research communications
cis-1-phenyl-8-(pyridin-2-ylmethyl)dibenzo[1,2-c:2,1-h]-2,14-dioxa-8-aza-1-borabicyclo[4.4.0]deca-3,8-diene
ofaIQUIR (Instituto de Química Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK), Rosario, Argentina, and bLaboratório de Materiais Inorgânicos, Department of Chemistry, Federal University of Santa Maria, UFSM, 97115-900 Santa Maria, RS, Brazil
*Correspondence e-mail: ledesma@iquir-conicet.gov.ar
The title compound, C26H23BN2O2, was obtained as by product during synthetic attempts of a complexation reaction between the tripodal ligand H2L [N,N-bis(2-hydroxybenzyl)(pyridin-2-yl)methylamine] and manganese(III) acetate in the presence of NaBPh4. The isolated B-phenyl dioxazaborocine contains an N→B with a cis conformation. In the crystal, C—H⋯O hydrogen bonds define chains parallel to the b-axis direction. A comparative analysis with other structurally related derivatives is also included, together with a rationalization of the unexpected production of this zwitterionic heterocycle.
Keywords: crystal structure; B-phenyldioxazaborocine; N—B dative bond; zwitterionic heterocycle; C—H⋯O interactions.
CCDC reference: 1586032
1. Chemical context
As part of our research program directed at obtaining manganese complexes as bio-inspired mimetics with different nuclearity and properties (Ledesma et al., 2014, 2015), we were interested in coordination reactions of the tripodal tetradentate ligand H2L, namely N,N-bis(2-hydroxybenzyl)(pyrid-2-yl)methylamine. We envisaged a systematic study comprising the use of several metal-to-ligand ratios, with the idea of varying the nuclearity of the resulting compounds. Unexpectedly, however, during consecutive attempts to obtain manganese complexes derived from H2L, we isolated the B-phenyl dioxazaborocine derivative, I. Here we report its synthesis and and, in order to unravel its presence, we rationalize its production under the employed reaction conditions. A comparative analysis of its structural data with that of other dioxazaborocines is also presented.
2. Structural commentary
The title compound I, Fig. 1, which represents one of the few examples of B-phenyl dioxazaborocine derivatives reported in the literature, crystallizes in the triclinic P with two molecules in the The boron atom shows a distorted tetrahedral coordination sphere described by one N atom (N1), two oxygen atoms (O1, O2) and one carbon atom from a phenyl ring (C15). The geometry about the intramolecular N1—B1 bond is cis, as inferred from the spatial arrangement of atoms C15–B1–N1–C21. The B—O bond lengths are 1.446 (3) and 1.471 (3) Å and the B—N bond length is 1.674 (4) Å. The BNC3O six-membered rings adopt a half-chair conformation, with puckering parameters QT = 0.502 (2) Å, θ2 = 135.4 (2)°, φ2 = −138.4 (4)° for B1/N1/C7/C6/C1/O1, and QT = 0.525 (2) Å, θ2 = 132.2 (3)°, φ2 = −144.8 (4)° for B1/N1/C14/C13/C8/O2.
3. Supramolecular features
The crystal packing in I is defined by two sets of C—H⋯O hydrogen bonds. The first group implicates C2—H2⋯O1i atoms, giving rise to a dimeric system with a C—H⋯O angles of 167.5° (Fig. 2, Table 1). The remaining interaction, C24—H24⋯O2ii, shows a small C—H⋯O angle of 129.4°, indicating that this C—H⋯O hydrogen bond is quite weak. The two interactions link molecules into chains parallel to the b axis (Fig. 3), consolidating the three-dimensional molecular packing.
4. Database survey
A survey of the Cambridge Structural Database (CSD Version 5.38; Groom et al., 2016) showed a few reported examples of dioxazaborocines (Geng & Wu, 2011; Gawdzik et al., 2009; Zhu et al., 2006; Thadani et al., 2001; Woodgate et al., 2000; Woodgate et al., 1999). Specifically, two members of this selected group are structurally related to the title compound: II (MAWDET; Woodgate et al., 1999) and the recently described compound III (EROJIF; Geng & Wu, 2011) (Fig. 4).
Table 2 summarizes relevant bond lengths and angles for I compared with those observed in II and III. The intramolecular N—B bond lengths can vary, depending on the substituent groups to boron and nitrogen atoms. In particular, the covalent N1—B1 bond distance for I [1.674 (4) Å] is in the range observed for III and II [1.641 (2)–1.674 (5) Å]. The N—B bond distance for III is shorter than that in II, quite probably due to the extra oxygen atom bonded to the boron atom (from the –OCH3 group).
The I shows that the phenyl group at the boron atom and the N-pyridin-2-ylmethyl substituent adopts a cis conformation around the N→B in total agreement with that reported for II and III. The C21—N1—B1—C15 torsion angle assumes a value of 57.8 (3)°. Analysis of the structural data for II showed the corresponding torsion angle (C37—N1—B1—C15) is 56.71°. In compound III, the corresponding angle (C13—N2—B1—O4) is 62.34°. These two examples display a cis geometry around the intramolecular N—B bond, in concordance with compound I (Fig. 5).
ofWe have performed an analysis of the experimental data of compounds I--III and calculated the tetrahedral character (THCDA) at the boron atom (Höpfl et al., 1999), making use of the values of the six angles around the boron atom (θ1–θ6). The quite high value of 82.8% for I is in the range observed for compounds II and III. Altogether, this parameter and the measured N—B bond lengths can be considered a clear indication of sp3-hybridization of the boron atom and of a resident negative charge (Sarina et al., 2015). Therefore, we confirm that compound I adopts a zwitterionic form with a significant intramolecular N→B dative bond.
Based on previous observations (Barnes et al., 1998), we hypothesize that employing an aqueous solution of NaBPh4 led to the unexpected isolation of I. It is well known that NaBPh4 in the presence of oxygen leads to the production of phenylboronic acid PhB(OH)2 and phenol. Then, the in situ generated phenylboronic acid (derived in turn from an excess of NaBPh4) is capable of reacting with the tripodal ligand H2L, leading to the formation of compound I (Fig. 6).
Inspection of the reaction conditions already reported by Woodgate et al. (1999) indicates that compound II was obtained by reaction of phenylboronic acid and the corresponding tertiary amine. In turn, the authors reported that compound III was obtained unintentionally when using salicylaldehyde benzylamine and boron compounds (Geng et al., 2011). We hypothesize that, in the case of I, the use of NaBPh4 determined the course of the reaction, leading to the formation of the zwitterionic heterocycle in the described reaction conditions.
5. Synthesis and crystallization
H2L (0.064 g; 0.2 mmol) was dissolved in methanol (4 mL), then solid manganese(III) acetate dihydrate (0.052 g; 0.2 mmol) was added. Immediately after, an excess of NaBPh4 (0.2065 g, 0.60 mmol) in 2 mL of methanol/water was added to the reaction flask. The resulting dark-brown solution was sonicated at 313 K for 15 min and then stirred at reflux for additional 16 h (overnight). After cooling, the obtained precipitate was collected by filtration, washed with diethyl ether and dried in vacuo. Recrystallization from methanol gave colourless crystals of I suitable for X-ray diffraction. Yield: 21%. IR spectrum: ν(cm−1): 3043, 1630 (C=N), 1626, 1608 (C=C aromatic), 1462 (br, B—O), 1273, 1248, 1200, 1050 (C—O), 1002 (B—N), 702.
6. Refinement
Crystal data, data collection and structure . H atoms were placed at calculated positions, with d(C—H) = 0.95−0.99 Å and Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1586032
https://doi.org/10.1107/S2056989017016553/rz5224sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017016553/rz5224Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017016553/rz5224Isup3.cml
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C26H23BN2O2 | Z = 2 |
Mr = 406.27 | F(000) = 428 |
Triclinic, P1 | Dx = 1.324 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.8803 (7) Å | Cell parameters from 5951 reflections |
b = 10.0871 (8) Å | θ = 2.4–28.2° |
c = 11.7586 (10) Å | µ = 0.08 mm−1 |
α = 97.298 (2)° | T = 100 K |
β = 98.464 (2)° | Prism, colourless |
γ = 98.234 (2)° | 0.22 × 0.16 × 0.12 mm |
V = 1019.21 (14) Å3 |
Bruker APEXII CCD diffractometer | 2161 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.088 |
φ and ω scans | θmax = 26.0°, θmin = 2.4° |
Absorption correction: gaussian (XPREP and SADABS; Bruker, 2008) | h = −10→10 |
Tmin = 0.780, Tmax = 0.875 | k = −12→10 |
8344 measured reflections | l = −14→14 |
4004 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 0.92 | w = 1/[σ2(Fo2) + (0.0336P)2] where P = (Fo2 + 2Fc2)/3 |
4004 reflections | (Δ/σ)max < 0.001 |
280 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O2 | 0.33571 (19) | 0.80339 (16) | 0.66654 (14) | 0.0162 (4) | |
C7 | 0.2240 (3) | 0.5768 (2) | 0.7698 (2) | 0.0154 (6) | |
H7A | 0.186984 | 0.481569 | 0.777707 | 0.018* | |
H7B | 0.15142 | 0.602455 | 0.707238 | 0.018* | |
O1 | 0.45343 (19) | 0.81457 (16) | 0.86313 (14) | 0.0155 (4) | |
N1 | 0.3811 (2) | 0.58730 (19) | 0.73635 (17) | 0.0142 (5) | |
N2 | 0.3294 (3) | 0.3306 (2) | 0.87553 (18) | 0.0228 (6) | |
C1 | 0.3311 (3) | 0.7832 (2) | 0.9193 (2) | 0.0141 (6) | |
C15 | 0.6210 (3) | 0.7798 (2) | 0.7133 (2) | 0.0145 (6) | |
C6 | 0.2247 (3) | 0.6666 (2) | 0.8822 (2) | 0.0143 (6) | |
C8 | 0.2760 (3) | 0.7354 (2) | 0.5582 (2) | 0.0149 (6) | |
C22 | 0.4325 (3) | 0.3686 (2) | 0.8075 (2) | 0.0164 (6) | |
C20 | 0.6479 (3) | 0.8046 (2) | 0.6034 (2) | 0.0168 (6) | |
H20 | 0.562356 | 0.799166 | 0.543102 | 0.02* | |
C14 | 0.3653 (3) | 0.5215 (2) | 0.6124 (2) | 0.0159 (6) | |
H14A | 0.469245 | 0.515167 | 0.593371 | 0.019* | |
H14B | 0.307445 | 0.428216 | 0.603349 | 0.019* | |
C13 | 0.2833 (3) | 0.5988 (2) | 0.5288 (2) | 0.0154 (6) | |
C2 | 0.3191 (3) | 0.8716 (3) | 1.0178 (2) | 0.0184 (6) | |
H2 | 0.391788 | 0.952737 | 1.042134 | 0.022* | |
C19 | 0.7968 (3) | 0.8371 (3) | 0.5794 (2) | 0.0218 (7) | |
H19 | 0.811445 | 0.851654 | 0.503233 | 0.026* | |
C3 | 0.2016 (3) | 0.8410 (3) | 1.0797 (2) | 0.0209 (7) | |
H3 | 0.192493 | 0.901899 | 1.145982 | 0.025* | |
C26 | 0.4860 (3) | 0.2759 (2) | 0.7329 (2) | 0.0183 (6) | |
H26 | 0.56079 | 0.305733 | 0.687579 | 0.022* | |
C5 | 0.1087 (3) | 0.6353 (3) | 0.9472 (2) | 0.0195 (6) | |
H5 | 0.036794 | 0.553633 | 0.923746 | 0.023* | |
C9 | 0.2030 (3) | 0.8050 (3) | 0.4773 (2) | 0.0190 (7) | |
H9 | 0.198548 | 0.898346 | 0.497886 | 0.023* | |
C16 | 0.7521 (3) | 0.7913 (2) | 0.7980 (2) | 0.0197 (7) | |
H16 | 0.738836 | 0.77471 | 0.873908 | 0.024* | |
C12 | 0.2147 (3) | 0.5337 (3) | 0.4180 (2) | 0.0183 (6) | |
H12 | 0.216587 | 0.439785 | 0.397566 | 0.022* | |
C4 | 0.0970 (3) | 0.7221 (3) | 1.0458 (2) | 0.0226 (7) | |
H4 | 0.017669 | 0.699995 | 1.089651 | 0.027* | |
C25 | 0.4296 (3) | 0.1387 (3) | 0.7247 (2) | 0.0222 (7) | |
H25 | 0.464256 | 0.073442 | 0.673508 | 0.027* | |
C17 | 0.9002 (3) | 0.8257 (3) | 0.7761 (2) | 0.0217 (7) | |
H17 | 0.986288 | 0.834068 | 0.836496 | 0.026* | |
C10 | 0.1376 (3) | 0.7395 (3) | 0.3682 (2) | 0.0223 (7) | |
H10 | 0.087663 | 0.787534 | 0.313513 | 0.027* | |
C21 | 0.4862 (3) | 0.5193 (2) | 0.8156 (2) | 0.0168 (6) | |
H21A | 0.591196 | 0.534146 | 0.795601 | 0.02* | |
H21B | 0.492924 | 0.562668 | 0.896988 | 0.02* | |
C24 | 0.3225 (3) | 0.0994 (3) | 0.7923 (2) | 0.0204 (7) | |
H24 | 0.2805 | 0.006461 | 0.788101 | 0.024* | |
C11 | 0.1438 (3) | 0.6029 (3) | 0.3371 (2) | 0.0224 (7) | |
H11 | 0.099895 | 0.557761 | 0.260997 | 0.027* | |
C18 | 0.9221 (3) | 0.8480 (2) | 0.6656 (2) | 0.0226 (7) | |
H18 | 1.023545 | 0.870859 | 0.649451 | 0.027* | |
C23 | 0.2776 (3) | 0.1973 (3) | 0.8658 (2) | 0.0239 (7) | |
H23 | 0.204908 | 0.168795 | 0.913098 | 0.029* | |
B1 | 0.4511 (3) | 0.7520 (3) | 0.7450 (3) | 0.0153 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O2 | 0.0199 (11) | 0.0149 (10) | 0.0135 (10) | 0.0035 (8) | 0.0013 (8) | 0.0025 (8) |
C7 | 0.0131 (15) | 0.0146 (15) | 0.0167 (15) | −0.0010 (12) | 0.0014 (12) | 0.0005 (12) |
O1 | 0.0169 (10) | 0.0147 (10) | 0.0132 (10) | −0.0016 (8) | 0.0041 (8) | −0.0008 (8) |
N1 | 0.0138 (12) | 0.0135 (12) | 0.0141 (12) | 0.0002 (9) | 0.0017 (10) | 0.0012 (9) |
N2 | 0.0325 (15) | 0.0179 (14) | 0.0204 (14) | 0.0036 (11) | 0.0096 (12) | 0.0061 (11) |
C1 | 0.0124 (15) | 0.0148 (15) | 0.0151 (15) | 0.0013 (12) | 0.0020 (12) | 0.0038 (12) |
C15 | 0.0188 (15) | 0.0087 (14) | 0.0155 (15) | 0.0021 (11) | 0.0023 (12) | 0.0002 (11) |
C6 | 0.0158 (15) | 0.0140 (15) | 0.0131 (14) | 0.0009 (12) | 0.0021 (12) | 0.0043 (12) |
C8 | 0.0127 (14) | 0.0195 (15) | 0.0113 (14) | −0.0002 (12) | 0.0030 (12) | 0.0000 (12) |
C22 | 0.0192 (16) | 0.0147 (15) | 0.0143 (15) | 0.0030 (12) | −0.0025 (13) | 0.0046 (12) |
C20 | 0.0165 (16) | 0.0133 (15) | 0.0195 (16) | −0.0007 (12) | 0.0029 (13) | 0.0018 (12) |
C14 | 0.0213 (16) | 0.0119 (14) | 0.0131 (14) | 0.0016 (12) | 0.0041 (12) | −0.0036 (11) |
C13 | 0.0164 (15) | 0.0186 (15) | 0.0120 (14) | 0.0025 (12) | 0.0037 (12) | 0.0043 (12) |
C2 | 0.0231 (17) | 0.0171 (15) | 0.0140 (15) | 0.0029 (13) | 0.0009 (13) | 0.0013 (12) |
C19 | 0.0253 (17) | 0.0179 (15) | 0.0210 (16) | −0.0003 (13) | 0.0055 (14) | 0.0015 (13) |
C3 | 0.0284 (17) | 0.0200 (16) | 0.0146 (15) | 0.0036 (13) | 0.0080 (13) | −0.0008 (12) |
C26 | 0.0182 (16) | 0.0173 (16) | 0.0209 (16) | 0.0019 (12) | 0.0071 (13) | 0.0052 (12) |
C5 | 0.0200 (16) | 0.0170 (15) | 0.0196 (16) | −0.0012 (12) | 0.0022 (13) | 0.0018 (12) |
C9 | 0.0208 (16) | 0.0172 (15) | 0.0208 (16) | 0.0049 (12) | 0.0065 (13) | 0.0043 (13) |
C16 | 0.0224 (17) | 0.0198 (16) | 0.0170 (16) | 0.0034 (13) | 0.0049 (13) | 0.0021 (12) |
C12 | 0.0174 (15) | 0.0202 (15) | 0.0174 (16) | 0.0014 (12) | 0.0049 (13) | 0.0029 (12) |
C4 | 0.0281 (18) | 0.0237 (17) | 0.0183 (16) | 0.0047 (14) | 0.0095 (14) | 0.0051 (13) |
C25 | 0.0270 (17) | 0.0165 (16) | 0.0229 (16) | 0.0074 (13) | 0.0031 (14) | −0.0005 (12) |
C17 | 0.0152 (16) | 0.0222 (16) | 0.0258 (17) | 0.0028 (13) | 0.0003 (13) | −0.0001 (13) |
C10 | 0.0196 (16) | 0.0322 (17) | 0.0162 (16) | 0.0085 (13) | 0.0012 (13) | 0.0056 (13) |
C21 | 0.0193 (15) | 0.0170 (15) | 0.0137 (15) | 0.0050 (12) | −0.0010 (12) | 0.0028 (12) |
C24 | 0.0257 (17) | 0.0131 (15) | 0.0217 (16) | 0.0003 (12) | 0.0027 (13) | 0.0049 (12) |
C11 | 0.0181 (16) | 0.0306 (17) | 0.0155 (15) | −0.0012 (13) | 0.0013 (13) | 0.0001 (13) |
C18 | 0.0218 (17) | 0.0160 (16) | 0.0307 (18) | 0.0002 (13) | 0.0111 (15) | 0.0019 (13) |
C23 | 0.0266 (18) | 0.0220 (17) | 0.0259 (17) | 0.0037 (13) | 0.0094 (14) | 0.0089 (13) |
B1 | 0.0192 (18) | 0.0107 (16) | 0.0141 (17) | 0.0007 (13) | 0.0022 (14) | −0.0022 (13) |
O2—C8 | 1.360 (3) | C2—H2 | 0.95 |
O2—B1 | 1.471 (3) | C19—C18 | 1.372 (4) |
C7—N1 | 1.497 (3) | C19—H19 | 0.95 |
C7—C6 | 1.504 (3) | C3—C4 | 1.382 (4) |
C7—H7A | 0.99 | C3—H3 | 0.95 |
C7—H7B | 0.99 | C26—C25 | 1.389 (4) |
O1—C1 | 1.372 (3) | C26—H26 | 0.95 |
O1—B1 | 1.446 (3) | C5—C4 | 1.387 (3) |
N1—C14 | 1.501 (3) | C5—H5 | 0.95 |
N1—C21 | 1.517 (3) | C9—C10 | 1.370 (4) |
N1—B1 | 1.674 (4) | C9—H9 | 0.95 |
N2—C23 | 1.343 (3) | C16—C17 | 1.381 (4) |
N2—C22 | 1.348 (3) | C16—H16 | 0.95 |
C1—C6 | 1.378 (3) | C12—C11 | 1.381 (3) |
C1—C2 | 1.396 (3) | C12—H12 | 0.95 |
C15—C20 | 1.396 (3) | C4—H4 | 0.95 |
C15—C16 | 1.396 (3) | C25—C24 | 1.374 (3) |
C15—B1 | 1.602 (4) | C25—H25 | 0.95 |
C6—C5 | 1.395 (3) | C17—C18 | 1.383 (3) |
C8—C13 | 1.391 (3) | C17—H17 | 0.95 |
C8—C9 | 1.391 (3) | C10—C11 | 1.391 (4) |
C22—C26 | 1.383 (3) | C10—H10 | 0.95 |
C22—C21 | 1.513 (3) | C21—H21A | 0.99 |
C20—C19 | 1.394 (4) | C21—H21B | 0.99 |
C20—H20 | 0.95 | C24—C23 | 1.371 (3) |
C14—C13 | 1.501 (3) | C24—H24 | 0.95 |
C14—H14A | 0.99 | C11—H11 | 0.95 |
C14—H14B | 0.99 | C18—H18 | 0.95 |
C13—C12 | 1.391 (3) | C23—H23 | 0.95 |
C2—C3 | 1.380 (3) | ||
C8—O2—B1 | 121.39 (18) | C22—C26—C25 | 119.4 (2) |
N1—C7—C6 | 111.9 (2) | C22—C26—H26 | 120.3 |
N1—C7—H7A | 109.2 | C25—C26—H26 | 120.3 |
C6—C7—H7A | 109.2 | C4—C5—C6 | 120.8 (3) |
N1—C7—H7B | 109.2 | C4—C5—H5 | 119.6 |
C6—C7—H7B | 109.2 | C6—C5—H5 | 119.6 |
H7A—C7—H7B | 107.9 | C10—C9—C8 | 120.3 (2) |
C1—O1—B1 | 120.8 (2) | C10—C9—H9 | 119.9 |
C7—N1—C14 | 108.67 (19) | C8—C9—H9 | 119.9 |
C7—N1—C21 | 110.68 (18) | C17—C16—C15 | 122.9 (2) |
C14—N1—C21 | 110.23 (16) | C17—C16—H16 | 118.6 |
C7—N1—B1 | 107.64 (16) | C15—C16—H16 | 118.6 |
C14—N1—B1 | 108.46 (18) | C11—C12—C13 | 121.2 (2) |
C21—N1—B1 | 111.07 (19) | C11—C12—H12 | 119.4 |
C23—N2—C22 | 116.7 (2) | C13—C12—H12 | 119.4 |
O1—C1—C6 | 121.5 (2) | C3—C4—C5 | 119.5 (3) |
O1—C1—C2 | 118.0 (2) | C3—C4—H4 | 120.3 |
C6—C1—C2 | 120.5 (2) | C5—C4—H4 | 120.3 |
C20—C15—C16 | 115.9 (2) | C24—C25—C26 | 118.6 (2) |
C20—C15—B1 | 122.7 (2) | C24—C25—H25 | 120.7 |
C16—C15—B1 | 121.2 (2) | C26—C25—H25 | 120.7 |
C1—C6—C5 | 119.0 (2) | C16—C17—C18 | 119.5 (3) |
C1—C6—C7 | 121.8 (2) | C16—C17—H17 | 120.3 |
C5—C6—C7 | 119.1 (2) | C18—C17—H17 | 120.3 |
O2—C8—C13 | 121.4 (2) | C9—C10—C11 | 120.4 (2) |
O2—C8—C9 | 118.4 (2) | C9—C10—H10 | 119.8 |
C13—C8—C9 | 120.3 (2) | C11—C10—H10 | 119.8 |
N2—C22—C26 | 122.3 (2) | C22—C21—N1 | 113.5 (2) |
N2—C22—C21 | 116.5 (2) | C22—C21—H21A | 108.9 |
C26—C22—C21 | 121.2 (2) | N1—C21—H21A | 108.9 |
C19—C20—C15 | 121.9 (3) | C22—C21—H21B | 108.9 |
C19—C20—H20 | 119 | N1—C21—H21B | 108.9 |
C15—C20—H20 | 119 | H21A—C21—H21B | 107.7 |
C13—C14—N1 | 112.13 (17) | C23—C24—C25 | 118.5 (3) |
C13—C14—H14A | 109.2 | C23—C24—H24 | 120.8 |
N1—C14—H14A | 109.2 | C25—C24—H24 | 120.8 |
C13—C14—H14B | 109.2 | C12—C11—C10 | 119.2 (3) |
N1—C14—H14B | 109.2 | C12—C11—H11 | 120.4 |
H14A—C14—H14B | 107.9 | C10—C11—H11 | 120.4 |
C8—C13—C12 | 118.6 (2) | C19—C18—C17 | 119.7 (3) |
C8—C13—C14 | 121.8 (2) | C19—C18—H18 | 120.1 |
C12—C13—C14 | 119.6 (2) | C17—C18—H18 | 120.1 |
C3—C2—C1 | 119.9 (3) | N2—C23—C24 | 124.5 (3) |
C3—C2—H2 | 120.1 | N2—C23—H23 | 117.8 |
C1—C2—H2 | 120.1 | C24—C23—H23 | 117.8 |
C18—C19—C20 | 120.1 (3) | O1—B1—O2 | 108.95 (17) |
C18—C19—H19 | 120 | O1—B1—C15 | 109.5 (2) |
C20—C19—H19 | 120 | O2—B1—C15 | 113.0 (2) |
C2—C3—C4 | 120.3 (2) | O1—B1—N1 | 107.1 (2) |
C2—C3—H3 | 119.8 | O2—B1—N1 | 104.5 (2) |
C4—C3—H3 | 119.8 | C15—B1—N1 | 113.46 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1i | 0.95 | 2.57 | 3.503 (3) | 168 |
C24—H24···O2ii | 0.95 | 2.50 | 3.185 (3) | 129 |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) x, y−1, z. |
Compound I | II (MAWDET)a | III (EROJIF)b | |
Bond lengths | |||
B—N | 1.674 (4) (B1—N1) | 1.674 (5) (B1—N1) | 1.641 (2) (B1—N2) |
B—O | 1.471 (3) (B1—O2) | 1.443 (4) (B1—O2) | 1.443 (2) (B1—O3) |
B—O | 1.446 (3) (B1—O1) | 1.454 (4) (B1—O1) | 1.463 (2) (B1—O5) |
B—C | 1.602 (4) (B1—C15) | 1.608 (5) (B1—C15) | 1.425 (2) (B1—O4) |
Angles | |||
θ1 | 113.0 (2) (C15—B1—O2) | 110.3 (3) (C15—B—O2) | 113.34 (15) (O4—B1—O3) |
θ2 | 109.5 (2) (C15—B1—O1) | 115.5 (3) (C15—B—O1) | 114.47 (16) (O4—B1—O5) |
θ3 | 109.0 (2) (O2—B1—O1) | 109.5 (3) (O2—B—O1) | 108.60 (15) (O3—B1—O5) |
θ4 | 113.5 (2) (N1—B1—C15) | 110.0 (3) (N1—B—C15) | 105.64 (14) (N2—B1—O4) |
θ5 | 104.5 (2) (N1—B1—O2) | 106.7 (3) (N1—B—O2) | 108.45 (14) (N2—B1—O3) |
θ6 | 107.1 (2) (N1—B1—O1) | 104.4 (3) (N1—B—O1) | 105.89 (13) (N2—B1—O5) |
THCDAc | 82.8 | 83.1 | 79.7 |
(a) Woodgate et al. (1999); (b) Geng et al. (2011); (c) Höpfl et al. (1999). |
Funding information
This work was supported by the National University of Rosario, CONICET and CAPES/CNPQ, Brazil.
References
Barnes, M. J. (1998). Technical Report: Decomposition of Sodium Tetraphenylborate. https://digital. library. unt. edu/ark:/67531/metadc684438/.
Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Gawdzik, B., Iwanek, W., Hoser, A. & Woźniak, K. (2009). Z. Kristallogr. 224, 515–518. CSD CrossRef CAS
Geng, Y. & Wu, W. (2011). Acta Cryst. E67, o1380. CSD CrossRef IUCr Journals
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals
Höpfl, H. (1999). J. Organomet. Chem. 581, 129–149.
Ledesma, G. N., Anxolabéhère-Mallart, E., Rivière, E., Mallet-Ladeira, S., Hureau, C. & Signorella, S. R. (2014). Inorg. Chem. 53, 2545–2553. CSD CrossRef CAS PubMed
Ledesma, G. N., Eury, H., Anxolabéhère-Mallart, E., Hureau, C. & Signorella, S. R. (2015). J. Inorg. Biochem. 146, 69–76. CrossRef CAS PubMed
Sarina, E. A., Olmstead, M. M., Kanichar, D. & Groziak, M. P. (2015). Acta Cryst. C71, 1085–1088. CSD CrossRef IUCr Journals
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Thadani, A. N., Batey, R. A. & Lough, A. J. (2001). Acta Cryst. E57, o762–o763. Web of Science CSD CrossRef IUCr Journals
Woodgate, P., Horner, G., Maynard, N. & Rickard, C. (1999). J. Organomet. Chem. 592, 180–193. CSD CrossRef CAS
Woodgate, P., Horner, G., Maynard, N. & Rickard, C. (2000). J. Organomet. Chem. 595, 215–223. CSD CrossRef CAS
Zhu, L., Shabbir, S., Gray, M., Lynch, V., Sorey, S. & Anslyn, E. (2006). J. Am. Chem. Soc. 128, 1222–1232. CSD CrossRef PubMed CAS
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.