research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of hexa­kis­(μ-benzoato-κ2O:O′)bis­­(pyridine-3-carbo­nitrile-κN1)trizinc(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemical Engineering, Kafkas University, 36100 Kars, Turkey, cDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, and dInternational Scientific Research Centre, Baku State University, 1148 Baku, Azerbaijan
*Correspondence e-mail: merzifon@hacettepe.edu.tr

Edited by G. S. Nichol, University of Edinburgh, Scotland (Received 30 August 2017; accepted 23 November 2017; online 28 November 2017)

The asymmetric unit of the title complex, [Zn3(C7H5O2)6(C6H4N2)2], contains one half of the complex mol­ecule, i.e. one and a half ZnII cations, three benzoate (Bnz) and one pyridine-3-carbo­nitrile (Cpy) mol­ecule; the Bnz anions act as bidentate ligands through the carboxyl­ate O atoms, while the Cpy ligand acts as a monodentate N(pyridine)-bonding ligand. The complete centrosymmetric trinuclear complex thus comprises a linear array of three ZnII cations. The central ZnII cation shows an octa­hedral coordination and is bridged to each of the terminal ZnII cations by three Bnz anions. By additional coordination of the CPy ligand, the terminal ZnII cations adopt a trigonal–pyramidal coordination environment. In the crystal, the Bnz anions link to the Cpy N atoms via weak C—H⋯N hydrogen bonds, forming a two-dimensional network. C—H⋯π and ππ inter­actions [between the benzene and pyridine rings of adjacent mol­ecules with an inter­centroid distance of 3.850 (4) Å] help to consolidate a three-dimensional architecture. The Hirshfeld surface analysis confirms the role of H-atom contacts in establishing the packing.

1. Chemical context

The structure–function–coordination relationships of the aryl­carboxyl­ate ion in ZnII complexes of benzoic acid deriv­atives change depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand mol­ecule or solvent, and the pH and temperature of synthesis (Shnulin et al., 1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]). When pyridine and its derivatives are used instead of water mol­ecules, the structure is completely different (Catterick et al., 1974[Catterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843-844.]). The solid-state structures of anhydrous Zinc(II) carboxyl­ates include one-dimensional, two-dimensional and three-dimensional polymeric motifs of different types, while discrete monomeric complexes with octa­hedral or tetra­hedral coordin­ation geometry are found if water or other donor mol­ecules are coordinated to Zn (Usubaliev et al., 1992[Usubaliev, B. T., Guliev, F. I., Musaev, F. N., Ganbarov, D. M., Ashurova, S. A. & Movsumov, E. M. (1992). Zh. Strukt. Khim. 33, m203-m207.]). The structure determination of the title compound, (I)[link], a trinuclear zinc complex with six benzoate anions and two neutral pyridine-3-carbo­nitrile ligands, was undertaken in order to compare the results obtained with those reported previously. In this context, we synthesized the ZnII-containing title compound, hexa­(μ-benzoato-κ2O,O′)bis­(pyridine-3-carbo­nitrile-κN)trizinc(II), [Zn3(C7H5O2)6(C6H4N2)2], and report herein its crystal and mol­ecular structures as well as a Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title complex (I)[link] is formed by a centrosymmetric array of three ZnII cations, which are coord­in­ated by six benzoate anions and two neutral pyridine-3-carbo­nitrile ligands. The middle ZnII cation occupies a special position and lies on a crystallographic inversion centre. The benzoate anions act as bidentate ligands, bridging two pairs of ZnII cations. The pyridine-3-carbo­nitrile ligands are monodentately coordinated through the pyridine N atoms (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title complex with the atom-numbering scheme. Unlabelled atoms are related to labelled ones by the symmetry operation (1 − x, 2 − y, 1 − z). Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

In the title complex, (I)[link], the four carboxyl­ate O atoms (O1, O3, O1i and O3i) of the two symmetry-related, bidentately coordinated benzoate anions around the Zn1 atom form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination sphere is completed by the two carboxyl­ate O atoms (O5 and O5i) of the two symmetry-related, bidentately coordinated benzoate anions in the axial positions [symmetry code: (i) 1 − x, 2 − y, 1 − z] (Fig. 1[link], Table 1[link]). On the other hand, the three carboxyl­ate O atoms (O2, O4 and O6) of the three bidentately coordinated benzoate anions around the Zn2 atom form a slightly distorted triangular planar arrangement, while the slightly distorted trigonal–pyramidal coordination sphere is completed by the pyridine N atom (N1) of the monodentately coordinated neutral pyridine-3-carbo­nitrile ligand in the axial position (Fig. 1[link], Table 1[link]). The sum of the bond angles O2—Zn2—O4 [117.1 (2)°], O2—Zn2—O6 [111.1 (2)°] and O4—Zn2—O6 [127.4 (2)°] in the basal plane around the Zn2 atom is 355.6°. This confirms that the Zn2 atom deviates from the O2/O4/O6 basal plane; the deviation is 0.2390 (6) Å. The Zn1⋯Zn2 separation in the title trinuclear mol­ecule is 3.396 (2) Å and is comparable to the corresponding MM distance (M is a metal) of 3.1845 (2) Å in the structurally related transition metal(II) complex [Zn3(benz)6(nia)2] (where benz = benzoate and nia = nicotinamide) (Zeleňák et al., 2004[Zeleňák, V., Sabo, M., Massa, W. & Llewellyn, P. (2004). Inorg. Chim. Acta, 357, 2049-2059.]). The volume of the polyhedron of atoms (Zn1/Zn2/O1–O6/C1/C8/C15) is calculated to be 15.62 (5) Å3.

Table 1
Selected bond lengths (Å)

Zn1—O1 2.039 (4) Zn2—O4 1.963 (4)
Zn1—O3 2.117 (3) Zn2—O6 2.034 (4)
Zn1—O5 2.099 (4) Zn2—N1 2.091 (4)
Zn2—O2 1.948 (4)    

The Zn1 and Zn2 atoms lie [0.7337 (1) and −0.1793 (6) Å], [1.0911 (1) and −0.2676 (6) Å] and [1.3428 (1) and 0.0520 (7) Å] above and/or below of the planar (O1/O2/C1), (O3/O4/C8) and (O5/O6/C15) carboxyl­ate groups, respect­ively. The (O1/O2/C1), (O3/O4/C8) and (O5/O6/C15) carboxyl­ate groups are twisted away from the attached benzene (A, C2—C7; B, C9—C14; C, C16—C21) rings by 6.4 (3), 26.5 (3) and 5.1 (3)°, respectively, while the benzene and pyridine (D, N1/C22—C26) rings are oriented at dihedral angles of A/B = 76.2 (2), A/C = 82.9 (2), A/D = 6.2 (2), B/C = 89.2 (2), B/D = 70.0 (2) and C/D = 83.0 (2)°.

3. Supra­molecular features

In the crystal, weak C—HBnz⋯NCpy (Bnz = benzoate and Cpy = pyridine-3-carbo­nitrile) hydrogen bonds (Table 2[link]) link the mol­ecules into a two-dimensional network parallel to (010) (Fig. 2[link]). C—H⋯π and ππ inter­actions [between the benzene and pyridine rings of adjacent mol­ecules with an inter-centroid distance of 3.850 (4) Å] help to consolidate a three-dimensional architecture.

Table 2
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C19–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯N2i 0.93 2.63 3.448 (11) 147 (1)
C24—H24⋯Cgii 0.93 2.70 3.512 (6) 147
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) x, y-1, z.
[Figure 2]
Figure 2
Part of the crystal structure. Weak C—HBnz⋯NCpy (Bnz = benzoate and Cpy = pyridine-3-carbo­nitrile) hydrogen bonds are shown as dashed lines. H atoms not involved in these inter­actions have been omitted for clarity.

4. Hirshfeld surface analysis

Visualization and exploration of inter­molecular close contacts of a structure is invaluable, and this can be achieved using the Hirshfeld surface (HS) (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]). HS analysis may be carried out to investigate the locations of atoms⋯atom short contacts with potential to form hydrogen bonds and π-stacking inter­actions.

In the HS with dnorm (Fig. 3[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the van der Waals radii, respectively. The bright-red spot appearing near Cpy-N2 indicates its role as the respective donor and/or acceptor in the dominant C—H⋯N hydrogen bond; it also appears as blue and/or red regions, respectively, corresponding to positive or negative potentials on the HS mapped over electrostatic potential (Fig. 4[link]). The shape-index of the HS is a tool to visualize the ππ stacking by the presence of adjacent red and/or blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 5[link] clearly suggests that there are ππ inter­actions in (I)[link].

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title complex plotted over dnorm in the range −0.0957 to 1.6461 a.u.
[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title complex plotted over electrostatic potential energy in the range −1.7824 to 9.8050 a.u. The hydrogen-bond donors and acceptors are viewed as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
[Figure 5]
Figure 5
Hirshfeld surface of the title complex plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 6[link]a, and those delineated into H⋯C/C⋯H, H⋯N/N⋯H and C⋯C contacts are illustrated in Fig. 6[link] bd, respectively, together with their relative contributions to the Hirshfeld surface. The widely scattered points of high density are due to the C—H⋯π inter­actions in the crystal, resulting in the fingerprint plot delineated into H⋯C/C⋯H contacts with 21.2% contribution to the HS, Fig. 6[link]b. In the fingerprint plot delin­eated into H⋯N / N⋯H contacts, the 12.9% contribution to the HS arises from the C—H⋯N hydrogen bonding and is viewed as a pair of spikes with the tip at de + di ∼2.6 Å in Fig. 6[link]c. Finally, the C⋯C contacts assigned to short inter­atomic C⋯C contacts and ππ stacking inter­actions with 9.7% contribution to the HS appear as an arrow-shaped distribution of points in Fig. 6[link]d, with the vertex at de = di ∼1.65 Å.

[Figure 6]
Figure 6
The selected two-dimensional fingerprint plots for the title complex, showing (a) all inter­actions, and delineated into (b) H⋯C/C⋯H, (c) H⋯N/N⋯H and (d) C⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯N/N⋯H and C⋯C inter­actions in Fig. 7a and b[link], respectively.

[Figure 7]
Figure 7
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯N / N⋯H and (b) C⋯C inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The crystal packing is dominated by van der Waals inter­actions and hydrogen bonding.

5. Synthesis and crystallization

The title compound was prepared by the reaction of ZnSO4·7H2O (1.44 g, 5 mmol) in H2O (25 ml) and pyridine-3-carbo­nitrile (1.04 g, 10 mmol) in water (25 ml) with sodium benzoate (1.44 g, 10 mmol) in water (100 ml) at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving colourless single crystals (yield: 1.55 g, 82%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were positioned geom­etrically with C—H = 0.93 Å and constrained to ride on their parent atoms [Uiso(H) = 1.2Ueq(C)].

Table 3
Experimental details

Crystal data
Chemical formula [Zn3(C6H5O2)6(C6H4N2)2]
Mr 1130.99
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 296
a, b, c (Å) 21.7698 (4), 10.7768 (2), 22.2272 (4)
V3) 5214.70 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.43
Crystal size (mm) 0.25 × 0.15 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.769, 0.805
No. of measured, independent and observed [I > 2σ(I)] reflections 57535, 5205, 4090
Rint 0.044
(sin θ/λ)max−1) 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.136, 1.25
No. of reflections 5205
No. of parameters 332
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.51, −0.53
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hexakis(µ-benzoato-κ2O:O')bis(pyridine-3-carbonitrile-κN1)trizinc(II) top
Crystal data top
[Zn3(C6H5O2)6(C6H4N2)2]F(000) = 2304
Mr = 1130.99Dx = 1.441 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9334 reflections
a = 21.7698 (4) Åθ = 3.2–26.4°
b = 10.7768 (2) ŵ = 1.43 mm1
c = 22.2272 (4) ÅT = 296 K
V = 5214.70 (17) Å3Prism, colourless
Z = 40.25 × 0.15 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
5205 independent reflections
Radiation source: fine-focus sealed tube4090 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 26.3°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 2727
Tmin = 0.769, Tmax = 0.805k = 129
57535 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.P)2 + 23.0318P]
where P = (Fo2 + 2Fc2)/3
S = 1.25(Δ/σ)max = 0.001
5205 reflectionsΔρmax = 0.51 e Å3
332 parametersΔρmin = 0.53 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0033 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50001.00000.50000.0328 (2)
Zn20.54302 (3)0.72121 (5)0.44260 (3)0.03771 (19)
O10.4419 (2)0.8554 (4)0.51623 (18)0.0620 (12)
O20.45578 (16)0.6924 (3)0.45634 (16)0.0465 (9)
O30.49893 (17)0.9704 (4)0.40584 (14)0.0465 (9)
O40.56537 (18)0.8269 (3)0.37406 (16)0.0488 (9)
O50.57926 (19)0.8901 (4)0.50701 (17)0.0606 (12)
O60.5925 (2)0.6912 (4)0.51883 (19)0.0621 (11)
N10.5624 (2)0.5518 (4)0.40092 (19)0.0405 (10)
N20.7379 (3)0.3920 (7)0.2993 (3)0.097 (2)
C10.4237 (2)0.7599 (5)0.4913 (2)0.0385 (11)
C20.3595 (2)0.7168 (5)0.5033 (2)0.0452 (12)
C30.3211 (3)0.7890 (7)0.5383 (3)0.074 (2)
H30.33430.86530.55290.089*
C40.2615 (4)0.7454 (11)0.5515 (5)0.112 (4)
H40.23520.79320.57490.135*
C50.2423 (4)0.6337 (12)0.5300 (5)0.115 (4)
H50.20290.60570.53860.137*
C60.2798 (4)0.5641 (9)0.4966 (4)0.100 (3)
H60.26630.48750.48260.120*
C70.3387 (3)0.6039 (7)0.4822 (3)0.0672 (18)
H70.36400.55450.45850.081*
C80.5356 (2)0.9277 (5)0.3681 (2)0.0383 (11)
C90.5447 (3)0.9980 (5)0.3106 (2)0.0414 (12)
C100.5983 (3)0.9883 (6)0.2789 (3)0.0588 (16)
H100.62890.93480.29230.071*
C110.6075 (4)1.0582 (7)0.2266 (3)0.078 (2)
H110.64451.05330.20580.094*
C120.5609 (4)1.1346 (7)0.2062 (3)0.077 (2)
H120.56641.18040.17120.092*
C130.5067 (4)1.1432 (6)0.2372 (3)0.0680 (19)
H130.47551.19460.22310.082*
C140.4982 (3)1.0756 (5)0.2896 (2)0.0516 (14)
H140.46151.08200.31070.062*
C150.5997 (2)0.8003 (6)0.5365 (2)0.0447 (13)
C160.6358 (2)0.8249 (5)0.5925 (2)0.0442 (12)
C170.6485 (3)0.9441 (6)0.6100 (3)0.0621 (16)
H170.63451.01070.58710.075*
C180.6823 (4)0.9651 (8)0.6621 (4)0.089 (2)
H180.69141.04580.67390.106*
C190.7022 (4)0.8669 (10)0.6959 (4)0.098 (3)
H190.72500.88150.73060.118*
C200.6892 (4)0.7477 (10)0.6794 (4)0.102 (3)
H200.70280.68140.70260.122*
C210.6555 (3)0.7270 (7)0.6276 (3)0.0717 (19)
H210.64590.64610.61630.086*
C220.6160 (2)0.5327 (5)0.3742 (2)0.0457 (13)
H220.64490.59620.37410.055*
C230.6306 (3)0.4213 (5)0.3463 (2)0.0478 (13)
C240.5872 (3)0.3277 (6)0.3463 (3)0.0590 (16)
H240.59560.25210.32780.071*
C250.5316 (3)0.3474 (5)0.3739 (3)0.0573 (16)
H250.50180.28570.37420.069*
C260.5208 (3)0.4603 (5)0.4012 (2)0.0465 (13)
H260.48340.47320.42040.056*
C270.6905 (3)0.4056 (7)0.3197 (3)0.0641 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0425 (4)0.0234 (4)0.0325 (4)0.0037 (3)0.0005 (3)0.0020 (3)
Zn20.0439 (3)0.0301 (3)0.0391 (3)0.0032 (2)0.0002 (3)0.0042 (2)
O10.082 (3)0.044 (2)0.060 (2)0.025 (2)0.026 (2)0.0145 (19)
O20.0406 (19)0.044 (2)0.055 (2)0.0035 (16)0.0040 (17)0.0146 (17)
O30.050 (2)0.060 (2)0.0294 (17)0.0131 (19)0.0000 (16)0.0042 (16)
O40.067 (2)0.035 (2)0.044 (2)0.0047 (18)0.0064 (18)0.0003 (16)
O50.059 (3)0.079 (3)0.044 (2)0.034 (2)0.0014 (19)0.007 (2)
O60.074 (3)0.057 (3)0.056 (2)0.001 (2)0.015 (2)0.008 (2)
N10.046 (2)0.033 (2)0.043 (2)0.0014 (19)0.0009 (19)0.0049 (18)
N20.077 (4)0.122 (6)0.091 (5)0.026 (4)0.035 (4)0.009 (4)
C10.043 (3)0.032 (3)0.041 (3)0.001 (2)0.002 (2)0.005 (2)
C20.035 (3)0.047 (3)0.054 (3)0.006 (2)0.002 (2)0.012 (3)
C30.057 (4)0.068 (5)0.098 (5)0.021 (3)0.023 (4)0.023 (4)
C40.059 (5)0.129 (8)0.149 (9)0.039 (6)0.038 (6)0.048 (8)
C50.031 (4)0.171 (11)0.141 (9)0.007 (5)0.008 (5)0.075 (9)
C60.060 (5)0.121 (8)0.120 (7)0.050 (5)0.019 (5)0.037 (6)
C70.062 (4)0.068 (4)0.071 (4)0.018 (3)0.010 (3)0.009 (4)
C80.048 (3)0.034 (3)0.033 (2)0.003 (2)0.007 (2)0.005 (2)
C90.057 (3)0.037 (3)0.030 (2)0.007 (3)0.002 (2)0.007 (2)
C100.070 (4)0.059 (4)0.048 (3)0.002 (3)0.013 (3)0.001 (3)
C110.097 (6)0.084 (5)0.055 (4)0.012 (5)0.021 (4)0.004 (4)
C120.124 (7)0.067 (5)0.039 (3)0.016 (5)0.001 (4)0.010 (3)
C130.095 (5)0.063 (4)0.046 (4)0.004 (4)0.019 (4)0.006 (3)
C140.065 (4)0.049 (3)0.041 (3)0.002 (3)0.008 (3)0.002 (2)
C150.033 (3)0.061 (4)0.039 (3)0.006 (2)0.001 (2)0.004 (3)
C160.042 (3)0.052 (3)0.038 (3)0.005 (2)0.005 (2)0.001 (2)
C170.059 (4)0.060 (4)0.067 (4)0.000 (3)0.008 (3)0.005 (3)
C180.097 (6)0.090 (6)0.079 (5)0.019 (5)0.018 (5)0.025 (5)
C190.088 (6)0.140 (9)0.066 (5)0.005 (6)0.040 (4)0.016 (5)
C200.117 (7)0.112 (7)0.076 (5)0.026 (6)0.048 (5)0.006 (5)
C210.086 (5)0.067 (4)0.062 (4)0.009 (4)0.030 (4)0.003 (3)
C220.047 (3)0.044 (3)0.046 (3)0.003 (2)0.004 (2)0.005 (2)
C230.052 (3)0.051 (3)0.041 (3)0.012 (3)0.007 (2)0.008 (2)
C240.074 (4)0.041 (3)0.062 (4)0.007 (3)0.001 (3)0.015 (3)
C250.062 (4)0.036 (3)0.074 (4)0.004 (3)0.003 (3)0.013 (3)
C260.050 (3)0.040 (3)0.049 (3)0.006 (2)0.006 (2)0.001 (2)
C270.068 (4)0.071 (4)0.054 (4)0.018 (3)0.014 (3)0.006 (3)
Geometric parameters (Å, º) top
Zn1—O12.039 (4)C8—C91.500 (7)
Zn1—O1i2.039 (4)C9—C101.367 (8)
Zn1—O32.117 (3)C9—C141.393 (8)
Zn1—O3i2.117 (3)C10—C111.400 (9)
Zn1—O52.099 (4)C10—H100.9300
Zn1—O5i2.099 (4)C11—C121.382 (10)
Zn2—O21.948 (4)C11—H110.9300
Zn2—O41.963 (4)C12—C131.370 (10)
Zn2—O52.446 (5)C12—H120.9300
Zn2—O62.034 (4)C13—C141.385 (8)
Zn2—N12.091 (4)C13—H130.9300
Zn2—C152.571 (5)C14—H140.9300
O1—C11.235 (6)C15—C161.494 (7)
O2—C11.274 (6)C16—C171.370 (8)
O3—C81.245 (6)C16—C211.381 (8)
O4—C81.272 (6)C17—C181.391 (9)
O5—C151.251 (7)C17—H170.9300
O6—C151.250 (7)C18—C191.369 (12)
N1—C221.326 (7)C18—H180.9300
N1—C261.339 (7)C19—C201.366 (12)
N2—C271.138 (8)C19—H190.9300
C1—C21.496 (7)C20—C211.384 (9)
C2—C71.381 (8)C20—H200.9300
C2—C31.383 (8)C21—H210.9300
C3—C41.411 (11)C22—C231.387 (7)
C3—H30.9300C22—H220.9300
C4—C51.361 (14)C23—C241.382 (8)
C4—H40.9300C23—C271.441 (8)
C5—C61.335 (14)C24—C251.373 (8)
C5—H50.9300C24—H240.9300
C6—C71.388 (9)C25—C261.379 (7)
C6—H60.9300C25—H250.9300
C7—H70.9300C26—H260.9300
O1i—Zn1—O1180.000 (1)O3—C8—O4124.9 (5)
O1i—Zn1—O586.25 (19)O3—C8—C9118.2 (5)
O1—Zn1—O593.75 (19)O4—C8—C9116.9 (5)
O1i—Zn1—O5i93.75 (19)C10—C9—C14119.6 (5)
O1—Zn1—O5i86.25 (19)C10—C9—C8120.9 (5)
O5—Zn1—O5i180.000 (1)C14—C9—C8119.5 (5)
O1i—Zn1—O386.97 (16)C9—C10—C11120.5 (7)
O1—Zn1—O393.03 (16)C9—C10—H10119.7
O5—Zn1—O389.85 (14)C11—C10—H10119.7
O5i—Zn1—O390.15 (14)C12—C11—C10119.2 (7)
O1i—Zn1—O3i93.03 (16)C12—C11—H11120.4
O1—Zn1—O3i86.97 (16)C10—C11—H11120.4
O5—Zn1—O3i90.15 (14)C13—C12—C11120.5 (6)
O5i—Zn1—O3i89.85 (14)C13—C12—H12119.8
O3—Zn1—O3i180.000 (1)C11—C12—H12119.8
O2—Zn2—O4117.11 (16)C12—C13—C14120.1 (7)
O2—Zn2—O6111.11 (17)C12—C13—H13119.9
O4—Zn2—O6127.42 (18)C14—C13—H13119.9
O2—Zn2—N197.29 (16)C13—C14—C9120.0 (6)
O4—Zn2—N196.46 (16)C13—C14—H14120.0
O6—Zn2—N197.08 (17)C9—C14—H14120.0
O2—Zn2—O5109.96 (14)O6—C15—O5121.2 (5)
O4—Zn2—O586.72 (15)O6—C15—C16119.7 (5)
O6—Zn2—O557.31 (15)O5—C15—C16119.1 (5)
N1—Zn2—O5147.56 (15)O6—C15—Zn251.1 (3)
O2—Zn2—C15113.20 (16)O5—C15—Zn270.1 (3)
O4—Zn2—C15108.58 (17)C16—C15—Zn2170.7 (4)
O6—Zn2—C1528.58 (17)C17—C16—C21119.6 (6)
N1—Zn2—C15123.54 (17)C17—C16—C15120.6 (5)
O5—Zn2—C1528.74 (15)C21—C16—C15119.8 (5)
C1—O1—Zn1139.2 (4)C16—C17—C18119.7 (7)
C1—O2—Zn2122.6 (3)C16—C17—H17120.1
C8—O3—Zn1135.6 (3)C18—C17—H17120.1
C8—O4—Zn2116.7 (3)C19—C18—C17120.0 (8)
C15—O5—Zn1140.2 (4)C19—C18—H18120.0
C15—O5—Zn281.2 (3)C17—C18—H18120.0
Zn1—O5—Zn296.39 (16)C20—C19—C18120.9 (7)
C15—O6—Zn2100.3 (4)C20—C19—H19119.6
C22—N1—C26118.9 (5)C18—C19—H19119.6
C22—N1—Zn2120.8 (4)C19—C20—C21119.1 (8)
C26—N1—Zn2120.3 (4)C19—C20—H20120.4
O1—C1—O2125.0 (5)C21—C20—H20120.4
O1—C1—C2118.7 (5)C16—C21—C20120.8 (7)
O2—C1—C2116.3 (5)C16—C21—H21119.6
C7—C2—C3119.2 (6)C20—C21—H21119.6
C7—C2—C1121.3 (5)N1—C22—C23122.4 (5)
C3—C2—C1119.4 (6)N1—C22—H22118.8
C2—C3—C4119.1 (8)C23—C22—H22118.8
C2—C3—H3120.5C24—C23—C22118.4 (5)
C4—C3—H3120.5C24—C23—C27122.1 (5)
C5—C4—C3120.2 (9)C22—C23—C27119.5 (6)
C5—C4—H4119.9C25—C24—C23119.3 (5)
C3—C4—H4119.9C25—C24—H24120.4
C6—C5—C4120.4 (8)C23—C24—H24120.4
C6—C5—H5119.8C24—C25—C26118.9 (6)
C4—C5—H5119.8C24—C25—H25120.6
C5—C6—C7121.3 (9)C26—C25—H25120.6
C5—C6—H6119.4N1—C26—C25122.2 (5)
C7—C6—H6119.4N1—C26—H26118.9
C2—C7—C6119.8 (8)C25—C26—H26118.9
C2—C7—H7120.1N2—C27—C23179.1 (8)
C6—C7—H7120.1
O5—Zn1—O1—C170.0 (6)C2—C3—C4—C50.1 (13)
O5i—Zn1—O1—C1110.0 (6)C3—C4—C5—C60.4 (15)
O3—Zn1—O1—C120.0 (6)C4—C5—C6—C70.8 (15)
O3i—Zn1—O1—C1160.0 (6)C3—C2—C7—C60.3 (10)
O4—Zn2—O2—C192.5 (4)C1—C2—C7—C6176.9 (6)
O6—Zn2—O2—C165.8 (4)C5—C6—C7—C20.7 (12)
N1—Zn2—O2—C1166.4 (4)Zn1—O3—C8—O447.4 (8)
O5—Zn2—O2—C14.2 (4)Zn1—O3—C8—C9133.9 (4)
C15—Zn2—O2—C135.0 (4)Zn2—O4—C8—O38.8 (7)
O1i—Zn1—O3—C873.7 (5)Zn2—O4—C8—C9169.9 (3)
O1—Zn1—O3—C8106.3 (5)O3—C8—C9—C10153.9 (5)
O5—Zn1—O3—C812.5 (5)O4—C8—C9—C1027.4 (7)
O5i—Zn1—O3—C8167.5 (5)O3—C8—C9—C1425.2 (7)
O2—Zn2—O4—C846.3 (4)O4—C8—C9—C14153.6 (5)
O6—Zn2—O4—C8108.0 (4)C14—C9—C10—C111.8 (9)
N1—Zn2—O4—C8147.9 (4)C8—C9—C10—C11177.3 (6)
O5—Zn2—O4—C864.5 (4)C9—C10—C11—C121.9 (10)
C15—Zn2—O4—C883.4 (4)C10—C11—C12—C130.9 (11)
O1i—Zn1—O5—C15143.5 (6)C11—C12—C13—C140.2 (11)
O1—Zn1—O5—C1536.5 (6)C12—C13—C14—C90.4 (9)
O3—Zn1—O5—C15129.6 (6)C10—C9—C14—C130.6 (8)
O3i—Zn1—O5—C1550.4 (6)C8—C9—C14—C13178.5 (5)
O1i—Zn1—O5—Zn2132.68 (16)Zn2—O6—C15—O51.5 (6)
O1—Zn1—O5—Zn247.32 (16)Zn2—O6—C15—C16178.8 (4)
O3—Zn1—O5—Zn245.71 (15)Zn1—O5—C15—O690.6 (7)
O3i—Zn1—O5—Zn2134.29 (15)Zn2—O5—C15—O61.2 (5)
O2—Zn2—O5—C15102.1 (3)Zn1—O5—C15—C1692.0 (7)
O4—Zn2—O5—C15140.2 (3)Zn2—O5—C15—C16178.6 (5)
O6—Zn2—O5—C150.8 (3)Zn1—O5—C15—Zn289.4 (6)
N1—Zn2—O5—C1543.3 (5)O2—Zn2—C15—O691.9 (4)
O2—Zn2—O5—Zn137.85 (19)O4—Zn2—C15—O6136.3 (4)
O4—Zn2—O5—Zn179.85 (17)N1—Zn2—C15—O624.9 (4)
O6—Zn2—O5—Zn1140.7 (2)O5—Zn2—C15—O6178.7 (6)
N1—Zn2—O5—Zn1176.7 (2)O2—Zn2—C15—O589.5 (3)
C15—Zn2—O5—Zn1139.9 (4)O4—Zn2—C15—O542.4 (3)
O2—Zn2—O6—C15100.0 (4)O6—Zn2—C15—O5178.7 (6)
O4—Zn2—O6—C1555.6 (4)N1—Zn2—C15—O5153.8 (3)
N1—Zn2—O6—C15159.3 (4)O6—C15—C16—C17174.7 (6)
O5—Zn2—O6—C150.8 (3)O5—C15—C16—C172.7 (8)
O2—Zn2—N1—C22169.8 (4)O6—C15—C16—C216.6 (8)
O4—Zn2—N1—C2251.3 (4)O5—C15—C16—C21176.0 (6)
O6—Zn2—N1—C2277.8 (4)C21—C16—C17—C181.6 (10)
O5—Zn2—N1—C2242.7 (5)C15—C16—C17—C18179.7 (6)
C15—Zn2—N1—C2266.1 (4)C16—C17—C18—C190.6 (12)
O2—Zn2—N1—C2610.7 (4)C17—C18—C19—C200.3 (14)
O4—Zn2—N1—C26129.2 (4)C18—C19—C20—C210.2 (15)
O6—Zn2—N1—C26101.8 (4)C17—C16—C21—C201.7 (11)
O5—Zn2—N1—C26136.8 (4)C15—C16—C21—C20179.6 (7)
C15—Zn2—N1—C26113.5 (4)C19—C20—C21—C160.8 (13)
Zn1—O1—C1—O233.4 (9)C26—N1—C22—C230.2 (8)
Zn1—O1—C1—C2147.8 (5)Zn2—N1—C22—C23179.7 (4)
Zn2—O2—C1—O16.3 (7)N1—C22—C23—C240.4 (9)
Zn2—O2—C1—C2172.5 (3)N1—C22—C23—C27178.1 (5)
O1—C1—C2—C7172.7 (5)C22—C23—C24—C250.3 (9)
O2—C1—C2—C76.2 (7)C27—C23—C24—C25178.1 (6)
O1—C1—C2—C34.5 (8)C23—C24—C25—C260.3 (10)
O2—C1—C2—C3176.6 (5)C22—N1—C26—C250.9 (8)
C7—C2—C3—C40.1 (10)Zn2—N1—C26—C25179.6 (4)
C1—C2—C3—C4177.4 (6)C24—C25—C26—N10.9 (9)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C19–C14 ring.
D—H···AD—HH···AD···AD—H···A
C20—H20···N2ii0.932.633.448 (11)147 (1)
C24—H24···Cgiii0.932.703.512 (6)147
Symmetry codes: (ii) x+3/2, y+1, z+1/2; (iii) x, y1, z.
 

Acknowledgements

The authors acknowledge the Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer.

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
First citationCatterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844.
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationUsubaliev, B. T., Guliev, F. I., Musaev, F. N., Ganbarov, D. M., Ashurova, S. A. & Movsumov, E. M. (1992). Zh. Strukt. Khim. 33, m203–m207.
First citationZeleňák, V., Sabo, M., Massa, W. & Llewellyn, P. (2004). Inorg. Chim. Acta, 357, 2049–2059.  Web of Science CSD CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds