 | 119.8 (8) | C25—C26—H26 | 118.9 |
C2—C7—H7 | 120.1 | N2—C27—C23 | 179.1 (8) |
C6—C7—H7 | 120.1 | ||
O5—Zn1—O1—C1 | −70.0 (6) | C2—C3—C4—C5 | 0.1 (13) |
O5i—Zn1—O1—C1 | 110.0 (6) | C3—C4—C5—C6 | 0.4 (15) |
O3—Zn1—O1—C1 | 20.0 (6) | C4—C5—C6—C7 | −0.8 (15) |
O3i—Zn1—O1—C1 | −160.0 (6) | C3—C2—C7—C6 | −0.3 (10) |
O4—Zn2—O2—C1 | −92.5 (4) | C1—C2—C7—C6 | 176.9 (6) |
O6—Zn2—O2—C1 | 65.8 (4) | C5—C6—C7—C2 | 0.7 (12) |
N1—Zn2—O2—C1 | 166.4 (4) | Zn1—O3—C8—O4 | 47.4 (8) |
O5—Zn2—O2—C1 | 4.2 (4) | Zn1—O3—C8—C9 | −133.9 (4) |
C15—Zn2—O2—C1 | 35.0 (4) | Zn2—O4—C8—O3 | 8.8 (7) |
O1i—Zn1—O3—C8 | 73.7 (5) | Zn2—O4—C8—C9 | −169.9 (3) |
O1—Zn1—O3—C8 | −106.3 (5) | O3—C8—C9—C10 | 153.9 (5) |
O5—Zn1—O3—C8 | −12.5 (5) | O4—C8—C9—C10 | −27.4 (7) |
O5i—Zn1—O3—C8 | 167.5 (5) | O3—C8—C9—C14 | −25.2 (7) |
O2—Zn2—O4—C8 | 46.3 (4) | O4—C8—C9—C14 | 153.6 (5) |
O6—Zn2—O4—C8 | −108.0 (4) | C14—C9—C10—C11 | 1.8 (9) |
N1—Zn2—O4—C8 | 147.9 (4) | C8—C9—C10—C11 | −177.3 (6) |
O5—Zn2—O4—C8 | −64.5 (4) | C9—C10—C11—C12 | −1.9 (10) |
C15—Zn2—O4—C8 | −83.4 (4) | C10—C11—C12—C13 | 0.9 (11) |
O1i—Zn1—O5—C15 | 143.5 (6) | C11—C12—C13—C14 | 0.2 (11) |
O1—Zn1—O5—C15 | −36.5 (6) | C12—C13—C14—C9 | −0.4 (9) |
O3—Zn1—O5—C15 | −129.6 (6) | C10—C9—C14—C13 | −0.6 (8) |
O3i—Zn1—O5—C15 | 50.4 (6) | C8—C9—C14—C13 | 178.5 (5) |
O1i—Zn1—O5—Zn2 | −132.68 (16) | Zn2—O6—C15—O5 | −1.5 (6) |
O1—Zn1—O5—Zn2 | 47.32 (16) | Zn2—O6—C15—C16 | −178.8 (4) |
O3—Zn1—O5—Zn2 | −45.71 (15) | Zn1—O5—C15—O6 | 90.6 (7) |
O3i—Zn1—O5—Zn2 | 134.29 (15) | Zn2—O5—C15—O6 | 1.2 (5) |
O2—Zn2—O5—C15 | 102.1 (3) | Zn1—O5—C15—C16 | −92.0 (7) |
O4—Zn2—O5—C15 | −140.2 (3) | Zn2—O5—C15—C16 | 178.6 (5) |
O6—Zn2—O5—C15 | −0.8 (3) | Zn1—O5—C15—Zn2 | 89.4 (6) |
N1—Zn2—O5—C15 | −43.3 (5) | O2—Zn2—C15—O6 | 91.9 (4) |
O2—Zn2—O5—Zn1 | −37.85 (19) | O4—Zn2—C15—O6 | −136.3 (4) |
O4—Zn2—O5—Zn1 | 79.85 (17) | N1—Zn2—C15—O6 | −24.9 (4) |
O6—Zn2—O5—Zn1 | −140.7 (2) | O5—Zn2—C15—O6 | −178.7 (6) |
N1—Zn2—O5—Zn1 | 176.7 (2) | O2—Zn2—C15—O5 | −89.5 (3) |
C15—Zn2—O5—Zn1 | −139.9 (4) | O4—Zn2—C15—O5 | 42.4 (3) |
O2—Zn2—O6—C15 | −100.0 (4) | O6—Zn2—C15—O5 | 178.7 (6) |
O4—Zn2—O6—C15 | 55.6 (4) | N1—Zn2—C15—O5 | 153.8 (3) |
N1—Zn2—O6—C15 | 159.3 (4) | O6—C15—C16—C17 | 174.7 (6) |
O5—Zn2—O6—C15 | 0.8 (3) | O5—C15—C16—C17 | −2.7 (8) |
O2—Zn2—N1—C22 | 169.8 (4) | O6—C15—C16—C21 | −6.6 (8) |
O4—Zn2—N1—C22 | 51.3 (4) | O5—C15—C16—C21 | 176.0 (6) |
O6—Zn2—N1—C22 | −77.8 (4) | C21—C16—C17—C18 | 1.6 (10) |
O5—Zn2—N1—C22 | −42.7 (5) | C15—C16—C17—C18 | −179.7 (6) |
C15—Zn2—N1—C22 | −66.1 (4) | C16—C17—C18—C19 | −0.6 (12) |
O2—Zn2—N1—C26 | −10.7 (4) | C17—C18—C19—C20 | −0.3 (14) |
O4—Zn2—N1—C26 | −129.2 (4) | C18—C19—C20—C21 | 0.2 (15) |
O6—Zn2—N1—C26 | 101.8 (4) | C17—C16—C21—C20 | −1.7 (11) |
O5—Zn2—N1—C26 | 136.8 (4) | C15—C16—C21—C20 | 179.6 (7) |
C15—Zn2—N1—C26 | 113.5 (4) | C19—C20—C21—C16 | 0.8 (13) |
Zn1—O1—C1—O2 | 33.4 (9) | C26—N1—C22—C23 | 0.2 (8) |
Zn1—O1—C1—C2 | −147.8 (5) | Zn2—N1—C22—C23 | 179.7 (4) |
Zn2—O2—C1—O1 | 6.3 (7) | N1—C22—C23—C24 | 0.4 (9) |
Zn2—O2—C1—C2 | −172.5 (3) | N1—C22—C23—C27 | −178.1 (5) |
O1—C1—C2—C7 | −172.7 (5) | C22—C23—C24—C25 | −0.3 (9) |
O2—C1—C2—C7 | 6.2 (7) | C27—C23—C24—C25 | 178.1 (6) |
O1—C1—C2—C3 | 4.5 (8) | C23—C24—C25—C26 | −0.3 (10) |
O2—C1—C2—C3 | −176.6 (5) | C22—N1—C26—C25 | −0.9 (8) |
C7—C2—C3—C4 | −0.1 (10) | Zn2—N1—C26—C25 | 179.6 (4) |
C1—C2—C3—C4 | −177.4 (6) | C24—C25—C26—N1 | 0.9 (9) |
Symmetry code: (i) −x+1, −y+2, −z+1. |
Cg is the centroid of the C19–C14 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C20—H20···N2ii | 0.93 | 2.63 | 3.448 (11) | 147 (1) |
C24—H24···Cgiii | 0.93 | 2.70 | 3.512 (6) | 147 |
Symmetry codes: (ii) −x+3/2, −y+1, z+1/2; (iii) x, y−1, z. |
Acknowledgements
The authors acknowledge the Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer.
References
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
Catterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416. CAS
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals
Usubaliev, B. T., Guliev, F. I., Musaev, F. N., Ganbarov, D. M., Ashurova, S. A. & Movsumov, E. M. (1992). Zh. Strukt. Khim. 33, m203–m207.
Zeleňák, V., Sabo, M., Massa, W. & Llewellyn, P. (2004). Inorg. Chim. Acta, 357, 2049–2059. Web of Science CSD CrossRef CAS
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.