research communications
Crystal structures of 1-hydroxy-4-propyloxy-9,10-anthraquinone and its acetyl derivative
aDepartment of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan
*Correspondence e-mail: kitamura.c@mat.usp.ac.jp
1-Hydroxy-4-propyloxy-9,10-anthraquinone, C17H14O4, (I), and its acetyl derivative, 4-acetyloxy-4-propyloxy-9,10-anthraquinone, C19H16O5, (II), were synthesized from the commercially available dye quinizarin. In both compounds, the anthraquinone frameworks are close to planarity. There is a large difference in the conformation of the propyloxy group; the molecule of (I) adopts a gauche conformation [O—C—C—C = −64.4 (2)°], although the molecule of (II) takes a trans-planar conformation (zigzag) [O—C—C—C = 176.1 (3)°]. In the molecule of (I), there is an intramolecular O—H⋯O hydrogen bond. In both crystals, the molecules are linked by C—H ⋯O hydrogen bonds. A difference in the molecular arrangements of (I) and (II) is found along the stacking directions.
1. Chemical context
9,10-Anthraquinone and its derivatives are important molecules as dyes and pigments. As a part of a project on the study of the substitution effects of the anthraquinone ring on optical properties in solution as well as in the solid state, we have been synthesizing new anthraquinone derivatives. Recently, we found that the recrystallization of 1,4-dipropyloxy-9,10-anthaquinone from hexane solution afforded two polymorphs, red prisms and yellow needles, whose crystal structures were different from each other (Kitamura et al., 2015b). Then we became interested in the effect of the asymmetric substitution pattern of 9,10-anthraquinone because 1,4-dipropyloxy-9,10-anthraquinone is a symmetric molecule along the direction of the molecular short axis. We thought that mono-alkoxylation from quinizarin (1,4-dihydroxy-9,10-anthraquinone) should be effective to gain asymmetric 9,10-anthraquinones along the molecular short axis. We report herein the synthesis and crystal structures of 1-hydroxy-4-propyloxy-9,10-anthraquinone (I) and its acetyl derivative, 1-acetyloxy-4-propyloxy-9,10-anthraquinone (II).
2. Structural commentary
The molecular structures of the title compounds, (I) and (II), are illustrated in Figs. 1 and 2, respectively. In both molecules, the anthraquinone frameworks are nearly planar. However, there is a large difference in the conformation of the propyloxy group; in compound (I), the the propyloxy moiety adopts a gauche conformation [O2—C15—C16—C17 torsion angle = 64.4 (2)°], and in compound (II), it has a trans-planar (zigzag) conformation [O2—C17—C18—C19 = 176.1 (3)°]. In (I), there is an intramolecular O—H⋯O hydrogen bond forming an S(6) ring motif (Fig. 1 and Table 1). In compound (II), the acetyl group plane (O1/O5/C15/C16) is inclined to the anthraquinone ring system by 71.87 (12)°.
3. Supramolecular features
The crystal packing structures of the title compounds, (I) and (II), are shown in Figs. 3 and 4, respectively. In both crystals, molecules are linked by intermolecular C—H⋯O hydrogen bonds. For compound (I), C—H⋯O hydrogen bonds along the lateral direction of the molecules are found (Fig. 3 and Table 1): C8—H8⋯O3i, C15—H15A⋯O1ii [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x − , −y + , z − ]. In contrast, in compound (II) C—H⋯O interactions are formed along all directions (Fig. 4 and Table 2): C2—H2⋯O3iii, C10—H10⋯O5iv [symmetry codes: (iii) −x + 1, y − , −z + ; (iv) x, −y + , z − ] . To understand the solid-state optical properties of dyes, revealing the characteristics of the stacking patterns of neighboring molecules is important. In both crystals, the anthraquinone ring systems are arranged nearly parallel, although there is a difference in the molecular arrangement of two neighboring molecules along the stacking directions (Figs. 5–8). As shown in Figs. 5 and 6, a small π overlap of the anthraquinone ring systems is observed for compound (II), on the other hand, compound (I) scarcely shows any π overlap. Regarding the overlap of the anthraquinone ring systems, in compound (I) there is a translational slip, while in compound (II) there is a rotational slip. The shortest distances for overlapping non-bonded atoms in the anthraquinone frameworks are 3.297 (2) Å (C11⋯C6v) and 3.558 (2) Å (C13⋯C4v) in compound (I), and 3.363 (4) Å (C8⋯C4iv), 3.423 (4) Å (C11⋯C6iv) and 3.523 (4) Å (C10⋯C14iv) in compound (II) [symmetry code: (v) x + 1, y, z]. As shown in Figs. 7 and 8, the interplanar distances between the anthraquinone planes [3.3895 (12) Å for compound (I) and 3.396 (3) Å for compound (II)] are almost identical. The degree of overlap and the interplanar distance between two chromophores are considered to be the two factors essential for evaluating intermolecular interactions. Therefore compound (II) would have stronger intermolecular interactions than compound (I).
4. Database survey
A literature search found no reports of crystal structures of 1-hydroxy-4-propyloxy-9,10-anthraquinone (I) and 1-acetyloxy-4-propyloxy-9,10-anthraquinone (II). Other hydroxy- or alkoxy-substituted anthraquinone compounds have been reported: 4-(3-bromopropyloxy)-1-hydroxy-9,10-anthraquinone (Ohira et al., 2016), 1,4-dipropyloxy-9,10-anthraquinone (Kitamura et al., 2015b), 1,4-dihydroxy-2,3-dinitro-9,10-anthraquinone (Furukawa et al., 2016), 1,4-diethoxy-9,10-anthraquinone (Kitamura et al., 2015a), 2-bromo-1,4-dihydroxy-9,10-anthraquinone (Furukawa et al., 2014), 2,6-dimethoxy-9,10-anthraquinone (Ohta et al., 2012a), 2,6-dipropyloxy-9,10-anthraquinone (Ohta et al., 2012b), 2,3,6,7-tetrapropyloxy-9,10-anthraquinone (Ohta et al., 2012b).
5. Synthesis and crystallization
The title compounds, (I) and (II), were synthesized starting from quinizarin (1,4-dihydroxy-9,10-anthraquinone), as shown in Fig. 9
Compound (I): A mixture of quinizarin (289 mg, 1.20 mmol), 1-bromopropane (675 mg, 5.49 mmol), K2CO3 (185 mg, 1.34 mmol) in DMF (5 mL) was stirred at 353 K for 3 h under N2. After cooling to room temperature, water (60 mL) was added to the reaction mixture. The brown solid that precipitated was filtered off. The resulting solid was solubilized with CH2Cl2. The organic layer was washed with 1 M NaOH to remove the unreacted quinizarin, then washed sequentially with brine, dried over Na2SO4, and evaporated under reduced pressure. The residual brown solid was purified by on silica gel with an of CH2Cl2. The title compound (I) was obtained as an orange solid (132 mg, 46%). m.p. 387.5–389 K. 1H NMR (400 MHz, CDCl3): δ 1.14 (t, J = 7.4 Hz, 3H, CH3), 1.91–2.00 (m, 2H, CH2), 4.11 (t, J = 6.6 Hz, 2H, CH2), 7.28–7.32 (m, 1H, ArH), 7.39–7.41 (m, 1H, ArH), 7.73–7.82 (m, 2H, ArH), 8.27–8.31 (m, 2H, ArH), 13.03 (s, 1H, OH). Crystals suitable for X-ray diffraction were grown by slow evaporation of an AcOEt–hexane (>v:v = 1:10) solution.
Compound (II): A mixture of compound (I) (132 mg, 0.47 mmol), K2CO3 (137 mg, 0.99 mmol) in acetic anhydride (5 mL) was stirred at 383 K for 3 h under air. After cooling to room temperature, water (50 mL) was added into the resulting mixture, then the mixture was stirred for 20 min at room temperature. The mixture was extracted with CH2Cl2. The organic layer was washed with 10% NaHCO3 solution and then brine, and dried over Na2SO4, and evaporated under reduced pressure. The residual yellow solid was purified by recrystallization from a hexane–toluene (>v:v = 3:1) solution to provide title compound (II) as a yellow solid (128 mg, 84%). m.p. 401–403 K. 1H NMR (400 MHz, CDCl3): δ 1.146 (t, J = 7.3 Hz, 3H, CH3), 1.93–2.02 (m, 2H, CH2), 2.48 (s, 3H, CH3), 4.13 (t, J = 6.4 Hz, 2H, CH2), 7.32–7.36 (m, 2H, ArH), 7.68–7.76 (m, 2H, ArH), 8.12–8.22 (m, 2H, ArH). Crystals suitable for X-ray diffraction were grown by slow evaporation of a hexane-toluene (>v:v = 18:1) solution.
6. Refinement
Crystal data, data collection and structure . The hydroxyl H atom, H1 of compound (I), was refined isotropically. All other H atoms were positioned geometrically and treated as riding atoms: C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C) for CH3 and 1.2Ueq(C) for CH2 and aromatic C—H.
details are summarized in Table 3Supporting information
https://doi.org/10.1107/S2056989017015973/nr2068sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017015973/nr2068Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989017015973/nr2068IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017015973/nr2068Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989017015973/nr2068IIsup5.cml
For both structures, data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).C17H14O4 | F(000) = 592 |
Mr = 282.28 | Dx = 1.409 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 8070 reflections |
a = 4.7354 (3) Å | θ = 3.0–27.4° |
b = 25.9882 (17) Å | µ = 0.1 mm−1 |
c = 11.0671 (9) Å | T = 200 K |
β = 102.268 (7)° | Needle, orange |
V = 1330.87 (17) Å3 | 0.5 × 0.13 × 0.05 mm |
Z = 4 |
R-AXIS RAPID diffractometer | 2035 reflections with I > 2σ(I) |
Radiation source: normal sealed x-ray tube | Rint = 0.039 |
Graphite monochromator | θmax = 27.5°, θmin = 3.0° |
Detector resolution: 10 pixels mm-1 | h = −6→5 |
ω scans | k = −33→32 |
12176 measured reflections | l = −14→14 |
3029 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: mixed |
wR(F2) = 0.123 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0601P)2 + 0.1583P] where P = (Fo2 + 2Fc2)/3 |
3029 reflections | (Δ/σ)max < 0.001 |
195 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
0 constraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5957 (3) | 0.24895 (6) | 0.42197 (15) | 0.0330 (4) | |
C2 | 0.3444 (4) | 0.23736 (6) | 0.33536 (16) | 0.0358 (4) | |
H2 | 0.2979 | 0.2025 | 0.314 | 0.043* | |
C3 | 0.1644 (3) | 0.27569 (6) | 0.28092 (15) | 0.0350 (4) | |
H3 | −0.0048 | 0.267 | 0.2214 | 0.042* | |
C4 | 0.2236 (3) | 0.32769 (6) | 0.31091 (15) | 0.0304 (3) | |
C5 | 0.4712 (3) | 0.34058 (6) | 0.40077 (14) | 0.0288 (3) | |
C6 | 0.5450 (3) | 0.39481 (6) | 0.43736 (16) | 0.0334 (4) | |
C7 | 0.7983 (3) | 0.40429 (6) | 0.54037 (15) | 0.0319 (4) | |
C8 | 0.8576 (4) | 0.45434 (7) | 0.58305 (17) | 0.0409 (4) | |
H8 | 0.7373 | 0.4819 | 0.5465 | 0.049* | |
C9 | 1.0910 (4) | 0.46402 (8) | 0.67839 (18) | 0.0497 (5) | |
H9 | 1.1314 | 0.4983 | 0.7065 | 0.06* | |
C10 | 1.2665 (4) | 0.42437 (8) | 0.73352 (19) | 0.0512 (5) | |
H10 | 1.4256 | 0.4314 | 0.7996 | 0.061* | |
C11 | 1.2107 (4) | 0.37463 (7) | 0.69259 (17) | 0.0434 (4) | |
H11 | 1.3308 | 0.3473 | 0.7306 | 0.052* | |
C12 | 0.9770 (3) | 0.36437 (6) | 0.59508 (15) | 0.0321 (4) | |
C13 | 0.9209 (3) | 0.31127 (6) | 0.55027 (15) | 0.0315 (4) | |
C14 | 0.6585 (3) | 0.30036 (6) | 0.45649 (14) | 0.0296 (3) | |
C15 | −0.1815 (3) | 0.35323 (7) | 0.15327 (15) | 0.0375 (4) | |
H15A | −0.3207 | 0.3296 | 0.1798 | 0.045* | |
H15B | −0.1016 | 0.336 | 0.0881 | 0.045* | |
C16 | −0.3300 (4) | 0.40232 (7) | 0.10439 (17) | 0.0445 (4) | |
H16A | −0.3997 | 0.4198 | 0.172 | 0.053* | |
H16B | −0.5009 | 0.3939 | 0.0388 | 0.053* | |
C17 | −0.1379 (4) | 0.43891 (8) | 0.0523 (2) | 0.0580 (5) | |
H17A | −0.0718 | 0.4222 | −0.0161 | 0.087* | |
H17B | 0.0296 | 0.4481 | 0.1172 | 0.087* | |
H17C | −0.2469 | 0.4701 | 0.0221 | 0.087* | |
O1 | 0.7687 (3) | 0.20912 (4) | 0.46962 (12) | 0.0422 (3) | |
O2 | 0.0480 (2) | 0.36605 (4) | 0.25698 (11) | 0.0374 (3) | |
O3 | 0.4064 (3) | 0.43123 (4) | 0.38701 (13) | 0.0522 (4) | |
O4 | 1.0922 (2) | 0.27624 (4) | 0.59342 (11) | 0.0396 (3) | |
H1 | 0.930 (6) | 0.2263 (10) | 0.525 (2) | 0.086 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0370 (8) | 0.0307 (8) | 0.0344 (9) | 0.0001 (7) | 0.0146 (7) | 0.0027 (6) |
C2 | 0.0412 (9) | 0.0306 (8) | 0.0372 (10) | −0.0049 (7) | 0.0122 (7) | −0.0038 (7) |
C3 | 0.0325 (8) | 0.0403 (9) | 0.0326 (9) | −0.0083 (7) | 0.0076 (7) | −0.0063 (7) |
C4 | 0.0279 (7) | 0.0336 (8) | 0.0299 (9) | −0.0001 (7) | 0.0066 (6) | 0.0004 (6) |
C5 | 0.0283 (7) | 0.0311 (7) | 0.0276 (8) | −0.0018 (6) | 0.0073 (6) | −0.0001 (6) |
C6 | 0.0332 (8) | 0.0307 (8) | 0.0352 (9) | 0.0002 (7) | 0.0049 (7) | −0.0006 (7) |
C7 | 0.0314 (8) | 0.0344 (8) | 0.0300 (9) | −0.0035 (7) | 0.0068 (7) | −0.0012 (7) |
C8 | 0.0418 (9) | 0.0356 (8) | 0.0436 (11) | −0.0034 (8) | 0.0051 (8) | −0.0033 (7) |
C9 | 0.0521 (11) | 0.0469 (10) | 0.0457 (12) | −0.0109 (9) | 0.0003 (9) | −0.0103 (8) |
C10 | 0.0474 (10) | 0.0597 (11) | 0.0396 (11) | −0.0105 (10) | −0.0059 (8) | −0.0062 (9) |
C11 | 0.0381 (9) | 0.0520 (10) | 0.0354 (10) | −0.0002 (8) | −0.0026 (7) | 0.0033 (8) |
C12 | 0.0305 (8) | 0.0371 (8) | 0.0283 (9) | −0.0009 (7) | 0.0056 (6) | 0.0028 (7) |
C13 | 0.0310 (8) | 0.0357 (8) | 0.0290 (9) | 0.0006 (7) | 0.0095 (6) | 0.0058 (6) |
C14 | 0.0301 (7) | 0.0316 (7) | 0.0286 (8) | −0.0008 (7) | 0.0099 (6) | 0.0017 (6) |
C15 | 0.0286 (8) | 0.0520 (10) | 0.0294 (9) | −0.0023 (8) | 0.0003 (7) | −0.0052 (7) |
C16 | 0.0337 (9) | 0.0589 (11) | 0.0376 (11) | 0.0077 (9) | 0.0002 (7) | −0.0031 (8) |
C17 | 0.0502 (11) | 0.0622 (12) | 0.0572 (14) | 0.0067 (10) | 0.0019 (10) | 0.0147 (10) |
O1 | 0.0472 (7) | 0.0307 (6) | 0.0489 (8) | 0.0055 (6) | 0.0106 (6) | 0.0054 (5) |
O2 | 0.0331 (6) | 0.0388 (6) | 0.0357 (7) | 0.0023 (5) | −0.0028 (5) | −0.0018 (5) |
O3 | 0.0524 (8) | 0.0329 (6) | 0.0595 (9) | 0.0053 (6) | −0.0150 (6) | −0.0012 (6) |
O4 | 0.0382 (6) | 0.0392 (6) | 0.0394 (7) | 0.0067 (5) | 0.0038 (5) | 0.0076 (5) |
C1—O1 | 1.3552 (19) | C10—C11 | 1.376 (3) |
C1—C2 | 1.393 (2) | C10—H10 | 0.95 |
C1—C14 | 1.404 (2) | C11—C12 | 1.397 (2) |
C2—C3 | 1.365 (2) | C11—H11 | 0.95 |
C2—H2 | 0.95 | C12—C13 | 1.471 (2) |
C3—C4 | 1.406 (2) | C13—O4 | 1.2449 (18) |
C3—H3 | 0.95 | C13—C14 | 1.468 (2) |
C4—O2 | 1.3531 (18) | C15—O2 | 1.4422 (19) |
C4—C5 | 1.407 (2) | C15—C16 | 1.501 (2) |
C5—C14 | 1.424 (2) | C15—H15A | 0.99 |
C5—C6 | 1.487 (2) | C15—H15B | 0.99 |
C6—O3 | 1.2172 (19) | C16—C17 | 1.512 (3) |
C6—C7 | 1.489 (2) | C16—H16A | 0.99 |
C7—C8 | 1.392 (2) | C16—H16B | 0.99 |
C7—C12 | 1.393 (2) | C17—H17A | 0.98 |
C8—C9 | 1.379 (3) | C17—H17B | 0.98 |
C8—H8 | 0.95 | C17—H17C | 0.98 |
C9—C10 | 1.382 (3) | O1—H1 | 0.98 (3) |
C9—H9 | 0.95 | ||
O1—C1—C2 | 117.38 (14) | C10—C11—H11 | 120 |
O1—C1—C14 | 123.06 (15) | C12—C11—H11 | 120 |
C2—C1—C14 | 119.56 (15) | C7—C12—C11 | 120.12 (15) |
C3—C2—C1 | 120.52 (15) | C7—C12—C13 | 120.16 (14) |
C3—C2—H2 | 119.7 | C11—C12—C13 | 119.72 (15) |
C1—C2—H2 | 119.7 | O4—C13—C14 | 120.98 (14) |
C2—C3—C4 | 121.52 (15) | O4—C13—C12 | 120.02 (14) |
C2—C3—H3 | 119.2 | C14—C13—C12 | 118.98 (14) |
C4—C3—H3 | 119.2 | C1—C14—C5 | 120.30 (14) |
O2—C4—C3 | 122.08 (14) | C1—C14—C13 | 118.34 (14) |
O2—C4—C5 | 118.55 (13) | C5—C14—C13 | 121.36 (13) |
C3—C4—C5 | 119.36 (15) | O2—C15—C16 | 107.86 (14) |
C4—C5—C14 | 118.68 (13) | O2—C15—H15A | 110.1 |
C4—C5—C6 | 122.03 (14) | C16—C15—H15A | 110.1 |
C14—C5—C6 | 119.28 (14) | O2—C15—H15B | 110.1 |
O3—C6—C5 | 122.65 (15) | C16—C15—H15B | 110.1 |
O3—C6—C7 | 119.34 (14) | H15A—C15—H15B | 108.4 |
C5—C6—C7 | 118.00 (14) | C15—C16—C17 | 113.45 (15) |
C8—C7—C12 | 119.21 (15) | C15—C16—H16A | 108.9 |
C8—C7—C6 | 119.08 (15) | C17—C16—H16A | 108.9 |
C12—C7—C6 | 121.71 (14) | C15—C16—H16B | 108.9 |
C9—C8—C7 | 120.09 (17) | C17—C16—H16B | 108.9 |
C9—C8—H8 | 120 | H16A—C16—H16B | 107.7 |
C7—C8—H8 | 120 | C16—C17—H17A | 109.5 |
C8—C9—C10 | 120.70 (17) | C16—C17—H17B | 109.5 |
C8—C9—H9 | 119.6 | H17A—C17—H17B | 109.5 |
C10—C9—H9 | 119.6 | C16—C17—H17C | 109.5 |
C11—C10—C9 | 119.97 (18) | H17A—C17—H17C | 109.5 |
C11—C10—H10 | 120 | H17B—C17—H17C | 109.5 |
C9—C10—H10 | 120 | C1—O1—H1 | 102.8 (14) |
C10—C11—C12 | 119.90 (17) | C4—O2—C15 | 118.00 (12) |
O1—C1—C2—C3 | −178.11 (14) | C8—C7—C12—C13 | −179.10 (14) |
C14—C1—C2—C3 | 2.2 (2) | C6—C7—C12—C13 | 0.9 (2) |
C1—C2—C3—C4 | −0.7 (2) | C10—C11—C12—C7 | −0.9 (3) |
C2—C3—C4—O2 | 179.53 (15) | C10—C11—C12—C13 | 179.01 (16) |
C2—C3—C4—C5 | −1.2 (2) | C7—C12—C13—O4 | 175.01 (14) |
O2—C4—C5—C14 | −179.17 (13) | C11—C12—C13—O4 | −4.9 (2) |
C3—C4—C5—C14 | 1.5 (2) | C7—C12—C13—C14 | −6.2 (2) |
O2—C4—C5—C6 | −0.3 (2) | C11—C12—C13—C14 | 173.89 (15) |
C3—C4—C5—C6 | −179.55 (14) | O1—C1—C14—C5 | 178.51 (14) |
C4—C5—C6—O3 | −4.5 (3) | C2—C1—C14—C5 | −1.9 (2) |
C14—C5—C6—O3 | 174.43 (16) | O1—C1—C14—C13 | −1.2 (2) |
C4—C5—C6—C7 | 175.19 (14) | C2—C1—C14—C13 | 178.45 (14) |
C14—C5—C6—C7 | −5.9 (2) | C4—C5—C14—C1 | 0.0 (2) |
O3—C6—C7—C8 | 4.9 (2) | C6—C5—C14—C1 | −178.97 (14) |
C5—C6—C7—C8 | −174.80 (14) | C4—C5—C14—C13 | 179.65 (14) |
O3—C6—C7—C12 | −175.16 (16) | C6—C5—C14—C13 | 0.7 (2) |
C5—C6—C7—C12 | 5.2 (2) | O4—C13—C14—C1 | 3.8 (2) |
C12—C7—C8—C9 | 0.0 (3) | C12—C13—C14—C1 | −174.90 (13) |
C6—C7—C8—C9 | 179.96 (16) | O4—C13—C14—C5 | −175.84 (14) |
C7—C8—C9—C10 | −0.7 (3) | C12—C13—C14—C5 | 5.4 (2) |
C8—C9—C10—C11 | 0.6 (3) | O2—C15—C16—C17 | 64.4 (2) |
C9—C10—C11—C12 | 0.2 (3) | C3—C4—O2—C15 | −9.3 (2) |
C8—C7—C12—C11 | 0.8 (2) | C5—C4—O2—C15 | 171.45 (14) |
C6—C7—C12—C11 | −179.20 (15) | C16—C15—O2—C4 | −175.86 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4 | 0.98 (3) | 1.61 (3) | 2.5249 (18) | 153 (2) |
C8—H8···O3i | 0.95 | 2.51 | 3.270 (2) | 137 |
C15—H15A···O1ii | 0.99 | 2.88 | 3.359 (2) | 111 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−3/2, −y+1/2, z−1/2. |
C19H16O5 | F(000) = 680 |
Mr = 324.32 | Dx = 1.411 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 6030 reflections |
a = 11.7730 (12) Å | θ = 3.2–27.5° |
b = 15.514 (2) Å | µ = 0.10 mm−1 |
c = 8.9609 (10) Å | T = 200 K |
β = 111.153 (8)° | Needle, yellow |
V = 1526.4 (3) Å3 | 0.55 × 0.1 × 0.05 mm |
Z = 4 |
R-AXIS RAPID diffractometer | 1649 reflections with I > 2σ(I) |
Radiation source: normal sealed x-ray tube | Rint = 0.127 |
Graphite monochromator | θmax = 27.5°, θmin = 3.2° |
Detector resolution: 10 pixels mm-1 | h = −15→15 |
ω scans | k = −20→20 |
13902 measured reflections | l = −10→11 |
3439 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.070 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.180 | H-atom parameters constrained |
S = 0.96 | w = 1/[σ2(Fo2) + (0.0805P)2] where P = (Fo2 + 2Fc2)/3 |
3439 reflections | (Δ/σ)max < 0.001 |
219 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
0 constraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.73574 (17) | −0.04963 (13) | 0.5929 (3) | 0.0468 (6) | |
O2 | 0.42969 (17) | 0.16690 (14) | 0.7620 (3) | 0.0483 (6) | |
O3 | 0.53107 (19) | 0.29687 (14) | 0.6807 (3) | 0.0540 (6) | |
O4 | 0.8033 (2) | 0.08785 (16) | 0.4753 (3) | 0.0702 (8) | |
O5 | 0.9066 (2) | −0.0077 (2) | 0.7902 (3) | 0.0765 (9) | |
C1 | 0.6653 (2) | 0.0082 (2) | 0.6418 (4) | 0.0408 (7) | |
C2 | 0.5870 (2) | −0.0265 (2) | 0.7073 (4) | 0.0442 (8) | |
H2 | 0.5871 | −0.0869 | 0.7251 | 0.053* | |
C3 | 0.5088 (3) | 0.0255 (2) | 0.7471 (4) | 0.0455 (8) | |
H3 | 0.4543 | 0.0004 | 0.7912 | 0.055* | |
C4 | 0.5070 (2) | 0.1141 (2) | 0.7248 (4) | 0.0422 (8) | |
C5 | 0.5900 (2) | 0.1519 (2) | 0.6615 (3) | 0.0372 (7) | |
C6 | 0.5986 (2) | 0.2472 (2) | 0.6488 (3) | 0.0402 (7) | |
C7 | 0.6959 (2) | 0.2810 (2) | 0.5962 (3) | 0.0377 (7) | |
C8 | 0.7145 (3) | 0.3696 (2) | 0.5977 (4) | 0.0444 (8) | |
H8 | 0.6651 | 0.4071 | 0.6323 | 0.053* | |
C9 | 0.8044 (3) | 0.4036 (2) | 0.5493 (4) | 0.0468 (8) | |
H9 | 0.8158 | 0.4642 | 0.5501 | 0.056* | |
C10 | 0.8774 (3) | 0.3499 (2) | 0.4999 (4) | 0.0485 (8) | |
H10 | 0.9396 | 0.3733 | 0.468 | 0.058* | |
C11 | 0.8596 (3) | 0.2620 (2) | 0.4971 (4) | 0.0447 (8) | |
H11 | 0.909 | 0.225 | 0.4616 | 0.054* | |
C12 | 0.7697 (2) | 0.2272 (2) | 0.5461 (4) | 0.0388 (7) | |
C13 | 0.7508 (3) | 0.1335 (2) | 0.5408 (4) | 0.0426 (8) | |
C14 | 0.6682 (2) | 0.0963 (2) | 0.6175 (3) | 0.0379 (7) | |
C15 | 0.8571 (3) | −0.0477 (2) | 0.6697 (5) | 0.0495 (8) | |
C16 | 0.9202 (3) | −0.1012 (2) | 0.5859 (4) | 0.0603 (10) | |
H16A | 0.9495 | −0.0642 | 0.5187 | 0.09* | |
H16B | 0.8633 | −0.144 | 0.5187 | 0.09* | |
H16C | 0.9894 | −0.1308 | 0.6649 | 0.09* | |
C17 | 0.3442 (3) | 0.1282 (2) | 0.8232 (4) | 0.0472 (8) | |
H17A | 0.3879 | 0.1001 | 0.9274 | 0.057* | |
H17B | 0.2949 | 0.0841 | 0.7476 | 0.057* | |
C18 | 0.2633 (3) | 0.1994 (2) | 0.8430 (4) | 0.0536 (9) | |
H18A | 0.2249 | 0.2301 | 0.7402 | 0.064* | |
H18B | 0.3126 | 0.2413 | 0.9236 | 0.064* | |
C19 | 0.1645 (3) | 0.1607 (2) | 0.8970 (5) | 0.0711 (12) | |
H19A | 0.1176 | 0.1178 | 0.8186 | 0.107* | |
H19B | 0.1099 | 0.2066 | 0.9055 | 0.107* | |
H19C | 0.2028 | 0.1329 | 1.0015 | 0.107* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0506 (11) | 0.0288 (13) | 0.0650 (15) | 0.0007 (9) | 0.0258 (12) | −0.0081 (10) |
O2 | 0.0496 (12) | 0.0379 (14) | 0.0699 (15) | 0.0019 (10) | 0.0365 (12) | 0.0032 (11) |
O3 | 0.0596 (12) | 0.0321 (14) | 0.0861 (17) | 0.0101 (11) | 0.0454 (13) | 0.0047 (12) |
O4 | 0.1004 (18) | 0.0341 (15) | 0.109 (2) | 0.0120 (13) | 0.0781 (18) | 0.0053 (14) |
O5 | 0.0604 (14) | 0.077 (2) | 0.080 (2) | 0.0213 (14) | 0.0106 (15) | −0.0307 (17) |
C1 | 0.0420 (15) | 0.0303 (18) | 0.0516 (19) | 0.0030 (13) | 0.0187 (16) | −0.0029 (15) |
C2 | 0.0465 (15) | 0.0286 (19) | 0.057 (2) | −0.0033 (13) | 0.0179 (17) | 0.0010 (14) |
C3 | 0.0460 (16) | 0.038 (2) | 0.059 (2) | −0.0036 (14) | 0.0260 (17) | 0.0047 (15) |
C4 | 0.0385 (15) | 0.041 (2) | 0.0477 (19) | 0.0008 (14) | 0.0166 (16) | 0.0000 (15) |
C5 | 0.0378 (14) | 0.0309 (18) | 0.0437 (18) | 0.0024 (12) | 0.0159 (15) | 0.0034 (13) |
C6 | 0.0415 (15) | 0.0325 (19) | 0.049 (2) | 0.0023 (14) | 0.0195 (16) | 0.0016 (14) |
C7 | 0.0410 (15) | 0.0293 (18) | 0.0436 (18) | 0.0054 (13) | 0.0163 (15) | 0.0024 (13) |
C8 | 0.0529 (17) | 0.0319 (19) | 0.053 (2) | 0.0041 (14) | 0.0251 (17) | 0.0013 (15) |
C9 | 0.0514 (17) | 0.0310 (19) | 0.060 (2) | −0.0044 (14) | 0.0222 (17) | 0.0013 (15) |
C10 | 0.0493 (17) | 0.041 (2) | 0.061 (2) | −0.0054 (15) | 0.0267 (18) | 0.0030 (16) |
C11 | 0.0459 (16) | 0.037 (2) | 0.056 (2) | 0.0022 (14) | 0.0250 (17) | 0.0027 (15) |
C12 | 0.0427 (15) | 0.0307 (19) | 0.0438 (18) | 0.0034 (13) | 0.0166 (15) | 0.0037 (14) |
C13 | 0.0493 (16) | 0.0350 (19) | 0.050 (2) | 0.0052 (14) | 0.0261 (17) | 0.0005 (15) |
C14 | 0.0401 (14) | 0.0304 (18) | 0.0435 (18) | 0.0024 (13) | 0.0155 (15) | 0.0003 (13) |
C15 | 0.0510 (18) | 0.032 (2) | 0.066 (2) | 0.0078 (15) | 0.0228 (19) | −0.0013 (17) |
C16 | 0.060 (2) | 0.047 (3) | 0.080 (3) | 0.0102 (17) | 0.033 (2) | −0.0139 (19) |
C17 | 0.0456 (16) | 0.041 (2) | 0.064 (2) | −0.0031 (14) | 0.0316 (17) | 0.0025 (16) |
C18 | 0.0505 (17) | 0.045 (2) | 0.077 (2) | 0.0002 (15) | 0.0368 (19) | −0.0024 (17) |
C19 | 0.071 (2) | 0.047 (3) | 0.122 (3) | 0.0025 (18) | 0.067 (3) | −0.004 (2) |
O1—C15 | 1.344 (4) | C9—C10 | 1.380 (4) |
O1—C1 | 1.396 (3) | C9—H9 | 0.95 |
O2—C4 | 1.353 (3) | C10—C11 | 1.378 (4) |
O2—C17 | 1.440 (3) | C10—H10 | 0.95 |
O3—C6 | 1.213 (3) | C11—C12 | 1.393 (4) |
O4—C13 | 1.220 (3) | C11—H11 | 0.95 |
O5—C15 | 1.198 (4) | C12—C13 | 1.469 (4) |
C1—C2 | 1.370 (4) | C13—C14 | 1.494 (4) |
C1—C14 | 1.387 (4) | C15—C16 | 1.486 (4) |
C2—C3 | 1.364 (4) | C16—H16A | 0.98 |
C2—H2 | 0.95 | C16—H16B | 0.98 |
C3—C4 | 1.389 (4) | C16—H16C | 0.98 |
C3—H3 | 0.95 | C17—C18 | 1.510 (4) |
C4—C5 | 1.421 (4) | C17—H17A | 0.99 |
C5—C14 | 1.417 (4) | C17—H17B | 0.99 |
C5—C6 | 1.488 (4) | C18—C19 | 1.535 (4) |
C6—C7 | 1.484 (4) | C18—H18A | 0.99 |
C7—C8 | 1.390 (4) | C18—H18B | 0.99 |
C7—C12 | 1.390 (4) | C19—H19A | 0.98 |
C8—C9 | 1.385 (4) | C19—H19B | 0.98 |
C8—H8 | 0.95 | C19—H19C | 0.98 |
C15—O1—C1 | 117.9 (2) | C7—C12—C13 | 120.0 (3) |
C4—O2—C17 | 117.8 (3) | C11—C12—C13 | 119.8 (3) |
C2—C1—C14 | 121.0 (3) | O4—C13—C12 | 119.5 (3) |
C2—C1—O1 | 116.7 (3) | O4—C13—C14 | 121.6 (3) |
C14—C1—O1 | 122.2 (2) | C12—C13—C14 | 118.9 (2) |
C3—C2—C1 | 120.0 (3) | C1—C14—C5 | 120.1 (3) |
C3—C2—H2 | 120 | C1—C14—C13 | 120.6 (3) |
C1—C2—H2 | 120 | C5—C14—C13 | 119.3 (3) |
C2—C3—C4 | 121.6 (3) | O5—C15—O1 | 123.7 (3) |
C2—C3—H3 | 119.2 | O5—C15—C16 | 125.1 (3) |
C4—C3—H3 | 119.2 | O1—C15—C16 | 111.2 (3) |
O2—C4—C3 | 122.7 (3) | C15—C16—H16A | 109.5 |
O2—C4—C5 | 118.0 (3) | C15—C16—H16B | 109.5 |
C3—C4—C5 | 119.3 (3) | H16A—C16—H16B | 109.5 |
C14—C5—C4 | 117.9 (3) | C15—C16—H16C | 109.5 |
C14—C5—C6 | 121.0 (2) | H16A—C16—H16C | 109.5 |
C4—C5—C6 | 121.0 (3) | H16B—C16—H16C | 109.5 |
O3—C6—C7 | 119.8 (3) | O2—C17—C18 | 107.3 (3) |
O3—C6—C5 | 123.0 (3) | O2—C17—H17A | 110.3 |
C7—C6—C5 | 117.2 (2) | C18—C17—H17A | 110.3 |
C8—C7—C12 | 118.8 (3) | O2—C17—H17B | 110.3 |
C8—C7—C6 | 118.9 (3) | C18—C17—H17B | 110.3 |
C12—C7—C6 | 122.3 (3) | H17A—C17—H17B | 108.5 |
C9—C8—C7 | 120.6 (3) | C17—C18—C19 | 109.5 (3) |
C9—C8—H8 | 119.7 | C17—C18—H18A | 109.8 |
C7—C8—H8 | 119.7 | C19—C18—H18A | 109.8 |
C10—C9—C8 | 120.3 (3) | C17—C18—H18B | 109.8 |
C10—C9—H9 | 119.8 | C19—C18—H18B | 109.8 |
C8—C9—H9 | 119.8 | H18A—C18—H18B | 108.2 |
C11—C10—C9 | 119.7 (3) | C18—C19—H19A | 109.5 |
C11—C10—H10 | 120.1 | C18—C19—H19B | 109.5 |
C9—C10—H10 | 120.1 | H19A—C19—H19B | 109.5 |
C10—C11—C12 | 120.3 (3) | C18—C19—H19C | 109.5 |
C10—C11—H11 | 119.8 | H19A—C19—H19C | 109.5 |
C12—C11—H11 | 119.8 | H19B—C19—H19C | 109.5 |
C7—C12—C11 | 120.2 (3) | ||
C15—O1—C1—C2 | −115.1 (3) | C8—C7—C12—C11 | −0.6 (4) |
C15—O1—C1—C14 | 68.5 (4) | C6—C7—C12—C11 | 179.7 (3) |
C14—C1—C2—C3 | 1.2 (5) | C8—C7—C12—C13 | −179.0 (3) |
O1—C1—C2—C3 | −175.2 (3) | C6—C7—C12—C13 | 1.3 (4) |
C1—C2—C3—C4 | −0.8 (5) | C10—C11—C12—C7 | 0.9 (5) |
C17—O2—C4—C3 | −1.7 (4) | C10—C11—C12—C13 | 179.3 (3) |
C17—O2—C4—C5 | 178.8 (3) | C7—C12—C13—O4 | 169.4 (3) |
C2—C3—C4—O2 | 179.4 (3) | C11—C12—C13—O4 | −9.0 (5) |
C2—C3—C4—C5 | −1.1 (5) | C7—C12—C13—C14 | −11.2 (4) |
O2—C4—C5—C14 | −177.9 (3) | C11—C12—C13—C14 | 170.4 (3) |
C3—C4—C5—C14 | 2.6 (4) | C2—C1—C14—C5 | 0.3 (5) |
O2—C4—C5—C6 | 4.8 (4) | O1—C1—C14—C5 | 176.6 (3) |
C3—C4—C5—C6 | −174.7 (3) | C2—C1—C14—C13 | −177.9 (3) |
C14—C5—C6—O3 | 177.8 (3) | O1—C1—C14—C13 | −1.7 (5) |
C4—C5—C6—O3 | −5.1 (5) | C4—C5—C14—C1 | −2.2 (4) |
C14—C5—C6—C7 | −3.0 (4) | C6—C5—C14—C1 | 175.0 (3) |
C4—C5—C6—C7 | 174.2 (3) | C4—C5—C14—C13 | 176.1 (3) |
O3—C6—C7—C8 | 5.4 (4) | C6—C5—C14—C13 | −6.7 (4) |
C5—C6—C7—C8 | −173.8 (3) | O4—C13—C14—C1 | 11.5 (5) |
O3—C6—C7—C12 | −174.8 (3) | C12—C13—C14—C1 | −167.9 (3) |
C5—C6—C7—C12 | 5.9 (4) | O4—C13—C14—C5 | −166.7 (3) |
C12—C7—C8—C9 | 0.4 (5) | C12—C13—C14—C5 | 13.9 (4) |
C6—C7—C8—C9 | −179.9 (3) | C1—O1—C15—O5 | 10.3 (5) |
C7—C8—C9—C10 | −0.5 (5) | C1—O1—C15—C16 | −169.8 (3) |
C8—C9—C10—C11 | 0.7 (5) | C4—O2—C17—C18 | −175.8 (3) |
C9—C10—C11—C12 | −0.9 (5) | O2—C17—C18—C19 | 176.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O3i | 0.95 | 2.6 | 3.384 (4) | 140 |
C10—H10···O5ii | 0.95 | 2.57 | 3.180 (4) | 123 |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x, −y+1/2, z−1/2. |
Funding information
This work was supported financially by JSPS KAKENHI Grant Number 15K05482.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals
Furukawa, W., Takehara, M., Inoue, Y. & Kitamura, C. (2014). Acta Cryst. E70, o1130. CSD CrossRef IUCr Journals
Furukawa, W., Takehara, M., Inoue, Y. & Kitamura, C. (2016). IUCrData, 1, x160906.
Kitamura, C., Li, S., Takehara, M., Inoue, Y., Ono, K. & Kawase, T. (2015a). Acta Cryst. E71, o504–o505. Web of Science CSD CrossRef IUCr Journals
Kitamura, C., Li, S., Takehara, M., Inoue, Y., Ono, K., Kawase, T. & Fujimoto, K. J. (2015b). Bull. Chem. Soc. Jpn, 88, 713–715. Web of Science CSD CrossRef CAS
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals
Ohira, N., Takehara, M., Inoue, Y. & Kitamura, C. (2016). IUCrData, 1, x160753.
Ohta, A., Hattori, K., Kobayashi, T., Naito, H., Kawase, T. & Kitamura, C. (2012a). Acta Cryst. E68, o2843. CSD CrossRef IUCr Journals
Ohta, A., Hattori, K., Kusumoto, Y., Kawase, T., Kobayashi, T., Naito, H. & Kitamura, C. (2012b). Chem. Lett. 41, 674–676. Web of Science CSD CrossRef CAS
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.