research communications
Crystal structures of three ortho-substituted N-acylhydrazone derivatives
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bDepartment of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire 574 240, India, cInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287, Darmstadt, Germany, and dKarnataka State Rural Development and Panchayat Raj University, Gadag 582 101, India
*Correspondence e-mail: gowdabt@yahoo.com
To explore the effect of the nature of substitutions on the structural parameters and hydrogen-bond interactions in N-acylhydrazone derivatives, the crystal structures of three ortho-substituted N-acylhydrazone derivatives, namely (E)-N-{2-[2-(2-chlorobenzylidene)hydrazinyl]-2-oxoethyl}-4-methylbenzenesulfonamide, C16H16ClN3O3S (I), (E)-N-{2-[2-(2-methylbenzylidene)hydrazinyl]-2-oxoethyl}-4-methylbenzenesulfonamide, C17H19N3O3S (II), and (E)-N-{2-[2-(2-nitrobenzylidene)hydrazinyl]-2-oxoethyl}-4-methylbenzenesulfonamide, C16H16N4O5S (III), have been determined. The structures of the three compounds display similar molecular conformations and hydrogen-bond patterns. The hydrazone part of the molecule, C—C—N—N=C, is almost planar in all the compounds, with the C—C—N—N and C—N—N=C torsion angles being 179.5 (3) and 177.1 (3)°, respectively, in (I), −179.4 (2) and −177.1 (3)° in (II) and −179.7 (2) and 173.4 (2)° in (III). The two phenyl rings on either side of the chain are approximately parallel to each other. In the crystal, the molecules are linked to each other via N—H⋯O hydrogen bonds, forming ribbons with R22(8) and R22(10) ring motifs. The introduction of electron-withdrawing groups (by a chloro or nitro group) to produce compounds (I) or (III) results in C—H⋯O hydrogen-bonding interactions involving the sulfonyl O atoms of adjacent ribbons, forming layers parallel to the ab plane in (I) or a three-dimensional network in (III). In (III), one O atom of the nitro group is disordered over two orientations with refined occupancy ratio of 0.836 (12):0.164 (12).
Keywords: crystal structure; N-acylhydrazones; ring motifs; conformation; C—H⋯O interaction.
1. Chemical context
N-Acylhydrazones belong to the Schiff base family of general structure R1—C(=O)—N—N=CR3R4. N-Acylhydrazones of aromatic find great importance in organic synthesis due to their biological and medicinal activities (Tian et al., 2009, 2011). The donor sites, carbonyl and imine groups, in the compounds are responsible for the physical and chemical properties of N-acylhydrazones. Their ability to form chelates with transition metals can be effectively utilized to analyse metals selectively as hydrazone complexes. N-Acylhydrazones can exist as Z/E geometrical isomers about the C=N bond of the hydrazone moiety (Palla et al., 1986). Crystal-structure studies of N-acylhydrazones revealed that the molecules display an E conformation in the solid state (Purandara et al., 2015a,b,c, 2017; Gu et al. 2012), whereas NMR spectroscopic studies showed the duplicate signals for amide and methylene protons, indicating the presence of two isomers in solution (Lacerda et al., 2012; Lopes et al., 2013). As the stereochemistry of the hydrazone is determined by the various substituents in the hydrazone moiety, we thought it would be interesting to synthesize several ortho-substituted N-acylhydrazone derivatives to explore their effects on crystal-structure parameters and hydrogen-bonding interactions. Thus this paper describes the salient features of ortho-chloro-, methyl- and nitro-substituted N-acylhydrazone derivatives, namely, (E)-N-{2-[2-(2-chlorobenzylidene)hydrazinyl]-2-oxoethyl}-4-methylbenzenesulfonamide, C16H16ClN3O3S (I), (E)-N-{2-[2-(2-methylbenzylidene)hydrazinyl]-2-oxoethyl}-4-methylbenzenesulfonamide, C17H19N3O3S (II), and (E)-N-{2-[2-(2-nitrobenzylidene)hydrazinyl]-2-oxoethyl}-4-methylbenzenesulfonamide (III).
2. Structural commentary
The title compounds (I)–(III) (Figs. 1–3), which differ only in the ortho-substituent, each crystallize in the centrosymmetric P with one molecule in the asymmetric units and display many common features. Each molecule adopts an E configuration around the imine C=N bond. The conformation of the N—-H bond in the amide part is syn with respect to the C=O bond, the imine C—H bond and the ortho substituent. The sulfonamide bonds are found to be anticlinal, and the torsion angles of the sulfonamide moieties are 98.6 (3), −99.6 (3) and 99.9 (2)° in compounds (I), (II), and (III), respectively.
The dihedral angles between the phenyl ring (C10-C15) and the mean plane of the C9/N3/N2/C8/O3 hydrazone fragment are 5.7 (2), 5.54 (18) and 7.90 (17)° for (I), (II), and (III), respectively. The N-acylhydrazone portion of the molecules (C=N—NH—C=O group) is therefore approximately coplanar with the plane of benzylidenephenyl ring (C10–C15) in these compounds, but the sulfonyl glycine part of the molecule is rotated by 40.0 (3)° in (I), 40.2 (3)° in (II) and 41.4 (2)° in (III) with respect to the hydrazone group. The phenyl rings are also approximately parallel to each other, forming dihedral angles ranging from 12.86 (11) to 13.10 (19)°. In (III), an intramolecular C—H⋯O hydrogen bond involving the nitro group and the imine H atom is observed (Table 3).
3. Supramolecular features
In all three compounds, the O atom of the carbonyl group is engaged as an acceptor in bifurcated N—H⋯O hydrogen bonding with the sulfonamide H atom and the amino H atom of the hydrazide segment of two centrosymmetrically related neighbouring molecules, enclosing rings of R22(8) and R22(10) graph-set motif and forming molecular ribbons parallel to the a axis [Table 1, Fig. 4 for (I), Table 2, Fig. 6 for (II) and Table 3, Fig. 7 for (III)]. In the of (II), there are no other significant intermolecular interactions present. Replacement of the methyl group in (II) by the chloro or nitro electron-withdrawing groups to produce compound (I) or (III) introduces C—H⋯O interactions. In (I), the interactions involving the sulfonyl oxygen atoms and aromatic H atoms of adjacent ribbons (Fig. 5) result in the formation of two-dimensional layer networks extending parallel to the ab plane. In (III), the ribbons are further stabilized by intermolecular C—H⋯O interactions between methylene H atoms and the O4 oxygen atom of the nitro group. Adjacent ribbons in (III) are further linked into a three-dimensional network by weak hydrogen-bonding interactions occurring between methyl H atoms and the oxygen atom O5 of the nitro group, resulting in the formation of R22(34) ring motifs (Fig. 8).
|
4. Database survey
Comparison of structures (I)–(III) with those of the related N-acylhydrazone derivatives (E)-N-{2-[2-(4-methylbenzylidene)hydrazin-1-yl]-2-oxoethyl}-p-toluenesulfonamide (IV) (Purandara et al., 2015b) and (E)-N-2-[2-(4-nitrobenzylidene)hydrazine-1-yl]-2-oxoethyl-4-methylbenzenesulfonamide N,N-dimethylformamide monosolvate (V) (Purandara et al., 2017) indicate that molecules of ortho-substituted compounds are U-shaped, while the molecules of compounds (IV) and (V) have an extended chain conformation.
5. Synthesis and crystallization
General procedure for the synthesis of N-(4-methylbenzenesulfonyl)glycinyl hydrazide (L3)
p-Toluenesulfonyl chloride (0.01 mol) was added to glycine (0.02 mol) dissolved in an aqueous solution of potassium carbonate (0.06 mol, 50 ml). The reaction mixture was stirred at 373 K for 6h, left overnight at room temperature, then filtered and treated with dilute hydrochloric acid. The solid N-(4-methylbenzenesulfonyl)glycine (L1) obtained was crystallized from aqueous ethanol. Sulfuric acid (0.5 ml) was added to (L1) (0.02 mol) dissolved in ethanol (30 ml) and the mixture was refluxed. The reaction mixture was monitored by TLC at regular intervals. After completion of the reaction, the reaction mixture was concentrated to remove excess ethanol. The product, N-(4-methylbenzenesulfonyl)glycine ethyl ester (L2) was poured into water, neutralized with sodium bicarbonate and recrystallized from acetone. The pure (L2) (0.01 mol) was then added in small portions to a stirred solution of 99% hydrazine hydrate (10 ml) in 30 ml ethanol and the mixture was refluxed for 6 h. After cooling to room temperature, the resulting precipitate was filtered, washed with cold water and dried to obtain N-(4-methylbenzenesulfonyl)glycinyl hydrazide (L3).
Synthesis of compound (I)
A mixture of L3 (0.01 mol) and 2-chlorobenzaldehyde (0.01 mol) in anhydrous methanol (30 ml) and two drops of glacial acetic acid was refluxed for 8 h. After cooling, the precipitate was collected by vacuum filtration, washed with cold methanol, dried, and recrystallized to a constant melting point from methanol (511–512 K). The purity of the compound was checked by TLC and characterized by its IR spectrum. The characteristic absorptions observed are 3199.9, 1674.2, 1604.8, 1327.0 and 1153.4 cm−1 for the asymmetric N—H, C=O, C=N, S=O and symmetric S=O stretching bands, respectively. 1H NMR (400 MHz, DMSO-d6, δ ppm): 2.36 (s, 3H), 3.56, 4.05 (2d, 2H, J = 6.1 Hz), 7.32–7.39 (m, 4H, Ar-H), 7.41–7.53 (m, 2H, Ar-H), 7.71–7.77 (m, 2H, Ar-H), 7.98 (t, 1H), 8.31, 8.57 (2s, 1H), 11.60 (s, 1H). 13C NMR (400 MHz, DMSO-d6, δ ppm): 20.96, 43.23, 44.63, 126.65, 127.38, 128.04, 129.70, 131.12, 132.99, 134.76, 137.50, 139.90, 142.50, 143.23, 158.17, 164.33, 169.08. Plate-shaped colourless single crystals of (I) suitable for the X-ray diffraction study were grown from a DMF solution by slow evaporation of the solvent.
Synthesis of compound (II)
A mixture of L3 (0.01 mol) and 2-methylbenzaldehyde (0.01 mol) in anhydrous methanol (30 ml) and two drops of glacial acetic acid was refluxed for 8 h. After cooling, the precipitate was collected by vacuum filtration, washed with cold methanol and dried. It was recrystallized to a constant melting point from methanol (474–475 K). The purity of the compound was checked by TLC and characterized by its IR spectrum. The characteristic absorptions observed are 3186.4, 1672.3, 1620.2, 1328.9 and 1155.4 cm−1 for the asymmetric N—H, C=O, C=N, S=O and symmetric S=O stretching bands, respectively. 1H NMR (400 MHz, DMSO-d6, δ ppm): 2.37 (s, 3H), 2.40 (s, 3H), 3.54, 4.01 (2d, 2H), 7.18–7.28 (m, 3H, Ar-H), 7.34 (t, 2H, Ar-H), 7.60–7.62 (m, 1H, Ar-H), 7.70–7.77 (m, 3H, Ar-H), 8.18, 8.46 (2s, 1H), 11.36 (s, 1H). 13C NMR (400 MHz, DMSO-d6, δ ppm): 19.53, 20.97, 43.33, 44.67, 125.93, 126.60, 129.34, 130.72, 131.86, 136.41, 136.67, 137.21, 137.61, 142.49, 143.07, 145.86, 163.98, 168.81. Prismatic colourless single crystals of (II) employed in the X-ray diffraction study were grown from a DMF solution by slow evaporation of the solvent.
Synthesis of compound (III)
A mixture of L3 (0.01 mol) and 2-nitrobenzaldehyde (0.01 mol) in anhydrous methanol (30 ml) and two drops of glacial acetic acid was refluxed for 8 h. After cooling, the precipitate was collected by vacuum filtration, washed with cold methanol and dried. It was recrystallized to a constant melting point from methanol (509–512 K). The purity of the compound was checked by TLC and characterized by its IR spectrum. The characteristic absorptions observed are 3219.2, 1674.2, 1597.1, 1327.0 and 1132.2 cm−1 for the asymmetric N—H, C=O, C=N, S=O and symmetric S=O stretching bands, respectively. 1H NMR (400 MHz, DMSO-d6, δ ppm): 2.39 (s, 3H), 3.59, 4.04 (2d, 2H, J = 6.1 Hz), 7.35 (t, 2H, Ar-H), 7.60–7.66 (m, 1H, Ar-H), 7.73–7.77 (m, 4H, Ar-H), 7.95–8.06 (m, 2H, Ar-H), 8.33, 8.63 (2s, 1H), 11.72, 11.75 (2s, 1H). 13C NMR (400 MHz, DMSO-d6, δ ppm): 20.98, 43.22, 44.59, 124.38, 126.60, 128.07, 129.29, 130.29, 133.35, 137.22, 137.72, 139.12, 142.49, 147.86, 148.01, 164.54, 169.23. Rod-shaped light-yellow single crystals of (III) employed in the X-ray diffraction study were grown from a DMF solution by slow evaporation of the solvent.
6. Refinement
Crystal data, data collection and structure . The amino H atoms were freely refined with the N—H distances restrained to 0.86 (2) Å. H atoms bonded to C were positioned with idealized geometry using a riding model with C—H = 0.93 Å (aromatic), 0.96 Å (methyl), 0.97 Å (methylene). All H atoms were refined with isotropic displacement parameters set at 1.2Ueq(C, N) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl groups. In the structure of (I), the Uij components of atom C16 were restrained to approximate isotropic behavior. In (III), the O5 atom of the nitro group is disordered over two orientations with refined occupancy ratio of 0.836 (12):0.164 (12). The Ueq of atom O5′ was restrained to approximate isotropic behavior.
details are summarized in Table 4
|
Supporting information
https://doi.org/10.1107/S2056989017016814/rz5225sup1.cif
contains datablocks I, II, III. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017016814/rz5225Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989017016814/rz5225IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989017016814/rz5225IIIsup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017016814/rz5225Isup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989017016814/rz5225IIsup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989017016814/rz5225IIIsup7.cml
For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).C16H16ClN3O3S | Z = 2 |
Mr = 365.83 | F(000) = 380 |
Triclinic, P1 | Dx = 1.422 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.867 (1) Å | Cell parameters from 2213 reflections |
b = 10.340 (1) Å | θ = 2.7–27.8° |
c = 10.997 (2) Å | µ = 0.37 mm−1 |
α = 84.96 (1)° | T = 293 K |
β = 75.46 (1)° | Plate, colourless |
γ = 81.13 (1)° | 0.50 × 0.36 × 0.18 mm |
V = 854.4 (2) Å3 |
Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector | 2709 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.021 |
Rotation method data acquisition using ω scans | θmax = 26.4°, θmin = 2.7° |
Absorption correction: multi-scan CrysAlis RED (Oxford Diffraction, 2009) | h = −9→9 |
Tmin = 0.838, Tmax = 0.937 | k = −12→12 |
5855 measured reflections | l = −13→13 |
3444 independent reflections |
Refinement on F2 | 8 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.062 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.131 | w = 1/[σ2(Fo2) + (0.0196P)2 + 0.9514P] where P = (Fo2 + 2Fc2)/3 |
S = 1.29 | (Δ/σ)max = 0.001 |
3444 reflections | Δρmax = 0.26 e Å−3 |
224 parameters | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1690 (4) | 0.5986 (3) | 0.3391 (3) | 0.0455 (8) | |
C2 | 0.0073 (5) | 0.5621 (4) | 0.3404 (3) | 0.0553 (9) | |
H2 | 0.0019 | 0.4856 | 0.3039 | 0.066* | |
C3 | −0.1476 (5) | 0.6406 (5) | 0.3968 (4) | 0.0728 (13) | |
H3 | −0.2567 | 0.6152 | 0.3986 | 0.087* | |
C4 | −0.1428 (6) | 0.7543 (5) | 0.4497 (4) | 0.0762 (13) | |
C5 | 0.0198 (7) | 0.7875 (4) | 0.4496 (4) | 0.0803 (14) | |
H5 | 0.0250 | 0.8637 | 0.4867 | 0.096* | |
C6 | 0.1762 (6) | 0.7103 (4) | 0.3955 (4) | 0.0655 (11) | |
H6 | 0.2849 | 0.7338 | 0.3974 | 0.079* | |
C7 | 0.5616 (4) | 0.6710 (3) | 0.1041 (4) | 0.0472 (8) | |
H7A | 0.5499 | 0.7162 | 0.1800 | 0.057* | |
H7B | 0.5426 | 0.7365 | 0.0384 | 0.057* | |
C8 | 0.7477 (4) | 0.5978 (3) | 0.0656 (3) | 0.0363 (7) | |
C9 | 0.9704 (4) | 0.8454 (3) | 0.1176 (3) | 0.0384 (7) | |
H9 | 1.0861 | 0.8028 | 0.0963 | 0.046* | |
C10 | 0.9332 (4) | 0.9799 (3) | 0.1602 (3) | 0.0376 (7) | |
C11 | 1.0632 (4) | 1.0477 (3) | 0.1782 (3) | 0.0416 (7) | |
C12 | 1.0240 (5) | 1.1749 (3) | 0.2181 (4) | 0.0541 (9) | |
H12 | 1.1130 | 1.2182 | 0.2307 | 0.065* | |
C13 | 0.8524 (5) | 1.2361 (3) | 0.2387 (4) | 0.0595 (10) | |
H13 | 0.8251 | 1.3213 | 0.2655 | 0.071* | |
C14 | 0.7207 (5) | 1.1729 (3) | 0.2202 (4) | 0.0588 (10) | |
H14 | 0.6049 | 1.2154 | 0.2336 | 0.071* | |
C15 | 0.7608 (4) | 1.0463 (3) | 0.1817 (3) | 0.0483 (8) | |
H15 | 0.6706 | 1.0040 | 0.1698 | 0.058* | |
C16 | −0.3116 (7) | 0.8436 (6) | 0.5055 (5) | 0.126 (2) | |
H16A | −0.4108 | 0.7957 | 0.5215 | 0.188* | |
H16B | −0.3280 | 0.9166 | 0.4473 | 0.188* | |
H16C | −0.3026 | 0.8751 | 0.5829 | 0.188* | |
N1 | 0.4270 (4) | 0.5847 (3) | 0.1266 (3) | 0.0500 (7) | |
H1N | 0.381 (5) | 0.572 (4) | 0.068 (3) | 0.060* | |
N2 | 0.8803 (3) | 0.6631 (2) | 0.0693 (3) | 0.0388 (6) | |
H2N | 0.987 (3) | 0.625 (3) | 0.044 (3) | 0.047* | |
N3 | 0.8414 (3) | 0.7884 (2) | 0.1104 (2) | 0.0386 (6) | |
O1 | 0.3203 (3) | 0.3846 (2) | 0.2318 (3) | 0.0677 (8) | |
O2 | 0.4985 (3) | 0.5068 (3) | 0.3261 (3) | 0.0708 (8) | |
O3 | 0.7779 (3) | 0.4849 (2) | 0.0302 (2) | 0.0445 (6) | |
Cl1 | 1.28438 (12) | 0.97633 (10) | 0.14816 (11) | 0.0677 (3) | |
S1 | 0.36582 (11) | 0.50602 (8) | 0.25882 (9) | 0.0486 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0432 (18) | 0.0427 (18) | 0.0470 (19) | −0.0067 (14) | −0.0047 (15) | −0.0005 (15) |
C2 | 0.047 (2) | 0.061 (2) | 0.058 (2) | −0.0089 (17) | −0.0117 (17) | 0.0025 (18) |
C3 | 0.041 (2) | 0.107 (4) | 0.059 (3) | −0.002 (2) | −0.0046 (18) | 0.015 (3) |
C4 | 0.070 (3) | 0.084 (3) | 0.052 (2) | 0.018 (2) | 0.006 (2) | 0.012 (2) |
C5 | 0.101 (4) | 0.060 (3) | 0.063 (3) | 0.001 (2) | 0.008 (3) | −0.018 (2) |
C6 | 0.065 (2) | 0.063 (3) | 0.065 (3) | −0.013 (2) | −0.001 (2) | −0.017 (2) |
C7 | 0.0312 (16) | 0.0410 (18) | 0.067 (2) | −0.0049 (13) | −0.0036 (15) | −0.0137 (16) |
C8 | 0.0335 (15) | 0.0321 (16) | 0.0429 (17) | −0.0045 (12) | −0.0077 (13) | −0.0036 (13) |
C9 | 0.0335 (15) | 0.0310 (15) | 0.0487 (19) | −0.0035 (12) | −0.0062 (14) | −0.0036 (14) |
C10 | 0.0371 (16) | 0.0293 (15) | 0.0456 (18) | −0.0065 (12) | −0.0080 (14) | −0.0005 (13) |
C11 | 0.0409 (17) | 0.0337 (16) | 0.0515 (19) | −0.0070 (13) | −0.0125 (14) | −0.0014 (14) |
C12 | 0.067 (2) | 0.0386 (19) | 0.063 (2) | −0.0193 (17) | −0.0191 (19) | −0.0059 (17) |
C13 | 0.071 (3) | 0.0337 (18) | 0.073 (3) | −0.0028 (17) | −0.015 (2) | −0.0138 (18) |
C14 | 0.052 (2) | 0.041 (2) | 0.076 (3) | 0.0058 (16) | −0.0056 (19) | −0.0110 (18) |
C15 | 0.0385 (17) | 0.0392 (18) | 0.066 (2) | −0.0064 (14) | −0.0073 (16) | −0.0083 (16) |
C16 | 0.101 (4) | 0.134 (5) | 0.090 (4) | 0.060 (4) | 0.022 (3) | 0.008 (3) |
N1 | 0.0338 (14) | 0.0640 (19) | 0.0539 (18) | −0.0144 (13) | −0.0039 (13) | −0.0180 (15) |
N2 | 0.0297 (13) | 0.0296 (13) | 0.0553 (17) | −0.0004 (10) | −0.0059 (12) | −0.0115 (12) |
N3 | 0.0374 (14) | 0.0272 (13) | 0.0499 (16) | −0.0041 (10) | −0.0069 (12) | −0.0058 (11) |
O1 | 0.0643 (17) | 0.0380 (13) | 0.100 (2) | −0.0060 (12) | −0.0151 (15) | −0.0128 (14) |
O2 | 0.0538 (16) | 0.083 (2) | 0.081 (2) | 0.0014 (14) | −0.0306 (14) | −0.0075 (16) |
O3 | 0.0352 (11) | 0.0325 (12) | 0.0662 (15) | −0.0013 (9) | −0.0107 (10) | −0.0148 (11) |
Cl1 | 0.0408 (5) | 0.0574 (6) | 0.1094 (9) | −0.0058 (4) | −0.0234 (5) | −0.0156 (5) |
S1 | 0.0380 (4) | 0.0432 (5) | 0.0646 (6) | −0.0030 (3) | −0.0122 (4) | −0.0084 (4) |
C1—C6 | 1.373 (5) | C10—C11 | 1.387 (4) |
C1—C2 | 1.378 (5) | C10—C15 | 1.396 (4) |
C1—S1 | 1.760 (3) | C11—C12 | 1.388 (4) |
C2—C3 | 1.390 (5) | C11—Cl1 | 1.744 (3) |
C2—H2 | 0.9300 | C12—C13 | 1.372 (5) |
C3—C4 | 1.366 (7) | C12—H12 | 0.9300 |
C3—H3 | 0.9300 | C13—C14 | 1.370 (5) |
C4—C5 | 1.375 (7) | C13—H13 | 0.9300 |
C4—C16 | 1.518 (6) | C14—C15 | 1.377 (5) |
C5—C6 | 1.385 (6) | C14—H14 | 0.9300 |
C5—H5 | 0.9300 | C15—H15 | 0.9300 |
C6—H6 | 0.9300 | C16—H16A | 0.9600 |
C7—N1 | 1.449 (4) | C16—H16B | 0.9600 |
C7—C8 | 1.517 (4) | C16—H16C | 0.9600 |
C7—H7A | 0.9700 | N1—S1 | 1.603 (3) |
C7—H7B | 0.9700 | N1—H1N | 0.843 (18) |
C8—O3 | 1.232 (3) | N2—N3 | 1.374 (3) |
C8—N2 | 1.338 (4) | N2—H2N | 0.863 (18) |
C9—N3 | 1.272 (4) | O1—S1 | 1.432 (3) |
C9—C10 | 1.469 (4) | O2—S1 | 1.424 (3) |
C9—H9 | 0.9300 | ||
C6—C1—C2 | 120.0 (3) | C10—C11—Cl1 | 120.7 (2) |
C6—C1—S1 | 120.1 (3) | C12—C11—Cl1 | 117.4 (3) |
C2—C1—S1 | 119.9 (3) | C13—C12—C11 | 119.1 (3) |
C1—C2—C3 | 119.5 (4) | C13—C12—H12 | 120.4 |
C1—C2—H2 | 120.3 | C11—C12—H12 | 120.4 |
C3—C2—H2 | 120.3 | C14—C13—C12 | 120.7 (3) |
C4—C3—C2 | 121.3 (4) | C14—C13—H13 | 119.6 |
C4—C3—H3 | 119.4 | C12—C13—H13 | 119.6 |
C2—C3—H3 | 119.4 | C13—C14—C15 | 119.7 (3) |
C3—C4—C5 | 118.3 (4) | C13—C14—H14 | 120.2 |
C3—C4—C16 | 121.4 (5) | C15—C14—H14 | 120.2 |
C5—C4—C16 | 120.3 (5) | C14—C15—C10 | 121.7 (3) |
C4—C5—C6 | 121.6 (4) | C14—C15—H15 | 119.2 |
C4—C5—H5 | 119.2 | C10—C15—H15 | 119.2 |
C6—C5—H5 | 119.2 | C4—C16—H16A | 109.5 |
C1—C6—C5 | 119.3 (4) | C4—C16—H16B | 109.5 |
C1—C6—H6 | 120.4 | H16A—C16—H16B | 109.5 |
C5—C6—H6 | 120.4 | C4—C16—H16C | 109.5 |
N1—C7—C8 | 112.3 (3) | H16A—C16—H16C | 109.5 |
N1—C7—H7A | 109.1 | H16B—C16—H16C | 109.5 |
C8—C7—H7A | 109.1 | C7—N1—S1 | 122.4 (3) |
N1—C7—H7B | 109.1 | C7—N1—H1N | 120 (3) |
C8—C7—H7B | 109.1 | S1—N1—H1N | 118 (3) |
H7A—C7—H7B | 107.9 | C8—N2—N3 | 119.2 (2) |
O3—C8—N2 | 120.9 (3) | C8—N2—H2N | 118 (2) |
O3—C8—C7 | 122.6 (3) | N3—N2—H2N | 123 (2) |
N2—C8—C7 | 116.5 (3) | C9—N3—N2 | 117.4 (2) |
N3—C9—C10 | 118.7 (3) | O2—S1—O1 | 120.41 (17) |
N3—C9—H9 | 120.6 | O2—S1—N1 | 107.22 (16) |
C10—C9—H9 | 120.6 | O1—S1—N1 | 106.85 (17) |
C11—C10—C15 | 116.9 (3) | O2—S1—C1 | 108.52 (17) |
C11—C10—C9 | 123.2 (3) | O1—S1—C1 | 107.29 (16) |
C15—C10—C9 | 119.9 (3) | N1—S1—C1 | 105.64 (16) |
C10—C11—C12 | 121.9 (3) | ||
C6—C1—C2—C3 | 1.4 (6) | C11—C12—C13—C14 | 0.0 (6) |
S1—C1—C2—C3 | −175.7 (3) | C12—C13—C14—C15 | 0.6 (6) |
C1—C2—C3—C4 | 0.8 (6) | C13—C14—C15—C10 | −0.3 (6) |
C2—C3—C4—C5 | −2.1 (6) | C11—C10—C15—C14 | −0.6 (5) |
C2—C3—C4—C16 | 176.9 (4) | C9—C10—C15—C14 | −179.2 (3) |
C3—C4—C5—C6 | 1.3 (7) | C8—C7—N1—S1 | 84.5 (3) |
C16—C4—C5—C6 | −177.7 (4) | O3—C8—N2—N3 | −179.4 (3) |
C2—C1—C6—C5 | −2.2 (6) | C7—C8—N2—N3 | 2.0 (4) |
S1—C1—C6—C5 | 174.9 (3) | C10—C9—N3—N2 | 179.5 (3) |
C4—C5—C6—C1 | 0.9 (7) | C8—N2—N3—C9 | 177.1 (3) |
N1—C7—C8—O3 | 15.4 (5) | C7—N1—S1—O2 | −17.0 (3) |
N1—C7—C8—N2 | −166.0 (3) | C7—N1—S1—O1 | −147.3 (3) |
N3—C9—C10—C11 | 176.2 (3) | C7—N1—S1—C1 | 98.6 (3) |
N3—C9—C10—C15 | −5.3 (5) | C6—C1—S1—O2 | 37.5 (4) |
C15—C10—C11—C12 | 1.2 (5) | C2—C1—S1—O2 | −145.4 (3) |
C9—C10—C11—C12 | 179.8 (3) | C6—C1—S1—O1 | 169.0 (3) |
C15—C10—C11—Cl1 | −177.5 (3) | C2—C1—S1—O1 | −13.8 (3) |
C9—C10—C11—Cl1 | 1.1 (5) | C6—C1—S1—N1 | −77.2 (3) |
C10—C11—C12—C13 | −0.9 (5) | C2—C1—S1—N1 | 99.9 (3) |
Cl1—C11—C12—C13 | 177.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O3i | 0.84 (2) | 2.02 (2) | 2.839 (3) | 162 (4) |
N2—H2N···O3ii | 0.86 (2) | 2.03 (2) | 2.884 (3) | 171 (3) |
C12—H12···O1iii | 0.93 | 2.55 | 3.457 (4) | 165 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z; (iii) x+1, y+1, z. |
C17H19N3O3S | Z = 2 |
Mr = 345.41 | F(000) = 364 |
Triclinic, P1 | Dx = 1.319 Mg m−3 |
a = 7.984 (1) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.320 (2) Å | Cell parameters from 2050 reflections |
c = 11.081 (2) Å | θ = 2.7–27.9° |
α = 85.17 (1)° | µ = 0.21 mm−1 |
β = 74.89 (1)° | T = 293 K |
γ = 81.14 (1)° | Prism, colourless |
V = 870.0 (3) Å3 | 0.30 × 0.16 × 0.12 mm |
Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector | 2019 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.027 |
Rotation method data acquisition using ω scans | θmax = 25.2°, θmin = 2.7° |
Absorption correction: multi-scan CrysAlis RED (Oxford Diffraction, 2009) | h = −5→9 |
Tmin = 0.941, Tmax = 0.976 | k = −12→12 |
5265 measured reflections | l = −13→13 |
3115 independent reflections |
Refinement on F2 | 8 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.053 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.141 | w = 1/[σ2(Fo2) + (0.0571P)2 + 0.4335P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.006 |
3115 reflections | Δρmax = 0.28 e Å−3 |
225 parameters | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3267 (4) | 0.4077 (3) | 0.6615 (3) | 0.0531 (8) | |
C2 | 0.3217 (5) | 0.2980 (4) | 0.6002 (4) | 0.0746 (10) | |
H2 | 0.2153 | 0.2759 | 0.5950 | 0.089* | |
C3 | 0.4765 (7) | 0.2216 (4) | 0.5467 (4) | 0.0934 (13) | |
H3 | 0.4733 | 0.1477 | 0.5052 | 0.112* | |
C4 | 0.6359 (6) | 0.2521 (5) | 0.5531 (4) | 0.0929 (14) | |
C5 | 0.6381 (5) | 0.3645 (5) | 0.6099 (4) | 0.0863 (13) | |
H5 | 0.7449 | 0.3893 | 0.6108 | 0.104* | |
C6 | 0.4851 (4) | 0.4414 (4) | 0.6656 (3) | 0.0652 (9) | |
H6 | 0.4889 | 0.5160 | 0.7059 | 0.078* | |
C7 | −0.0626 (3) | 0.3333 (3) | 0.8958 (3) | 0.0552 (8) | |
H7A | −0.0428 | 0.2674 | 0.9601 | 0.066* | |
H7B | −0.0510 | 0.2884 | 0.8200 | 0.066* | |
C8 | −0.2477 (3) | 0.4048 (3) | 0.9366 (3) | 0.0410 (6) | |
C9 | −0.4635 (4) | 0.1560 (3) | 0.8824 (3) | 0.0458 (7) | |
H9 | −0.5775 | 0.1991 | 0.9048 | 0.055* | |
C10 | −0.4289 (4) | 0.0216 (3) | 0.8385 (3) | 0.0441 (7) | |
C11 | −0.5630 (4) | −0.0429 (3) | 0.8232 (3) | 0.0504 (7) | |
C12 | −0.5183 (5) | −0.1718 (3) | 0.7823 (3) | 0.0635 (9) | |
H12 | −0.6054 | −0.2162 | 0.7707 | 0.076* | |
C13 | −0.3499 (5) | −0.2332 (3) | 0.7591 (4) | 0.0707 (10) | |
H13 | −0.3242 | −0.3186 | 0.7321 | 0.085* | |
C14 | −0.2182 (5) | −0.1709 (3) | 0.7750 (4) | 0.0704 (10) | |
H14 | −0.1039 | −0.2137 | 0.7599 | 0.084* | |
C15 | −0.2575 (4) | −0.0438 (3) | 0.8136 (3) | 0.0576 (8) | |
H15 | −0.1681 | −0.0007 | 0.8232 | 0.069* | |
C16 | 0.8040 (7) | 0.1637 (5) | 0.4972 (5) | 0.1340 (19) | |
H16A | 0.7763 | 0.0839 | 0.4733 | 0.201* | |
H16B | 0.8717 | 0.1437 | 0.5580 | 0.201* | |
H16C | 0.8704 | 0.2078 | 0.4248 | 0.201* | |
C17 | −0.7500 (4) | 0.0184 (3) | 0.8499 (4) | 0.0708 (10) | |
H17A | −0.8199 | −0.0420 | 0.8323 | 0.106* | |
H17B | −0.7602 | 0.0972 | 0.7983 | 0.106* | |
H17C | −0.7901 | 0.0393 | 0.9364 | 0.106* | |
N1 | 0.0695 (3) | 0.4192 (3) | 0.8728 (3) | 0.0584 (7) | |
H1N | 0.117 (4) | 0.434 (3) | 0.928 (3) | 0.070* | |
N2 | −0.3764 (3) | 0.3385 (2) | 0.9324 (2) | 0.0452 (6) | |
H2N | −0.484 (2) | 0.373 (3) | 0.959 (3) | 0.054* | |
N3 | −0.3362 (3) | 0.2126 (2) | 0.8894 (2) | 0.0448 (6) | |
O1 | 0.0009 (3) | 0.4970 (3) | 0.6754 (3) | 0.0814 (8) | |
O2 | 0.1736 (3) | 0.6208 (2) | 0.7693 (3) | 0.0779 (8) | |
O3 | −0.2783 (2) | 0.51737 (17) | 0.9738 (2) | 0.0505 (5) | |
S1 | 0.13061 (10) | 0.49880 (8) | 0.74192 (9) | 0.0576 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0511 (18) | 0.0503 (18) | 0.0533 (19) | −0.0046 (14) | −0.0075 (14) | 0.0021 (15) |
C2 | 0.073 (2) | 0.072 (2) | 0.073 (3) | −0.0126 (19) | −0.0026 (19) | −0.015 (2) |
C3 | 0.120 (4) | 0.067 (3) | 0.070 (3) | 0.006 (2) | 0.008 (3) | −0.013 (2) |
C4 | 0.079 (3) | 0.106 (4) | 0.060 (3) | 0.028 (3) | 0.012 (2) | 0.021 (2) |
C5 | 0.054 (2) | 0.119 (4) | 0.073 (3) | 0.000 (2) | −0.0066 (19) | 0.022 (3) |
C6 | 0.0460 (19) | 0.075 (2) | 0.071 (2) | −0.0074 (16) | −0.0118 (16) | 0.0067 (18) |
C7 | 0.0345 (15) | 0.0471 (17) | 0.081 (2) | −0.0023 (12) | −0.0066 (14) | −0.0174 (16) |
C8 | 0.0323 (14) | 0.0387 (16) | 0.0503 (17) | −0.0039 (12) | −0.0074 (12) | −0.0036 (13) |
C9 | 0.0381 (15) | 0.0389 (16) | 0.0580 (19) | −0.0016 (12) | −0.0089 (13) | −0.0054 (13) |
C10 | 0.0470 (16) | 0.0340 (15) | 0.0510 (18) | −0.0087 (12) | −0.0103 (13) | −0.0015 (13) |
C11 | 0.0549 (18) | 0.0410 (16) | 0.0568 (19) | −0.0098 (13) | −0.0162 (15) | 0.0008 (14) |
C12 | 0.076 (2) | 0.0443 (18) | 0.077 (2) | −0.0181 (16) | −0.0252 (19) | −0.0066 (16) |
C13 | 0.082 (3) | 0.0419 (19) | 0.087 (3) | −0.0032 (17) | −0.020 (2) | −0.0126 (18) |
C14 | 0.063 (2) | 0.050 (2) | 0.089 (3) | 0.0090 (16) | −0.0111 (19) | −0.0132 (19) |
C15 | 0.0499 (18) | 0.0430 (17) | 0.075 (2) | −0.0011 (14) | −0.0085 (16) | −0.0098 (16) |
C16 | 0.118 (3) | 0.132 (3) | 0.113 (3) | 0.043 (3) | 0.002 (2) | 0.004 (3) |
C17 | 0.054 (2) | 0.067 (2) | 0.097 (3) | −0.0127 (16) | −0.0249 (19) | −0.006 (2) |
N1 | 0.0384 (14) | 0.0756 (18) | 0.0637 (19) | −0.0194 (12) | −0.0066 (12) | −0.0165 (15) |
N2 | 0.0315 (12) | 0.0340 (12) | 0.0678 (17) | −0.0010 (10) | −0.0076 (11) | −0.0119 (11) |
N3 | 0.0409 (13) | 0.0310 (12) | 0.0610 (16) | −0.0019 (10) | −0.0103 (11) | −0.0084 (11) |
O1 | 0.0602 (15) | 0.0930 (19) | 0.099 (2) | 0.0009 (13) | −0.0384 (14) | −0.0123 (16) |
O2 | 0.0739 (16) | 0.0413 (13) | 0.119 (2) | −0.0044 (11) | −0.0254 (15) | −0.0112 (13) |
O3 | 0.0393 (11) | 0.0349 (11) | 0.0787 (15) | −0.0017 (8) | −0.0153 (10) | −0.0159 (10) |
S1 | 0.0435 (4) | 0.0522 (5) | 0.0781 (6) | −0.0020 (3) | −0.0178 (4) | −0.0089 (4) |
C1—C6 | 1.375 (4) | C10—C15 | 1.398 (4) |
C1—C2 | 1.380 (4) | C11—C12 | 1.405 (4) |
C1—S1 | 1.758 (3) | C11—C17 | 1.492 (4) |
C2—C3 | 1.377 (5) | C12—C13 | 1.364 (5) |
C2—H2 | 0.9300 | C12—H12 | 0.9300 |
C3—C4 | 1.378 (6) | C13—C14 | 1.369 (5) |
C3—H3 | 0.9300 | C13—H13 | 0.9300 |
C4—C5 | 1.370 (6) | C14—C15 | 1.378 (4) |
C4—C16 | 1.516 (6) | C14—H14 | 0.9300 |
C5—C6 | 1.376 (5) | C15—H15 | 0.9300 |
C5—H5 | 0.9300 | C16—H16A | 0.9600 |
C6—H6 | 0.9300 | C16—H16B | 0.9600 |
C7—N1 | 1.440 (4) | C16—H16C | 0.9600 |
C7—C8 | 1.518 (4) | C17—H17A | 0.9600 |
C7—H7A | 0.9700 | C17—H17B | 0.9600 |
C7—H7B | 0.9700 | C17—H17C | 0.9600 |
C8—O3 | 1.233 (3) | N1—S1 | 1.604 (3) |
C8—N2 | 1.331 (3) | N1—H1N | 0.838 (17) |
C9—N3 | 1.270 (3) | N2—N3 | 1.384 (3) |
C9—C10 | 1.470 (4) | N2—H2N | 0.858 (17) |
C9—H9 | 0.9300 | O1—S1 | 1.422 (2) |
C10—C11 | 1.397 (4) | O2—S1 | 1.431 (2) |
C6—C1—C2 | 119.9 (3) | C13—C12—H12 | 119.3 |
C6—C1—S1 | 120.0 (2) | C11—C12—H12 | 119.3 |
C2—C1—S1 | 120.0 (3) | C12—C13—C14 | 120.9 (3) |
C3—C2—C1 | 119.1 (4) | C12—C13—H13 | 119.5 |
C3—C2—H2 | 120.4 | C14—C13—H13 | 119.5 |
C1—C2—H2 | 120.4 | C13—C14—C15 | 119.0 (3) |
C2—C3—C4 | 121.6 (4) | C13—C14—H14 | 120.5 |
C2—C3—H3 | 119.2 | C15—C14—H14 | 120.5 |
C4—C3—H3 | 119.2 | C14—C15—C10 | 121.4 (3) |
C5—C4—C3 | 118.2 (4) | C14—C15—H15 | 119.3 |
C5—C4—C16 | 121.3 (5) | C10—C15—H15 | 119.3 |
C3—C4—C16 | 120.5 (5) | C4—C16—H16A | 109.5 |
C4—C5—C6 | 121.2 (4) | C4—C16—H16B | 109.5 |
C4—C5—H5 | 119.4 | H16A—C16—H16B | 109.5 |
C6—C5—H5 | 119.4 | C4—C16—H16C | 109.5 |
C1—C6—C5 | 119.8 (4) | H16A—C16—H16C | 109.5 |
C1—C6—H6 | 120.1 | H16B—C16—H16C | 109.5 |
C5—C6—H6 | 120.1 | C11—C17—H17A | 109.5 |
N1—C7—C8 | 113.2 (2) | C11—C17—H17B | 109.5 |
N1—C7—H7A | 108.9 | H17A—C17—H17B | 109.5 |
C8—C7—H7A | 108.9 | C11—C17—H17C | 109.5 |
N1—C7—H7B | 108.9 | H17A—C17—H17C | 109.5 |
C8—C7—H7B | 108.9 | H17B—C17—H17C | 109.5 |
H7A—C7—H7B | 107.7 | C7—N1—S1 | 122.9 (2) |
O3—C8—N2 | 121.5 (2) | C7—N1—H1N | 122 (2) |
O3—C8—C7 | 122.1 (2) | S1—N1—H1N | 115 (2) |
N2—C8—C7 | 116.5 (2) | C8—N2—N3 | 119.6 (2) |
N3—C9—C10 | 119.4 (2) | C8—N2—H2N | 120 (2) |
N3—C9—H9 | 120.3 | N3—N2—H2N | 120 (2) |
C10—C9—H9 | 120.3 | C9—N3—N2 | 117.0 (2) |
C11—C10—C15 | 119.3 (3) | O1—S1—O2 | 120.42 (15) |
C11—C10—C9 | 121.8 (2) | O1—S1—N1 | 106.98 (15) |
C15—C10—C9 | 118.9 (2) | O2—S1—N1 | 107.14 (15) |
C10—C11—C12 | 117.9 (3) | O1—S1—C1 | 108.74 (15) |
C10—C11—C17 | 123.0 (3) | O2—S1—C1 | 107.04 (15) |
C12—C11—C17 | 119.1 (3) | N1—S1—C1 | 105.61 (15) |
C13—C12—C11 | 121.4 (3) | ||
C6—C1—C2—C3 | 1.8 (5) | C11—C12—C13—C14 | 0.0 (6) |
S1—C1—C2—C3 | −174.6 (3) | C12—C13—C14—C15 | −0.7 (6) |
C1—C2—C3—C4 | 0.1 (6) | C13—C14—C15—C10 | 1.0 (5) |
C2—C3—C4—C5 | −2.8 (6) | C11—C10—C15—C14 | −0.5 (5) |
C2—C3—C4—C16 | 177.9 (4) | C9—C10—C15—C14 | 178.5 (3) |
C3—C4—C5—C6 | 3.7 (6) | C8—C7—N1—S1 | −84.6 (3) |
C16—C4—C5—C6 | −177.0 (4) | O3—C8—N2—N3 | 179.7 (3) |
C2—C1—C6—C5 | −0.9 (5) | C7—C8—N2—N3 | −1.5 (4) |
S1—C1—C6—C5 | 175.5 (3) | C10—C9—N3—N2 | −179.4 (2) |
C4—C5—C6—C1 | −1.9 (6) | C8—N2—N3—C9 | −177.1 (3) |
N1—C7—C8—O3 | −15.8 (4) | C7—N1—S1—O1 | 16.2 (3) |
N1—C7—C8—N2 | 165.4 (3) | C7—N1—S1—O2 | 146.6 (2) |
N3—C9—C10—C11 | −176.8 (3) | C7—N1—S1—C1 | −99.6 (3) |
N3—C9—C10—C15 | 4.3 (4) | C6—C1—S1—O1 | 148.8 (3) |
C15—C10—C11—C12 | −0.3 (4) | C2—C1—S1—O1 | −34.8 (3) |
C9—C10—C11—C12 | −179.3 (3) | C6—C1—S1—O2 | 17.2 (3) |
C15—C10—C11—C17 | 178.8 (3) | C2—C1—S1—O2 | −166.4 (3) |
C9—C10—C11—C17 | −0.2 (5) | C6—C1—S1—N1 | −96.7 (3) |
C10—C11—C12—C13 | 0.5 (5) | C2—C1—S1—N1 | 79.7 (3) |
C17—C11—C12—C13 | −178.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O3i | 0.84 (2) | 2.03 (2) | 2.845 (3) | 166 (3) |
N2—H2N···O3ii | 0.86 (2) | 2.05 (2) | 2.898 (3) | 170 (3) |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x−1, −y+1, −z+2. |
C16H16N4O5S | Z = 2 |
Mr = 376.39 | F(000) = 392 |
Triclinic, P1 | Dx = 1.446 Mg m−3 |
a = 8.006 (1) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.229 (1) Å | Cell parameters from 1476 reflections |
c = 11.181 (2) Å | θ = 2.7–27.9° |
α = 83.76 (1)° | µ = 0.22 mm−1 |
β = 72.86 (1)° | T = 293 K |
γ = 82.13 (1)° | Rod, light yellow |
V = 864.5 (2) Å3 | 0.48 × 0.48 × 0.28 mm |
Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector | 2511 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.020 |
Rotation method data acquisition using ω scans | θmax = 26.4°, θmin = 2.7° |
Absorption correction: multi-scan CrysAlis RED (Oxford Diffraction, 2009) | h = −10→10 |
Tmin = 0.900, Tmax = 0.940 | k = −8→12 |
5980 measured reflections | l = −13→13 |
3524 independent reflections |
Refinement on F2 | 10 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.057 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.131 | w = 1/[σ2(Fo2) + (0.0346P)2 + 0.6348P] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max < 0.001 |
3524 reflections | Δρmax = 0.31 e Å−3 |
252 parameters | Δρmin = −0.30 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.1583 (4) | 0.0902 (3) | 0.3328 (3) | 0.0432 (7) | |
C2 | 0.0013 (4) | 0.0489 (3) | 0.3328 (3) | 0.0515 (7) | |
H2 | 0.0012 | −0.0291 | 0.2972 | 0.062* | |
C3 | −0.1551 (4) | 0.1232 (4) | 0.3853 (3) | 0.0646 (9) | |
H3 | −0.2603 | 0.0939 | 0.3857 | 0.078* | |
C4 | −0.1592 (5) | 0.2390 (4) | 0.4367 (3) | 0.0679 (9) | |
C5 | −0.0013 (5) | 0.2782 (3) | 0.4388 (3) | 0.0695 (9) | |
H5 | −0.0021 | 0.3558 | 0.4754 | 0.083* | |
C6 | 0.1581 (5) | 0.2045 (3) | 0.3877 (3) | 0.0603 (8) | |
H6 | 0.2630 | 0.2317 | 0.3903 | 0.072* | |
C7 | 0.5648 (3) | 0.1686 (3) | 0.1001 (3) | 0.0490 (7) | |
H7A | 0.5499 | 0.2132 | 0.1754 | 0.059* | |
H7B | 0.5508 | 0.2354 | 0.0342 | 0.059* | |
C8 | 0.7488 (3) | 0.0959 (2) | 0.0614 (2) | 0.0364 (6) | |
C9 | 0.9667 (3) | 0.3431 (2) | 0.1185 (2) | 0.0380 (6) | |
H9A | 1.0802 | 0.2998 | 0.1013 | 0.046* | |
C10 | 0.9269 (3) | 0.4777 (2) | 0.1623 (2) | 0.0362 (6) | |
C11 | 1.0452 (3) | 0.5481 (3) | 0.1918 (3) | 0.0416 (6) | |
C12 | 0.9983 (4) | 0.6727 (3) | 0.2364 (3) | 0.0543 (8) | |
H12 | 1.0797 | 0.7158 | 0.2574 | 0.065* | |
C13 | 0.8299 (4) | 0.7322 (3) | 0.2493 (3) | 0.0584 (9) | |
H13 | 0.7974 | 0.8166 | 0.2778 | 0.070* | |
C14 | 0.7102 (4) | 0.6671 (3) | 0.2202 (3) | 0.0544 (8) | |
H14 | 0.5966 | 0.7079 | 0.2283 | 0.065* | |
C15 | 0.7571 (4) | 0.5416 (3) | 0.1790 (3) | 0.0446 (7) | |
H15 | 0.6730 | 0.4981 | 0.1618 | 0.054* | |
C16 | −0.3304 (6) | 0.3242 (5) | 0.4884 (4) | 0.1112 (18) | |
H16A | −0.4218 | 0.2687 | 0.5278 | 0.167* | |
H16B | −0.3609 | 0.3795 | 0.4212 | 0.167* | |
H16C | −0.3172 | 0.3787 | 0.5490 | 0.167* | |
N1 | 0.4300 (3) | 0.0805 (3) | 0.1237 (2) | 0.0496 (6) | |
H1N | 0.385 (4) | 0.071 (3) | 0.066 (2) | 0.059* | |
N2 | 0.8798 (3) | 0.1627 (2) | 0.0649 (2) | 0.0386 (5) | |
H2N | 0.987 (2) | 0.125 (3) | 0.043 (3) | 0.046* | |
N3 | 0.8416 (3) | 0.2882 (2) | 0.1050 (2) | 0.0385 (5) | |
N4 | 1.2287 (3) | 0.4938 (3) | 0.1766 (3) | 0.0599 (7) | |
O1 | 0.3169 (3) | −0.12378 (19) | 0.2315 (2) | 0.0650 (6) | |
O2 | 0.4818 (3) | 0.0038 (2) | 0.3249 (2) | 0.0692 (7) | |
O3 | 0.7787 (2) | −0.01737 (17) | 0.02690 (19) | 0.0447 (5) | |
O4 | 1.3001 (3) | 0.4196 (3) | 0.0977 (3) | 0.0919 (9) | |
O5 | 1.2976 (6) | 0.5163 (5) | 0.2569 (6) | 0.102 (2) | 0.836 (12) |
O5' | 1.3314 (19) | 0.5818 (18) | 0.157 (3) | 0.083 (9) | 0.164 (12) |
S1 | 0.35831 (9) | 0.00025 (7) | 0.25622 (8) | 0.0478 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0411 (15) | 0.0425 (15) | 0.0418 (16) | −0.0022 (12) | −0.0074 (12) | −0.0006 (13) |
C2 | 0.0421 (16) | 0.0555 (18) | 0.0552 (19) | −0.0072 (14) | −0.0111 (14) | −0.0017 (15) |
C3 | 0.0407 (18) | 0.085 (3) | 0.060 (2) | −0.0004 (17) | −0.0080 (15) | 0.0025 (19) |
C4 | 0.0641 (19) | 0.078 (2) | 0.0408 (18) | 0.0169 (17) | 0.0032 (16) | 0.0048 (17) |
C5 | 0.090 (2) | 0.057 (2) | 0.0508 (19) | 0.0026 (18) | −0.0040 (19) | −0.0157 (16) |
C6 | 0.060 (2) | 0.061 (2) | 0.058 (2) | −0.0107 (16) | −0.0077 (16) | −0.0144 (16) |
C7 | 0.0309 (14) | 0.0424 (16) | 0.070 (2) | −0.0009 (12) | −0.0063 (13) | −0.0154 (14) |
C8 | 0.0307 (13) | 0.0356 (14) | 0.0419 (15) | −0.0021 (11) | −0.0087 (11) | −0.0046 (12) |
C9 | 0.0307 (13) | 0.0351 (14) | 0.0472 (16) | −0.0013 (11) | −0.0093 (12) | −0.0056 (12) |
C10 | 0.0356 (14) | 0.0303 (13) | 0.0410 (15) | −0.0035 (11) | −0.0086 (11) | −0.0022 (11) |
C11 | 0.0374 (15) | 0.0353 (14) | 0.0529 (17) | −0.0041 (11) | −0.0140 (13) | −0.0027 (13) |
C12 | 0.0551 (19) | 0.0406 (16) | 0.072 (2) | −0.0115 (14) | −0.0204 (16) | −0.0126 (15) |
C13 | 0.060 (2) | 0.0361 (16) | 0.076 (2) | 0.0019 (14) | −0.0137 (17) | −0.0178 (15) |
C14 | 0.0436 (17) | 0.0430 (17) | 0.071 (2) | 0.0059 (13) | −0.0108 (15) | −0.0110 (15) |
C15 | 0.0351 (14) | 0.0405 (15) | 0.0577 (18) | −0.0037 (12) | −0.0110 (13) | −0.0083 (13) |
C16 | 0.090 (3) | 0.122 (4) | 0.078 (3) | 0.047 (3) | 0.013 (2) | 0.001 (3) |
N1 | 0.0324 (13) | 0.0623 (16) | 0.0556 (16) | −0.0106 (11) | −0.0081 (11) | −0.0166 (13) |
N2 | 0.0278 (11) | 0.0345 (12) | 0.0523 (14) | 0.0000 (9) | −0.0079 (10) | −0.0115 (10) |
N3 | 0.0342 (12) | 0.0303 (11) | 0.0497 (14) | −0.0017 (9) | −0.0090 (10) | −0.0077 (10) |
N4 | 0.0433 (15) | 0.0456 (15) | 0.100 (2) | −0.0046 (12) | −0.0302 (16) | −0.0160 (15) |
O1 | 0.0550 (13) | 0.0384 (11) | 0.1000 (18) | −0.0020 (10) | −0.0181 (13) | −0.0126 (11) |
O2 | 0.0496 (13) | 0.0867 (17) | 0.0790 (16) | 0.0004 (12) | −0.0331 (12) | −0.0076 (13) |
O3 | 0.0331 (10) | 0.0361 (10) | 0.0667 (13) | 0.0007 (8) | −0.0142 (9) | −0.0177 (9) |
O4 | 0.0441 (14) | 0.0826 (18) | 0.153 (3) | 0.0129 (13) | −0.0299 (16) | −0.0465 (19) |
O5 | 0.077 (3) | 0.109 (4) | 0.154 (5) | 0.002 (2) | −0.076 (3) | −0.042 (4) |
O5' | 0.046 (8) | 0.069 (11) | 0.139 (19) | −0.014 (7) | −0.027 (9) | −0.020 (11) |
S1 | 0.0350 (4) | 0.0450 (4) | 0.0644 (5) | −0.0004 (3) | −0.0156 (3) | −0.0093 (3) |
C1—C6 | 1.377 (4) | C10—C11 | 1.395 (4) |
C1—C2 | 1.380 (4) | C11—C12 | 1.383 (4) |
C1—S1 | 1.762 (3) | C11—N4 | 1.464 (4) |
C2—C3 | 1.376 (4) | C12—C13 | 1.373 (4) |
C2—H2 | 0.9300 | C12—H12 | 0.9300 |
C3—C4 | 1.364 (5) | C13—C14 | 1.369 (4) |
C3—H3 | 0.9300 | C13—H13 | 0.9300 |
C4—C5 | 1.385 (5) | C14—C15 | 1.377 (4) |
C4—C16 | 1.513 (5) | C14—H14 | 0.9300 |
C5—C6 | 1.387 (5) | C15—H15 | 0.9300 |
C5—H5 | 0.9300 | C16—H16A | 0.9600 |
C6—H6 | 0.9300 | C16—H16B | 0.9600 |
C7—N1 | 1.446 (4) | C16—H16C | 0.9600 |
C7—C8 | 1.518 (3) | N1—S1 | 1.600 (3) |
C7—H7A | 0.9700 | N1—H1N | 0.845 (17) |
C7—H7B | 0.9700 | N2—N3 | 1.371 (3) |
C8—O3 | 1.232 (3) | N2—H2N | 0.865 (17) |
C8—N2 | 1.340 (3) | N4—O4 | 1.188 (3) |
C9—N3 | 1.266 (3) | N4—O5 | 1.239 (4) |
C9—C10 | 1.474 (3) | N4—O5' | 1.260 (13) |
C9—H9A | 0.9300 | O1—S1 | 1.429 (2) |
C10—C15 | 1.394 (4) | O2—S1 | 1.426 (2) |
C6—C1—C2 | 119.9 (3) | C10—C11—N4 | 121.6 (2) |
C6—C1—S1 | 120.4 (2) | C13—C12—C11 | 119.2 (3) |
C2—C1—S1 | 119.6 (2) | C13—C12—H12 | 120.4 |
C3—C2—C1 | 120.0 (3) | C11—C12—H12 | 120.4 |
C3—C2—H2 | 120.0 | C14—C13—C12 | 120.0 (3) |
C1—C2—H2 | 120.0 | C14—C13—H13 | 120.0 |
C4—C3—C2 | 121.4 (3) | C12—C13—H13 | 120.0 |
C4—C3—H3 | 119.3 | C13—C14—C15 | 120.3 (3) |
C2—C3—H3 | 119.3 | C13—C14—H14 | 119.8 |
C3—C4—C5 | 118.2 (3) | C15—C14—H14 | 119.8 |
C3—C4—C16 | 121.4 (4) | C14—C15—C10 | 122.0 (3) |
C5—C4—C16 | 120.4 (4) | C14—C15—H15 | 119.0 |
C4—C5—C6 | 121.5 (3) | C10—C15—H15 | 119.0 |
C4—C5—H5 | 119.2 | C4—C16—H16A | 109.5 |
C6—C5—H5 | 119.2 | C4—C16—H16B | 109.5 |
C1—C6—C5 | 118.9 (3) | H16A—C16—H16B | 109.5 |
C1—C6—H6 | 120.6 | C4—C16—H16C | 109.5 |
C5—C6—H6 | 120.6 | H16A—C16—H16C | 109.5 |
N1—C7—C8 | 112.3 (2) | H16B—C16—H16C | 109.5 |
N1—C7—H7A | 109.1 | C7—N1—S1 | 122.9 (2) |
C8—C7—H7A | 109.1 | C7—N1—H1N | 119 (2) |
N1—C7—H7B | 109.1 | S1—N1—H1N | 118 (2) |
C8—C7—H7B | 109.1 | C8—N2—N3 | 119.4 (2) |
H7A—C7—H7B | 107.9 | C8—N2—H2N | 119.2 (19) |
O3—C8—N2 | 121.0 (2) | N3—N2—H2N | 121.4 (19) |
O3—C8—C7 | 122.7 (2) | C9—N3—N2 | 117.5 (2) |
N2—C8—C7 | 116.3 (2) | O4—N4—C11 | 120.1 (3) |
N3—C9—C10 | 118.0 (2) | O5—N4—C11 | 117.5 (3) |
N3—C9—H9A | 121.0 | O5'—N4—C11 | 113.1 (9) |
C10—C9—H9A | 121.0 | O2—S1—O1 | 120.10 (15) |
C15—C10—C11 | 115.8 (2) | O2—S1—N1 | 106.98 (14) |
C15—C10—C9 | 118.8 (2) | O1—S1—N1 | 107.32 (14) |
C11—C10—C9 | 125.4 (2) | O2—S1—C1 | 108.77 (14) |
C12—C11—C10 | 122.7 (3) | O1—S1—C1 | 107.00 (13) |
C12—C11—N4 | 115.7 (3) | N1—S1—C1 | 105.82 (13) |
C6—C1—C2—C3 | 1.2 (5) | C11—C10—C15—C14 | 1.0 (4) |
S1—C1—C2—C3 | −175.8 (2) | C9—C10—C15—C14 | 179.7 (3) |
C1—C2—C3—C4 | 0.8 (5) | C8—C7—N1—S1 | 85.4 (3) |
C2—C3—C4—C5 | −2.2 (5) | O3—C8—N2—N3 | −179.4 (2) |
C2—C3—C4—C16 | 176.8 (3) | C7—C8—N2—N3 | 1.6 (4) |
C3—C4—C5—C6 | 1.5 (5) | C10—C9—N3—N2 | −179.7 (2) |
C16—C4—C5—C6 | −177.4 (3) | C8—N2—N3—C9 | 173.4 (2) |
C2—C1—C6—C5 | −1.9 (5) | C12—C11—N4—O4 | −149.9 (3) |
S1—C1—C6—C5 | 175.2 (3) | C10—C11—N4—O4 | 29.8 (5) |
C4—C5—C6—C1 | 0.5 (5) | C12—C11—N4—O5 | 38.0 (5) |
N1—C7—C8—O3 | 15.4 (4) | C10—C11—N4—O5 | −142.3 (5) |
N1—C7—C8—N2 | −165.5 (2) | C12—C11—N4—O5' | −27.0 (16) |
N3—C9—C10—C15 | −4.1 (4) | C10—C11—N4—O5' | 152.6 (16) |
N3—C9—C10—C11 | 174.5 (3) | C7—N1—S1—O2 | −15.9 (3) |
C15—C10—C11—C12 | 0.7 (4) | C7—N1—S1—O1 | −146.1 (2) |
C9—C10—C11—C12 | −177.9 (3) | C7—N1—S1—C1 | 99.9 (2) |
C15—C10—C11—N4 | −178.9 (3) | C6—C1—S1—O2 | 37.8 (3) |
C9—C10—C11—N4 | 2.5 (4) | C2—C1—S1—O2 | −145.2 (2) |
C10—C11—C12—C13 | −1.8 (5) | C6—C1—S1—O1 | 168.9 (2) |
N4—C11—C12—C13 | 177.9 (3) | C2—C1—S1—O1 | −14.0 (3) |
C11—C12—C13—C14 | 1.1 (5) | C6—C1—S1—N1 | −76.8 (3) |
C12—C13—C14—C15 | 0.6 (5) | C2—C1—S1—N1 | 100.2 (2) |
C13—C14—C15—C10 | −1.7 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O3i | 0.85 (2) | 2.06 (2) | 2.869 (3) | 161 (3) |
N2—H2N···O3ii | 0.87 (2) | 2.03 (2) | 2.881 (3) | 170 (3) |
C7—H7B···O4iii | 0.97 | 2.55 | 3.100 (4) | 116 |
C9—H9A···O4 | 0.93 | 2.27 | 2.821 (4) | 118 |
C16—H16C···O5iv | 0.96 | 2.58 | 3.525 (6) | 168 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+2, −y, −z; (iii) x−1, y, z; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
The authors thank the SAIF, Panjab University, for providing the NMR facility.
Funding information
HP thanks the Department of Science and Technology, Government of India, New Delhi, for a research fellowship under its INSPIRE Program and BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under UGC–BSR one-time grant to faculty.
References
Gu, W., Wu, R., Qi, S., Gu, C., Si, F. & Chen, Z. (2012). Molecules, 17, 4634–4650. Web of Science CSD CrossRef CAS PubMed
Lacerda, R. B., da Silva, L. L., de Lima, C. K. F., Miguez, E., Miranda, A. L. P., Laufer, S. A., Barreiro, E. J. & Fraga, C. A. M. (2012). PLoS One, 7, e46925. Web of Science CrossRef PubMed
Lopes, A. B., Miguez, E., Kümmerle, A. E., Rumjanek, V. M., Fraga, C. A. M. & Barreiro, E. J. (2013). Molecules, 18, 11683–11704. Web of Science CrossRef PubMed
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Palla, G., Predieri, G., Domiano, P., Vignali, C. & Turner, W. (1986). Tetrahedron, 42, 3649–3654. CrossRef CAS Web of Science
Purandara, H., Foro, S. & Gowda, B. T. (2015a). Acta Cryst. E71, 602–605. CrossRef IUCr Journals
Purandara, H., Foro, S. & Gowda, B. T. (2015b). Acta Cryst. E71, 730–733. Web of Science CSD CrossRef IUCr Journals
Purandara, H., Foro, S. & Gowda, B. T. (2015c). Acta Cryst. E71, 795–798. Web of Science CSD CrossRef IUCr Journals
Purandara, H., Foro, S. & Thimme Gowda, B. (2017). Acta Cryst. E73, 1683–1686. CrossRef IUCr Journals
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals
Tian, B., He, M., Tan, Z., Tang, S., Hewlett, I., Chen, S., Jin, Y. & Yang, M. (2011). Chem. Biol. Drug Des. 77, 189–198. Web of Science CrossRef CAS PubMed
Tian, B., He, M., Tang, S., Hewlett, I., Tan, Z., Li, J., Jin, Y. & Yang, M. (2009). Bioorg. Med. Chem. Lett. 19, 2162–2167. Web of Science CrossRef PubMed CAS
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.