research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of cis-1-phenyl-8-(pyridin-2-ylmeth­yl)dibenzo[1,2-c:2,1-h]-2,14-dioxa-8-aza-1-borabi­cyclo­[4.4.0]deca-3,8-diene

CROSSMARK_Color_square_no_text.svg

aIQUIR (Instituto de Química Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK), Rosario, Argentina, and bLaboratório de Materiais Inorgânicos, Department of Chemistry, Federal University of Santa Maria, UFSM, 97115-900 Santa Maria, RS, Brazil
*Correspondence e-mail: ledesma@iquir-conicet.gov.ar

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 28 October 2017; accepted 16 November 2017; online 21 November 2017)

The title compound, C26H23BN2O2, was obtained as by product during synthetic attempts of a complexation reaction between the tripodal ligand H2L [N,N-bis­(2-hy­droxy­benz­yl)(pyridin-2-yl)methyl­amine] and manganese(III) acetate in the presence of NaBPh4. The isolated B-phenyl dioxaza­borocine contains an N→B dative bond with a cis conformation. In the crystal, C—H⋯O hydrogen bonds define chains parallel to the b-axis direction. A comparative analysis with other structurally related derivatives is also included, together with a rationalization of the unexpected production of this zwitterionic heterocycle.

1. Chemical context

As part of our research program directed at obtaining manganese complexes as bio-inspired mimetics with different nuclearity and properties (Ledesma et al., 2014[Ledesma, G. N., Anxolabéhère-Mallart, E., Rivière, E., Mallet-Ladeira, S., Hureau, C. & Signorella, S. R. (2014). Inorg. Chem. 53, 2545-2553.], 2015[Ledesma, G. N., Eury, H., Anxolabéhère-Mallart, E., Hureau, C. & Signorella, S. R. (2015). J. Inorg. Biochem. 146, 69-76.]), we were inter­ested in coordination reactions of the tripodal tetra­dentate ligand H2L, namely N,N-bis­(2-hy­droxy­benz­yl)(pyrid-2-­yl)methyl­amine. We envisaged a systematic study comprising the use of several metal-to-ligand ratios, with the idea of varying the nuclearity of the resulting compounds. Unexpectedly, however, during consecutive attempts to obtain manganese complexes derived from H2L, we isolated the B-phenyl dioxaza­borocine derivative, I. Here we report its synthesis and crystal structure and, in order to unravel its presence, we rationalize its production under the employed reaction conditions. A comparative analysis of its structural data with that of other dioxaza­borocines is also presented.

[Scheme 1]

2. Structural commentary

The title compound I, Fig. 1[link], which represents one of the few examples of B-phenyl dioxaza­borocine derivatives reported in the literature, crystallizes in the triclinic space group P[\overline{1}] with two mol­ecules in the unit cell. The boron atom shows a distorted tetra­hedral coordination sphere described by one N atom (N1), two oxygen atoms (O1, O2) and one carbon atom from a phenyl ring (C15). The geometry about the intra­molecular N1—B1 bond is cis, as inferred from the spatial arrangement of atoms C15–B1–N1–C21. The B—O bond lengths are 1.446 (3) and 1.471 (3) Å and the B—N bond length is 1.674 (4) Å. The BNC3O six-membered rings adopt a half-chair conformation, with puckering parameters QT = 0.502 (2) Å, θ2 = 135.4 (2)°, φ2 = −138.4 (4)° for B1/N1/C7/C6/C1/O1, and QT = 0.525 (2) Å, θ2 = 132.2 (3)°, φ2 = −144.8 (4)° for B1/N1/C14/C13/C8/O2.

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.

3. Supra­molecular features

The crystal packing in I is defined by two sets of C—H⋯O hydrogen bonds. The first group implicates C2—H2⋯O1i atoms, giving rise to a dimeric system with a C—H⋯O angles of 167.5° (Fig. 2[link], Table 1[link]). The remaining inter­action, C24—H24⋯O2ii, shows a small C—H⋯O angle of 129.4°, indicating that this C—H⋯O hydrogen bond is quite weak. The two inter­actions link mol­ecules into chains parallel to the b axis (Fig. 3[link]), consolidating the three-dimensional mol­ecular packing.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.57 3.503 (3) 168
C24—H24⋯O2ii 0.95 2.50 3.185 (3) 129
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) x, y-1, z.
[Figure 2]
Figure 2
Detail of the inter­molecular inter­actions in the title compound forming a dimeric system through C—H⋯O hydrogen bonds (dashed lines). H atoms not involved in these hydrogen bonds are omitted [symmetry code: (i)= 1 − x, 2 − y, 2 − z].
[Figure 3]
Figure 3
Detail of C—H⋯O inter­actions in the title compound (grey and orange dashed lines denote C2—H2⋯O1i and C24—H24⋯O2ii inter­actions, respectively). H atoms not involved in these inter­actions are omitted for clarity [symmetry codes: (i) 1 − x, 2 − y, 2 − z; (ii) x, −1 + y, z].

4. Database survey

A survey of the Cambridge Structural Database (CSD Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) showed a few reported examples of dioxaza­borocines (Geng & Wu, 2011[Geng, Y. & Wu, W. (2011). Acta Cryst. E67, o1380.]; Gawdzik et al., 2009[Gawdzik, B., Iwanek, W., Hoser, A. & Woźniak, K. (2009). Z. Kristallogr. 224, 515-518.]; Zhu et al., 2006[Zhu, L., Shabbir, S., Gray, M., Lynch, V., Sorey, S. & Anslyn, E. (2006). J. Am. Chem. Soc. 128, 1222-1232.]; Thadani et al., 2001[Thadani, A. N., Batey, R. A. & Lough, A. J. (2001). Acta Cryst. E57, o762-o763.]; Woodgate et al., 2000[Woodgate, P., Horner, G., Maynard, N. & Rickard, C. (2000). J. Organomet. Chem. 595, 215-223.]; Woodgate et al., 1999[Woodgate, P., Horner, G., Maynard, N. & Rickard, C. (1999). J. Organomet. Chem. 592, 180-193.]). Specifically, two members of this selected group are structurally related to the title compound: II (MAWDET; Woodgate et al., 1999[Woodgate, P., Horner, G., Maynard, N. & Rickard, C. (1999). J. Organomet. Chem. 592, 180-193.]) and the recently described compound III (EROJIF; Geng & Wu, 2011[Geng, Y. & Wu, W. (2011). Acta Cryst. E67, o1380.]) (Fig. 4[link]).

[Figure 4]
Figure 4
Oxaza­borocine compounds structurally related to the title compound.

Table 2[link] summarizes relevant bond lengths and angles for I compared with those observed in II and III. The intra­molecular N—B bond lengths can vary, depending on the substituent groups to boron and nitro­gen atoms. In particular, the covalent N1—B1 bond distance for I [1.674 (4) Å] is in the range observed for III and II [1.641 (2)–1.674 (5) Å]. The N—B bond distance for III is shorter than that in II, quite probably due to the extra oxygen atom bonded to the boron atom (from the –OCH3 group).

Table 2
Structural data and calculated tetra­hedral character THCDA (Å, °) for compounds IIII

  Compound I II (MAWDET)a III (EROJIF)b
Bond lengths      
B—N 1.674 (4) (B1—N1) 1.674 (5) (B1—N1) 1.641 (2) (B1—N2)
B—O 1.471 (3) (B1—O2) 1.443 (4) (B1—O2) 1.443 (2) (B1—O3)
B—O 1.446 (3) (B1—O1) 1.454 (4) (B1—O1) 1.463 (2) (B1—O5)
B—C 1.602 (4) (B1—C15) 1.608 (5) (B1—C15) 1.425 (2) (B1—O4)
Angles      
θ1 113.0 (2) (C15—B1—O2) 110.3 (3) (C15—B—O2) 113.34 (15) (O4—B1—O3)
θ2 109.5 (2) (C15—B1—O1) 115.5 (3) (C15—B—O1) 114.47 (16) (O4—B1—O5)
θ3 109.0 (2) (O2—B1—O1) 109.5 (3) (O2—B—O1) 108.60 (15) (O3—B1—O5)
θ4 113.5 (2) (N1—B1—C15) 110.0 (3) (N1—B—C15) 105.64 (14) (N2—B1—O4)
θ5 104.5 (2) (N1—B1—O2) 106.7 (3) (N1—B—O2) 108.45 (14) (N2—B1—O3)
θ6 107.1 (2) (N1—B1—O1) 104.4 (3) (N1—B—O1) 105.89 (13) (N2—B1—O5)
THCDAc 82.8 83.1 79.7
(a) Woodgate et al. (1999[Woodgate, P., Horner, G., Maynard, N. & Rickard, C. (1999). J. Organomet. Chem. 592, 180-193.]); (b) Geng et al. (2011[Geng, Y. & Wu, W. (2011). Acta Cryst. E67, o1380.]); (c) Höpfl et al. (1999[Höpfl, H. (1999). J. Organomet. Chem. 581, 129-149.]).

The crystal structure of I shows that the phenyl group at the boron atom and the N-pyridin-2-ylmethyl substituent adopts a cis conformation around the N→B dative bond, in total agreement with that reported for II and III. The C21—N1—B1—C15 torsion angle assumes a value of 57.8 (3)°. Analysis of the structural data for II showed the corresponding torsion angle (C37—N1—B1—C15) is 56.71°. In compound III, the corresponding angle (C13—N2—B1—O4) is 62.34°. These two examples display a cis geometry around the intra­molecular N—B bond, in concordance with compound I (Fig. 5[link]).

[Figure 5]
Figure 5
Comparison of the bonding environment at boron in I (title compound), II (MAWDET) and III (EROJIF). For clarity, only atoms closely involved in the N→B dative bonds are shown.

We have performed an analysis of the experimental data of compounds I--III and calculated the tetra­hedral character (THCDA) at the boron atom (Höpfl et al., 1999[Höpfl, H. (1999). J. Organomet. Chem. 581, 129-149.]), making use of the values of the six angles around the boron atom (θ1θ6). The quite high value of 82.8% for I is in the range observed for compounds II and III. Altogether, this parameter and the measured N—B bond lengths can be considered a clear indication of sp3-hybridization of the boron atom and of a resident negative charge (Sarina et al., 2015[Sarina, E. A., Olmstead, M. M., Kanichar, D. & Groziak, M. P. (2015). Acta Cryst. C71, 1085-1088.]). Therefore, we confirm that compound I adopts a zwitterionic form with a significant intra­molecular N→B dative bond.

Based on previous observations (Barnes et al., 1998[Barnes, M. J. (1998). Technical Report: Decomposition of Sodium Tetraphenylborate. https://digital. library. unt. edu/ark:/67531/metadc684438/.]), we hypothesize that employing an aqueous solution of NaBPh4 led to the unexpected isolation of I. It is well known that NaBPh4 in the presence of oxygen leads to the production of phenyl­boronic acid PhB(OH)2 and phenol. Then, the in situ generated phenyl­boronic acid (derived in turn from an excess of NaBPh4) is capable of reacting with the tripodal ligand H2L, leading to the formation of compound I (Fig. 6[link]).

[Figure 6]
Figure 6
Synthesis of the title compound.

Inspection of the reaction conditions already reported by Woodgate et al. (1999[Woodgate, P., Horner, G., Maynard, N. & Rickard, C. (1999). J. Organomet. Chem. 592, 180-193.]) indicates that compound II was obtained by reaction of phenyl­boronic acid and the corres­ponding tertiary amine. In turn, the authors reported that compound III was obtained unintentionally when using salicyl­aldehyde benzyl­amine and boron compounds (Geng et al., 2011[Geng, Y. & Wu, W. (2011). Acta Cryst. E67, o1380.]). We hypothesize that, in the case of I, the use of NaBPh4 determined the course of the reaction, leading to the formation of the zwitterionic heterocycle in the described reaction conditions.

5. Synthesis and crystallization

H2L (0.064 g; 0.2 mmol) was dissolved in methanol (4 mL), then solid manganese(III) acetate dihydrate (0.052 g; 0.2 mmol) was added. Immediately after, an excess of NaBPh4 (0.2065 g, 0.60 mmol) in 2 mL of methanol/water was added to the reaction flask. The resulting dark-brown solution was sonicated at 313 K for 15 min and then stirred at reflux for additional 16 h (overnight). After cooling, the obtained precipitate was collected by filtration, washed with diethyl ether and dried in vacuo. Recrystallization from methanol gave colourless crystals of I suitable for X-ray diffraction. Yield: 21%. IR spectrum: ν(cm−1): 3043, 1630 (C=N), 1626, 1608 (C=C aromatic), 1462 (br, B—O), 1273, 1248, 1200, 1050 (C—O), 1002 (B—N), 702.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were placed at calculated positions, with d(C—H) = 0.95−0.99 Å and Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C26H23BN2O2
Mr 406.27
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.8803 (7), 10.0871 (8), 11.7586 (10)
α, β, γ (°) 97.298 (2), 98.464 (2), 98.234 (2)
V3) 1019.21 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.22 × 0.16 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Gaussian (XPREP and SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.780, 0.875
No. of measured, independent and observed [I > 2σ(I)] reflections 8344, 4004, 2161
Rint 0.088
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.115, 0.92
No. of reflections 4004
No. of parameters 280
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.31
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

cis-1-Phenyl-8-(pyridin-2-ylmethyl)dibenzo[1,2-c:2,1-h]-2,14-dioxa-8-aza-1-borabicyclo[4.4.0]deca-3,8-diene top
Crystal data top
C26H23BN2O2Z = 2
Mr = 406.27F(000) = 428
Triclinic, P1Dx = 1.324 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8803 (7) ÅCell parameters from 5951 reflections
b = 10.0871 (8) Åθ = 2.4–28.2°
c = 11.7586 (10) ŵ = 0.08 mm1
α = 97.298 (2)°T = 100 K
β = 98.464 (2)°Prism, colourless
γ = 98.234 (2)°0.22 × 0.16 × 0.12 mm
V = 1019.21 (14) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2161 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
φ and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: gaussian
(XPREP and SADABS; Bruker, 2008)
h = 1010
Tmin = 0.780, Tmax = 0.875k = 1210
8344 measured reflectionsl = 1414
4004 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0336P)2]
where P = (Fo2 + 2Fc2)/3
4004 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.33571 (19)0.80339 (16)0.66654 (14)0.0162 (4)
C70.2240 (3)0.5768 (2)0.7698 (2)0.0154 (6)
H7A0.1869840.4815690.7777070.018*
H7B0.151420.6024550.7072380.018*
O10.45343 (19)0.81457 (16)0.86313 (14)0.0155 (4)
N10.3811 (2)0.58730 (19)0.73635 (17)0.0142 (5)
N20.3294 (3)0.3306 (2)0.87553 (18)0.0228 (6)
C10.3311 (3)0.7832 (2)0.9193 (2)0.0141 (6)
C150.6210 (3)0.7798 (2)0.7133 (2)0.0145 (6)
C60.2247 (3)0.6666 (2)0.8822 (2)0.0143 (6)
C80.2760 (3)0.7354 (2)0.5582 (2)0.0149 (6)
C220.4325 (3)0.3686 (2)0.8075 (2)0.0164 (6)
C200.6479 (3)0.8046 (2)0.6034 (2)0.0168 (6)
H200.5623560.7991660.5431020.02*
C140.3653 (3)0.5215 (2)0.6124 (2)0.0159 (6)
H14A0.4692450.5151670.5933710.019*
H14B0.3074450.4282160.6033490.019*
C130.2833 (3)0.5988 (2)0.5288 (2)0.0154 (6)
C20.3191 (3)0.8716 (3)1.0178 (2)0.0184 (6)
H20.3917880.9527371.0421340.022*
C190.7968 (3)0.8371 (3)0.5794 (2)0.0218 (7)
H190.8114450.8516540.5032330.026*
C30.2016 (3)0.8410 (3)1.0797 (2)0.0209 (7)
H30.1924930.9018991.1459820.025*
C260.4860 (3)0.2759 (2)0.7329 (2)0.0183 (6)
H260.560790.3057330.6875790.022*
C50.1087 (3)0.6353 (3)0.9472 (2)0.0195 (6)
H50.0367940.5536330.9237460.023*
C90.2030 (3)0.8050 (3)0.4773 (2)0.0190 (7)
H90.1985480.8983460.4978860.023*
C160.7521 (3)0.7913 (2)0.7980 (2)0.0197 (7)
H160.7388360.774710.8739080.024*
C120.2147 (3)0.5337 (3)0.4180 (2)0.0183 (6)
H120.2165870.4397850.3975660.022*
C40.0970 (3)0.7221 (3)1.0458 (2)0.0226 (7)
H40.0176690.6999951.0896510.027*
C250.4296 (3)0.1387 (3)0.7247 (2)0.0222 (7)
H250.4642560.0734420.6735080.027*
C170.9002 (3)0.8257 (3)0.7761 (2)0.0217 (7)
H170.9862880.8340680.8364960.026*
C100.1376 (3)0.7395 (3)0.3682 (2)0.0223 (7)
H100.0876630.7875340.3135130.027*
C210.4862 (3)0.5193 (2)0.8156 (2)0.0168 (6)
H21A0.5911960.5341460.7956010.02*
H21B0.4929240.5626680.8969880.02*
C240.3225 (3)0.0994 (3)0.7923 (2)0.0204 (7)
H240.28050.0064610.7881010.024*
C110.1438 (3)0.6029 (3)0.3371 (2)0.0224 (7)
H110.0998950.5577610.2609970.027*
C180.9221 (3)0.8480 (2)0.6656 (2)0.0226 (7)
H181.0235450.8708590.6494510.027*
C230.2776 (3)0.1973 (3)0.8658 (2)0.0239 (7)
H230.2049080.1687950.9130980.029*
B10.4511 (3)0.7520 (3)0.7450 (3)0.0153 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0199 (11)0.0149 (10)0.0135 (10)0.0035 (8)0.0013 (8)0.0025 (8)
C70.0131 (15)0.0146 (15)0.0167 (15)0.0010 (12)0.0014 (12)0.0005 (12)
O10.0169 (10)0.0147 (10)0.0132 (10)0.0016 (8)0.0041 (8)0.0008 (8)
N10.0138 (12)0.0135 (12)0.0141 (12)0.0002 (9)0.0017 (10)0.0012 (9)
N20.0325 (15)0.0179 (14)0.0204 (14)0.0036 (11)0.0096 (12)0.0061 (11)
C10.0124 (15)0.0148 (15)0.0151 (15)0.0013 (12)0.0020 (12)0.0038 (12)
C150.0188 (15)0.0087 (14)0.0155 (15)0.0021 (11)0.0023 (12)0.0002 (11)
C60.0158 (15)0.0140 (15)0.0131 (14)0.0009 (12)0.0021 (12)0.0043 (12)
C80.0127 (14)0.0195 (15)0.0113 (14)0.0002 (12)0.0030 (12)0.0000 (12)
C220.0192 (16)0.0147 (15)0.0143 (15)0.0030 (12)0.0025 (13)0.0046 (12)
C200.0165 (16)0.0133 (15)0.0195 (16)0.0007 (12)0.0029 (13)0.0018 (12)
C140.0213 (16)0.0119 (14)0.0131 (14)0.0016 (12)0.0041 (12)0.0036 (11)
C130.0164 (15)0.0186 (15)0.0120 (14)0.0025 (12)0.0037 (12)0.0043 (12)
C20.0231 (17)0.0171 (15)0.0140 (15)0.0029 (13)0.0009 (13)0.0013 (12)
C190.0253 (17)0.0179 (15)0.0210 (16)0.0003 (13)0.0055 (14)0.0015 (13)
C30.0284 (17)0.0200 (16)0.0146 (15)0.0036 (13)0.0080 (13)0.0008 (12)
C260.0182 (16)0.0173 (16)0.0209 (16)0.0019 (12)0.0071 (13)0.0052 (12)
C50.0200 (16)0.0170 (15)0.0196 (16)0.0012 (12)0.0022 (13)0.0018 (12)
C90.0208 (16)0.0172 (15)0.0208 (16)0.0049 (12)0.0065 (13)0.0043 (13)
C160.0224 (17)0.0198 (16)0.0170 (16)0.0034 (13)0.0049 (13)0.0021 (12)
C120.0174 (15)0.0202 (15)0.0174 (16)0.0014 (12)0.0049 (13)0.0029 (12)
C40.0281 (18)0.0237 (17)0.0183 (16)0.0047 (14)0.0095 (14)0.0051 (13)
C250.0270 (17)0.0165 (16)0.0229 (16)0.0074 (13)0.0031 (14)0.0005 (12)
C170.0152 (16)0.0222 (16)0.0258 (17)0.0028 (13)0.0003 (13)0.0001 (13)
C100.0196 (16)0.0322 (17)0.0162 (16)0.0085 (13)0.0012 (13)0.0056 (13)
C210.0193 (15)0.0170 (15)0.0137 (15)0.0050 (12)0.0010 (12)0.0028 (12)
C240.0257 (17)0.0131 (15)0.0217 (16)0.0003 (12)0.0027 (13)0.0049 (12)
C110.0181 (16)0.0306 (17)0.0155 (15)0.0012 (13)0.0013 (13)0.0001 (13)
C180.0218 (17)0.0160 (16)0.0307 (18)0.0002 (13)0.0111 (15)0.0019 (13)
C230.0266 (18)0.0220 (17)0.0259 (17)0.0037 (13)0.0094 (14)0.0089 (13)
B10.0192 (18)0.0107 (16)0.0141 (17)0.0007 (13)0.0022 (14)0.0022 (13)
Geometric parameters (Å, º) top
O2—C81.360 (3)C2—H20.95
O2—B11.471 (3)C19—C181.372 (4)
C7—N11.497 (3)C19—H190.95
C7—C61.504 (3)C3—C41.382 (4)
C7—H7A0.99C3—H30.95
C7—H7B0.99C26—C251.389 (4)
O1—C11.372 (3)C26—H260.95
O1—B11.446 (3)C5—C41.387 (3)
N1—C141.501 (3)C5—H50.95
N1—C211.517 (3)C9—C101.370 (4)
N1—B11.674 (4)C9—H90.95
N2—C231.343 (3)C16—C171.381 (4)
N2—C221.348 (3)C16—H160.95
C1—C61.378 (3)C12—C111.381 (3)
C1—C21.396 (3)C12—H120.95
C15—C201.396 (3)C4—H40.95
C15—C161.396 (3)C25—C241.374 (3)
C15—B11.602 (4)C25—H250.95
C6—C51.395 (3)C17—C181.383 (3)
C8—C131.391 (3)C17—H170.95
C8—C91.391 (3)C10—C111.391 (4)
C22—C261.383 (3)C10—H100.95
C22—C211.513 (3)C21—H21A0.99
C20—C191.394 (4)C21—H21B0.99
C20—H200.95C24—C231.371 (3)
C14—C131.501 (3)C24—H240.95
C14—H14A0.99C11—H110.95
C14—H14B0.99C18—H180.95
C13—C121.391 (3)C23—H230.95
C2—C31.380 (3)
C8—O2—B1121.39 (18)C22—C26—C25119.4 (2)
N1—C7—C6111.9 (2)C22—C26—H26120.3
N1—C7—H7A109.2C25—C26—H26120.3
C6—C7—H7A109.2C4—C5—C6120.8 (3)
N1—C7—H7B109.2C4—C5—H5119.6
C6—C7—H7B109.2C6—C5—H5119.6
H7A—C7—H7B107.9C10—C9—C8120.3 (2)
C1—O1—B1120.8 (2)C10—C9—H9119.9
C7—N1—C14108.67 (19)C8—C9—H9119.9
C7—N1—C21110.68 (18)C17—C16—C15122.9 (2)
C14—N1—C21110.23 (16)C17—C16—H16118.6
C7—N1—B1107.64 (16)C15—C16—H16118.6
C14—N1—B1108.46 (18)C11—C12—C13121.2 (2)
C21—N1—B1111.07 (19)C11—C12—H12119.4
C23—N2—C22116.7 (2)C13—C12—H12119.4
O1—C1—C6121.5 (2)C3—C4—C5119.5 (3)
O1—C1—C2118.0 (2)C3—C4—H4120.3
C6—C1—C2120.5 (2)C5—C4—H4120.3
C20—C15—C16115.9 (2)C24—C25—C26118.6 (2)
C20—C15—B1122.7 (2)C24—C25—H25120.7
C16—C15—B1121.2 (2)C26—C25—H25120.7
C1—C6—C5119.0 (2)C16—C17—C18119.5 (3)
C1—C6—C7121.8 (2)C16—C17—H17120.3
C5—C6—C7119.1 (2)C18—C17—H17120.3
O2—C8—C13121.4 (2)C9—C10—C11120.4 (2)
O2—C8—C9118.4 (2)C9—C10—H10119.8
C13—C8—C9120.3 (2)C11—C10—H10119.8
N2—C22—C26122.3 (2)C22—C21—N1113.5 (2)
N2—C22—C21116.5 (2)C22—C21—H21A108.9
C26—C22—C21121.2 (2)N1—C21—H21A108.9
C19—C20—C15121.9 (3)C22—C21—H21B108.9
C19—C20—H20119N1—C21—H21B108.9
C15—C20—H20119H21A—C21—H21B107.7
C13—C14—N1112.13 (17)C23—C24—C25118.5 (3)
C13—C14—H14A109.2C23—C24—H24120.8
N1—C14—H14A109.2C25—C24—H24120.8
C13—C14—H14B109.2C12—C11—C10119.2 (3)
N1—C14—H14B109.2C12—C11—H11120.4
H14A—C14—H14B107.9C10—C11—H11120.4
C8—C13—C12118.6 (2)C19—C18—C17119.7 (3)
C8—C13—C14121.8 (2)C19—C18—H18120.1
C12—C13—C14119.6 (2)C17—C18—H18120.1
C3—C2—C1119.9 (3)N2—C23—C24124.5 (3)
C3—C2—H2120.1N2—C23—H23117.8
C1—C2—H2120.1C24—C23—H23117.8
C18—C19—C20120.1 (3)O1—B1—O2108.95 (17)
C18—C19—H19120O1—B1—C15109.5 (2)
C20—C19—H19120O2—B1—C15113.0 (2)
C2—C3—C4120.3 (2)O1—B1—N1107.1 (2)
C2—C3—H3119.8O2—B1—N1104.5 (2)
C4—C3—H3119.8C15—B1—N1113.46 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.573.503 (3)168
C24—H24···O2ii0.952.503.185 (3)129
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y1, z.
Structural data and calculated tetrahedral character THCDA (Å, °) for compounds IIII top
Compound III (MAWDET)aIII (EROJIF)b
Bond lengths
B—N1.674 (4) (B1—N1)1.674 (5) (B1—N1)1.641 (2) (B1—N2)
B—O1.471 (3) (B1—O2)1.443 (4) (B1—O2)1.443 (2) (B1—O3)
B—O1.446 (3) (B1—O1)1.454 (4) (B1—O1)1.463 (2) (B1—O5)
B—C1.602 (4) (B1—C15)1.608 (5) (B1—C15)1.425 (2) (B1—O4)
Angles
θ1113.0 (2) (C15—B1—O2)110.3 (3) (C15—B—O2)113.34 (15) (O4—B1—O3)
θ2109.5 (2) (C15—B1—O1)115.5 (3) (C15—B—O1)114.47 (16) (O4—B1—O5)
θ3109.0 (2) (O2—B1—O1)109.5 (3) (O2—B—O1)108.60 (15) (O3—B1—O5)
θ4113.5 (2) (N1—B1—C15)110.0 (3) (N1—B—C15)105.64 (14) (N2—B1—O4)
θ5104.5 (2) (N1—B1—O2)106.7 (3) (N1—B—O2)108.45 (14) (N2—B1—O3)
θ6107.1 (2) (N1—B1—O1)104.4 (3) (N1—B—O1)105.89 (13) (N2—B1—O5)
THCDAc82.883.179.7
(a) Woodgate et al. (1999); (b) Geng et al. (2011); (c) Höpfl et al. (1999).
 

Funding information

This work was supported by the National University of Rosario, CONICET and CAPES/CNPQ, Brazil.

References

First citationBarnes, M. J. (1998). Technical Report: Decomposition of Sodium Tetraphenylborate. https://digital. library. unt. edu/ark:/67531/metadc684438/.
First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationGawdzik, B., Iwanek, W., Hoser, A. & Woźniak, K. (2009). Z. Kristallogr. 224, 515–518.  CSD CrossRef CAS
First citationGeng, Y. & Wu, W. (2011). Acta Cryst. E67, o1380.  CSD CrossRef IUCr Journals
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationHöpfl, H. (1999). J. Organomet. Chem. 581, 129–149.
First citationLedesma, G. N., Anxolabéhère-Mallart, E., Rivière, E., Mallet-Ladeira, S., Hureau, C. & Signorella, S. R. (2014). Inorg. Chem. 53, 2545–2553.  CSD CrossRef CAS PubMed
First citationLedesma, G. N., Eury, H., Anxolabéhère-Mallart, E., Hureau, C. & Signorella, S. R. (2015). J. Inorg. Biochem. 146, 69–76.  CrossRef CAS PubMed
First citationSarina, E. A., Olmstead, M. M., Kanichar, D. & Groziak, M. P. (2015). Acta Cryst. C71, 1085–1088.  CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationThadani, A. N., Batey, R. A. & Lough, A. J. (2001). Acta Cryst. E57, o762–o763.  Web of Science CSD CrossRef IUCr Journals
First citationWoodgate, P., Horner, G., Maynard, N. & Rickard, C. (1999). J. Organomet. Chem. 592, 180–193.  CSD CrossRef CAS
First citationWoodgate, P., Horner, G., Maynard, N. & Rickard, C. (2000). J. Organomet. Chem. 595, 215–223.  CSD CrossRef CAS
First citationZhu, L., Shabbir, S., Gray, M., Lynch, V., Sorey, S. & Anslyn, E. (2006). J. Am. Chem. Soc. 128, 1222–1232.  CSD CrossRef PubMed CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds