research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­ethyl 3,3′-[(2,4-di­chloro­phen­yl)methyl­­idene]bis­­(1H-indole-2-carboxyl­ate)

CROSSMARK_Color_square_no_text.svg

aTargeted MRI Contrast Agents Laboratory of Jiangsu Province, Nanjing Polytechnic Institute, Geguan Road No. 265 Nanjing, Nanjing 210048, People's Republic of China
*Correspondence e-mail: njutshs@126.com

Edited by J. Simpson, University of Otago, New Zealand (Received 16 October 2017; accepted 29 October 2017; online 3 November 2017)

In the title compound, C29H24Cl2N2O4, the mean planes of the two indole ring systems (r.m.s. deviations = 0.1249 and 0.0075 Å) are approximately perpendic­ular to one another, with a dihedral angle of 80.9 (5)° between them. The benzene ring is inclined to the mean planes of the two indole ring systems by 76.1 (3) and 78.3 (4)°. Weak intra­molecular C—H⋯π inter­actions affect the mol­ecular conformation. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into inversion dimers which are further linked into supra­molecular chains by N—H⋯O hydrogen bonds and short Cl—Cl contacts.

1. Chemical context

Bis(indol­yl)methane derivatives are abundantly present in various terrestrial and marine natural resources (Porter et al.,1977[Porter, J. K., Bacon, C. W., Robbins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88-93.]; Sundberg, 1996[Sundberg, R. J. (1996). The Chemistry of Indoles, p. 113 New York: Academic Press.]). They are important anti­biotics in the field of pharmaceuticals with diverse activities, displaying anti­cancer, anti­leishmanial and anti­hyperlipidemic properties (Chang et al., 1999[Chang, Y.-C., Riby, J., Chang, G. H., Peng, G.-F., Firestone, G. & Bjeldanes, L. F. (1999). Biochem. Pharmacol. 58, 825-834.]; Ge et al., 1999[Ge, X., Fares, F. A. & Yannai, S. (1999). Anticancer Res. 19, 3199-3203.]). Furthermore, bis­(indolyl)methane derivatives can also be used as precursors for MRI necrosis avid contrast agents (Ni, 2008[Ni, Y.-C. (2008). Curr. Med. Imaging Rev. 4, 96-112.]). In recent years, we have reported the synthesis and crystal structures of some similar bis­(indoly)methane compounds (Sun et al., 2012[Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764.], 2015[Sun, H.-S., Li, Y., Jiang, H., Xu, N. & Xu, H. (2015). Acta Cryst. E71, 1140-1142.]; Li et al., 2014[Li, Y., Sun, H., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 259-261.]; Lu et al., 2014[Lu, X.-H., Sun, H.-S. & Hu, J. (2014). Acta Cryst. E70, 593-595.]). We report here the mol­ecular and crystal structure of the title bis­(indoly)methane derivative.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The overall conformation of the mol­ecule is affected by intra­molecular C4—H4ACg5 and C15—H15ACg1 inter­actions (Cg1 and Cg5 are the centroids of the N1,C8,C3,C2,C9 and C24–C29 rings, respectively), Fig. 1[link], Table 1[link]. The two indole ring systems are nearly perpendicular to one another, subtending a dihedral angle of 80.9 (5)° while the C24–C29 benzene ring is inclined to the N1/C2–C9 and N2/C13–C20 indole ring systems by dihedral angles of 76.1 (3) and 78.3 (4)°, respectively. The carboxyl groups lie close to the planes of the indole ring systems to which they are bound, with dihedral angles between the carboxyl groups and the mean planes of the N1/C2–C9 and N2/C13–C20 indole ring systems of 8.3 (5) and 5.6 (3)°, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg5 are the centroids of the N1,C8,C3,C2,C9 and C24–C29 rings respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.07 2.864 (4) 152
N2—H2A⋯O4ii 0.86 2.04 2.871 (4) 161
C11—H11A⋯Cl1iii 0.97 2.81 3.731 (5) 158
C4—H4ACg5 0.93 2.77 3.516 (4) 137
C15—H15ACg1 0.93 2.72 3.476 (5) 139
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+2, -z; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Intra­molecular C—H⋯π(ring) contacts (Table 1[link]) are shown as dotted black lines with ring centroids displayed as coloured spheres.

3. Supra­molecular features

In the crystal, pairs of N1—H1A⋯O1 and N2—H2A⋯O4 hydrogen bonds, Table 1[link], link the mol­ecules into inversion dimers that form supramolecular chains along the b-axis direction. C11—H11A⋯Cl1 and short Cl2⋯Cl2 contacts [Cl2⋯Cl2(1 − x, 1 − y, −z) = 3.467 (2) Å] bridge these chains and form sheets of mol­ecules parallel to ([\overline{1}]12), Fig. 2[link].

[Figure 2]
Figure 2
A packing diagram of the title compound. Hydrogen bonds (Table 1[link]) and Cl⋯Cl contacts are shown as dashed lines.

4. Database survey

Several similar structures have been reported previously, i.e. diethyl 3,3′-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2012[Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764.]), dimethyl 3,3′-[(4-fluoro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2015[Sun, H.-S., Li, Y., Jiang, H., Xu, N. & Xu, H. (2015). Acta Cryst. E71, 1140-1142.]) dimethyl 3,3′-[(4-chloro­phen­yl) methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Li et al., 2014[Li, Y., Sun, H., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 259-261.]) and dimethyl 3,3′-[(3-fluoro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Lu et al., 2014[Lu, X.-H., Sun, H.-S. & Hu, J. (2014). Acta Cryst. E70, 593-595.]). In these structures, the two indole ring systems are also nearly perpendicular to one another, making dihedral angles of 82.0 (5), 84.0 (5), 79.5 (4) and 87.8 (5)°, respectively.

5. Synthesis and crystallization

Ethyl indole-2-carboxyl­ate (1.88 g, 10 mmol) was dissolved in 20 ml ethanol; commercially available 2,4-di­chloro­benzalde­hyde (0.88 g, 5 mmol) was added and the mixture was heated to reflux temperature. Concentrated HCl (0.5 ml) was added and the reaction was left for 1 h. After cooling, the white product was filtered off and washed thoroughly with ethanol. The reaction was monitored with TLC (AcOEt:hexane = 1:3). Colourless block-like crystals of the title compound suitable for X-ray analysis were obtained in 92% yield by slow evaporation of an ethanol solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically with N—H = 0.86 Å and C—H = 0.93–0.98 Å, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H atoms and 1.2 for all others.

Table 2
Experimental details

Crystal data
Chemical formula C29H24Cl2N2O4
Mr 535.40
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 9.776 (2), 15.939 (3), 17.581 (4)
β (°) 101.94 (3)
V3) 2680.2 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Enraf–Nonius CAD-4
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.921, 0.973
No. of measured, independent and observed [I > 2σ(I)] reflections 5221, 4917, 2864
Rint 0.034
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.192, 1.00
No. of reflections 4917
No. of parameters 328
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.69, −1.14
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]), XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Diethyl 3,3'-[(2,4-dichlorophenyl)methylidene]bis(1H-indole-2-carboxylate) top
Crystal data top
C29H24Cl2N2O4F(000) = 1112
Mr = 535.40Dx = 1.327 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.776 (2) Åθ = 9–13°
b = 15.939 (3) ŵ = 0.28 mm1
c = 17.581 (4) ÅT = 293 K
β = 101.94 (3)°Block, colorless
V = 2680.2 (9) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2864 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 25.4°, θmin = 1.7°
ω/2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 019
Tmin = 0.921, Tmax = 0.973l = 2121
5221 measured reflections3 standard reflections every 200 reflections
4917 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.670P]
where P = (Fo2 + 2Fc2)/3
4917 reflections(Δ/σ)max < 0.001
328 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 1.13 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.99326 (13)0.65116 (9)0.32372 (10)0.0997 (6)
O10.0795 (3)0.57429 (17)0.06706 (15)0.0537 (7)
N10.1566 (3)0.53608 (18)0.09007 (17)0.0440 (8)
H1A0.08210.51010.06750.053*
C10.4458 (4)0.6877 (2)0.0923 (2)0.0371 (8)
H1B0.46560.67190.04180.044*
Cl20.61986 (13)0.53457 (7)0.08076 (8)0.0813 (5)
O20.2675 (3)0.65654 (16)0.05724 (14)0.0478 (7)
N20.3672 (3)0.91230 (18)0.04635 (18)0.0458 (8)
H2A0.38410.95990.02720.055*
C20.3421 (4)0.6237 (2)0.1094 (2)0.0373 (8)
O30.6370 (3)0.77571 (16)0.01095 (16)0.0514 (7)
C30.3369 (4)0.5821 (2)0.1812 (2)0.0400 (8)
O40.6115 (3)0.91368 (16)0.00828 (18)0.0600 (8)
C40.4188 (4)0.5829 (3)0.2572 (2)0.0554 (11)
H4A0.49520.61870.27020.066*
C50.3842 (5)0.5301 (3)0.3120 (3)0.0628 (12)
H5A0.43880.53040.36200.075*
C60.2703 (5)0.4761 (3)0.2950 (3)0.0598 (12)
H6A0.25100.44100.33370.072*
C70.1858 (4)0.4738 (2)0.2225 (2)0.0526 (10)
H7A0.10890.43820.21110.063*
C80.2203 (4)0.5274 (2)0.1659 (2)0.0424 (9)
C90.2289 (3)0.5925 (2)0.0549 (2)0.0379 (8)
C100.1837 (4)0.6072 (2)0.0283 (2)0.0378 (8)
C110.2406 (5)0.6680 (3)0.1409 (2)0.0611 (12)
H11A0.15870.70290.15770.073*
H11B0.22450.61420.16700.073*
C120.3646 (5)0.7087 (3)0.1591 (3)0.080
H12A0.35090.71690.21430.120*
H12B0.44490.67370.14180.120*
H12C0.37890.76190.13330.120*
C130.3873 (3)0.7766 (2)0.0822 (2)0.0367 (8)
C140.2657 (4)0.8105 (2)0.1040 (2)0.0393 (8)
C150.1617 (4)0.7797 (3)0.1419 (2)0.0499 (10)
H15A0.16320.72410.15820.060*
C160.0581 (5)0.8334 (3)0.1541 (3)0.0624 (12)
H16A0.01110.81330.17860.075*
C170.0542 (5)0.9170 (3)0.1308 (3)0.0755 (14)
H17A0.01650.95170.14090.091*
C180.1515 (4)0.9490 (3)0.0938 (3)0.0610 (12)
H18A0.14741.00470.07760.073*
C190.2575 (4)0.8959 (2)0.0809 (2)0.0430 (9)
C200.4467 (4)0.8411 (2)0.0468 (2)0.0378 (8)
C210.5712 (4)0.8480 (2)0.0141 (2)0.0410 (9)
C220.7623 (5)0.7796 (3)0.0215 (3)0.0673 (13)
H22A0.83060.81680.00930.081*
H22B0.73970.80060.07440.081*
C230.8196 (6)0.6929 (4)0.0202 (4)0.113 (2)
H23A0.90220.69320.04170.170*
H23B0.75090.65660.05050.170*
H23C0.84270.67300.03250.170*
C240.5846 (4)0.6817 (2)0.1501 (2)0.0391 (8)
C250.6324 (4)0.7431 (2)0.2053 (2)0.0437 (9)
H25A0.57900.79120.20680.052*
C260.7582 (4)0.7340 (3)0.2582 (2)0.0530 (11)
H26A0.78850.77580.29480.064*
C270.8370 (4)0.6642 (3)0.2566 (3)0.0614 (12)
C280.7963 (4)0.6021 (3)0.2019 (3)0.0634 (12)
H28A0.85130.55470.20060.076*
C290.6715 (4)0.6124 (2)0.1493 (2)0.0505 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0617 (8)0.0762 (9)0.1361 (13)0.0114 (7)0.0373 (8)0.0215 (8)
O10.0412 (15)0.0659 (18)0.0512 (16)0.0065 (14)0.0034 (13)0.0008 (14)
N10.0394 (17)0.0439 (18)0.0467 (18)0.0081 (14)0.0045 (14)0.0025 (14)
C10.0398 (19)0.0283 (17)0.043 (2)0.0036 (15)0.0076 (16)0.0009 (15)
Cl20.0746 (8)0.0529 (7)0.1067 (10)0.0220 (6)0.0039 (7)0.0310 (7)
O20.0522 (15)0.0472 (15)0.0421 (15)0.0103 (13)0.0050 (12)0.0081 (12)
N20.0482 (18)0.0284 (15)0.064 (2)0.0026 (14)0.0178 (16)0.0064 (14)
C20.0386 (19)0.0289 (18)0.044 (2)0.0002 (15)0.0090 (17)0.0012 (15)
O30.0497 (16)0.0397 (14)0.0711 (18)0.0091 (12)0.0271 (14)0.0049 (13)
C30.044 (2)0.0314 (18)0.044 (2)0.0024 (16)0.0090 (17)0.0068 (16)
O40.0536 (17)0.0404 (15)0.094 (2)0.0019 (13)0.0339 (16)0.0158 (15)
C40.058 (3)0.056 (2)0.050 (2)0.012 (2)0.005 (2)0.005 (2)
C50.061 (3)0.070 (3)0.054 (3)0.003 (2)0.005 (2)0.018 (2)
C60.063 (3)0.057 (3)0.062 (3)0.001 (2)0.019 (2)0.023 (2)
C70.050 (2)0.047 (2)0.063 (3)0.0070 (19)0.017 (2)0.011 (2)
C80.039 (2)0.036 (2)0.053 (2)0.0003 (16)0.0113 (17)0.0015 (17)
C90.0347 (18)0.0327 (18)0.047 (2)0.0003 (15)0.0107 (16)0.0019 (16)
C100.0344 (19)0.0329 (18)0.045 (2)0.0045 (16)0.0061 (17)0.0003 (16)
C110.058 (3)0.068 (3)0.052 (3)0.007 (2)0.002 (2)0.016 (2)
C120.0800.0800.0800.0000.0170.000
C130.0364 (19)0.0316 (18)0.042 (2)0.0024 (15)0.0072 (16)0.0020 (15)
C140.040 (2)0.0365 (19)0.043 (2)0.0038 (16)0.0105 (16)0.0017 (16)
C150.046 (2)0.050 (2)0.058 (3)0.0015 (19)0.021 (2)0.0061 (19)
C160.059 (3)0.059 (3)0.078 (3)0.000 (2)0.035 (2)0.002 (2)
C170.064 (3)0.058 (3)0.114 (4)0.021 (2)0.042 (3)0.001 (3)
C180.056 (3)0.041 (2)0.093 (3)0.012 (2)0.030 (2)0.006 (2)
C190.040 (2)0.038 (2)0.054 (2)0.0029 (17)0.0158 (18)0.0010 (17)
C200.0388 (19)0.0288 (18)0.046 (2)0.0016 (15)0.0097 (16)0.0008 (15)
C210.039 (2)0.039 (2)0.045 (2)0.0015 (17)0.0076 (17)0.0001 (17)
C220.063 (3)0.061 (3)0.089 (3)0.012 (2)0.041 (3)0.002 (2)
C230.102 (4)0.099 (5)0.158 (6)0.055 (4)0.071 (4)0.029 (4)
C240.038 (2)0.0334 (18)0.046 (2)0.0048 (16)0.0095 (16)0.0011 (16)
C250.045 (2)0.0338 (19)0.052 (2)0.0043 (17)0.0096 (18)0.0023 (17)
C260.060 (3)0.043 (2)0.052 (2)0.018 (2)0.004 (2)0.0031 (18)
C270.045 (2)0.052 (3)0.080 (3)0.008 (2)0.006 (2)0.016 (2)
C280.042 (2)0.046 (2)0.097 (4)0.005 (2)0.001 (2)0.008 (2)
C290.046 (2)0.034 (2)0.069 (3)0.0024 (18)0.006 (2)0.0040 (19)
Geometric parameters (Å, º) top
Cl1—C271.738 (4)C11—H11B0.9700
O1—C101.221 (4)C12—H12A0.9600
N1—C81.356 (5)C12—H12B0.9600
N1—C91.368 (4)C12—H12C0.9600
N1—H1A0.8600C13—C201.389 (5)
C1—C21.511 (5)C13—C141.429 (5)
C1—C241.521 (5)C14—C151.414 (5)
C1—C131.525 (4)C14—C191.418 (5)
C1—H1B0.9800C15—C161.377 (5)
Cl2—C291.730 (4)C15—H15A0.9300
O2—C101.312 (4)C16—C171.392 (6)
O2—C111.450 (5)C16—H16A0.9300
N2—C191.363 (4)C17—C181.358 (6)
N2—C201.375 (4)C17—H17A0.9300
N2—H2A0.8600C18—C191.393 (5)
C2—C91.396 (5)C18—H18A0.9300
C2—C31.436 (5)C20—C211.454 (5)
O3—C211.327 (4)C22—C231.489 (7)
O3—C221.456 (5)C22—H22A0.9700
C3—C41.409 (5)C22—H22B0.9700
C3—C81.415 (5)C23—H23A0.9600
O4—C211.212 (4)C23—H23B0.9600
C4—C51.372 (5)C23—H23C0.9600
C4—H4A0.9300C24—C251.389 (5)
C5—C61.390 (6)C24—C291.396 (5)
C5—H5A0.9300C25—C261.388 (5)
C6—C71.369 (6)C25—H25A0.9300
C6—H6A0.9300C26—C271.358 (6)
C7—C81.405 (5)C26—H26A0.9300
C7—H7A0.9300C27—C281.380 (6)
C9—C101.457 (5)C28—C291.380 (5)
C11—C121.467 (6)C28—H28A0.9300
C11—H11A0.9700
C8—N1—C9109.6 (3)C14—C13—C1129.2 (3)
C8—N1—H1A125.2C15—C14—C19117.7 (3)
C9—N1—H1A125.2C15—C14—C13135.6 (3)
C2—C1—C24111.6 (3)C19—C14—C13106.7 (3)
C2—C1—C13113.6 (3)C16—C15—C14118.8 (4)
C24—C1—C13113.4 (3)C16—C15—H15A120.6
C2—C1—H1B105.8C14—C15—H15A120.6
C24—C1—H1B105.8C15—C16—C17121.7 (4)
C13—C1—H1B105.8C15—C16—H16A119.1
C10—O2—C11118.2 (3)C17—C16—H16A119.1
C19—N2—C20109.6 (3)C18—C17—C16121.4 (4)
C19—N2—H2A125.2C18—C17—H17A119.3
C20—N2—H2A125.2C16—C17—H17A119.3
C9—C2—C3105.7 (3)C17—C18—C19117.9 (4)
C9—C2—C1125.0 (3)C17—C18—H18A121.0
C3—C2—C1129.3 (3)C19—C18—H18A121.0
C21—O3—C22115.8 (3)N2—C19—C18129.6 (3)
C4—C3—C8117.6 (3)N2—C19—C14108.0 (3)
C4—C3—C2135.5 (3)C18—C19—C14122.5 (3)
C8—C3—C2106.9 (3)N2—C20—C13109.0 (3)
C5—C4—C3119.1 (4)N2—C20—C21117.0 (3)
C5—C4—H4A120.5C13—C20—C21134.0 (3)
C3—C4—H4A120.5O4—C21—O3122.9 (3)
C4—C5—C6122.2 (4)O4—C21—C20123.3 (3)
C4—C5—H5A118.9O3—C21—C20113.8 (3)
C6—C5—H5A118.9O3—C22—C23107.4 (4)
C7—C6—C5121.2 (4)O3—C22—H22A110.2
C7—C6—H6A119.4C23—C22—H22A110.2
C5—C6—H6A119.4O3—C22—H22B110.2
C6—C7—C8117.2 (4)C23—C22—H22B110.2
C6—C7—H7A121.4H22A—C22—H22B108.5
C8—C7—H7A121.4C22—C23—H23A109.5
N1—C8—C7129.0 (3)C22—C23—H23B109.5
N1—C8—C3108.2 (3)H23A—C23—H23B109.5
C7—C8—C3122.8 (4)C22—C23—H23C109.5
N1—C9—C2109.6 (3)H23A—C23—H23C109.5
N1—C9—C10118.8 (3)H23B—C23—H23C109.5
C2—C9—C10131.6 (3)C25—C24—C29116.6 (3)
O1—C10—O2123.8 (3)C25—C24—C1123.2 (3)
O1—C10—C9122.4 (3)C29—C24—C1120.2 (3)
O2—C10—C9113.7 (3)C26—C25—C24121.2 (4)
O2—C11—C12107.0 (3)C26—C25—H25A119.4
O2—C11—H11A110.3C24—C25—H25A119.4
C12—C11—H11A110.3C27—C26—C25120.0 (4)
O2—C11—H11B110.3C27—C26—H26A120.0
C12—C11—H11B110.3C25—C26—H26A120.0
H11A—C11—H11B108.6C26—C27—C28121.3 (4)
C11—C12—H12A109.5C26—C27—Cl1120.4 (4)
C11—C12—H12B109.5C28—C27—Cl1118.3 (3)
H12A—C12—H12B109.5C29—C28—C27118.0 (4)
C11—C12—H12C109.5C29—C28—H28A121.0
H12A—C12—H12C109.5C27—C28—H28A121.0
H12B—C12—H12C109.5C28—C29—C24122.9 (4)
C20—C13—C14106.8 (3)C28—C29—Cl2118.1 (3)
C20—C13—C1124.0 (3)C24—C29—Cl2119.0 (3)
C24—C1—C2—C9156.0 (3)C13—C14—C15—C16178.9 (4)
C13—C1—C2—C974.3 (4)C14—C15—C16—C170.6 (7)
C24—C1—C2—C323.5 (5)C15—C16—C17—C181.1 (8)
C13—C1—C2—C3106.2 (4)C16—C17—C18—C191.1 (8)
C9—C2—C3—C4178.7 (4)C20—N2—C19—C18179.4 (4)
C1—C2—C3—C40.9 (7)C20—N2—C19—C140.5 (4)
C9—C2—C3—C80.3 (4)C17—C18—C19—N2179.2 (4)
C1—C2—C3—C8179.3 (3)C17—C18—C19—C140.7 (7)
C8—C3—C4—C51.4 (6)C15—C14—C19—N2179.6 (3)
C2—C3—C4—C5176.9 (4)C13—C14—C19—N20.6 (4)
C3—C4—C5—C60.5 (7)C15—C14—C19—C180.3 (6)
C4—C5—C6—C70.6 (7)C13—C14—C19—C18179.4 (4)
C5—C6—C7—C80.7 (6)C19—N2—C20—C130.2 (4)
C9—N1—C8—C7176.9 (4)C19—N2—C20—C21178.2 (3)
C9—N1—C8—C31.5 (4)C14—C13—C20—N20.1 (4)
C6—C7—C8—N1178.5 (4)C1—C13—C20—N2179.2 (3)
C6—C7—C8—C30.3 (6)C14—C13—C20—C21178.2 (4)
C4—C3—C8—N1179.8 (3)C1—C13—C20—C212.7 (6)
C2—C3—C8—N11.1 (4)C22—O3—C21—O40.0 (5)
C4—C3—C8—C71.3 (5)C22—O3—C21—C20180.0 (3)
C2—C3—C8—C7177.5 (3)N2—C20—C21—O44.9 (5)
C8—N1—C9—C21.4 (4)C13—C20—C21—O4173.1 (4)
C8—N1—C9—C10176.0 (3)N2—C20—C21—O3175.1 (3)
C3—C2—C9—N10.6 (4)C13—C20—C21—O37.0 (6)
C1—C2—C9—N1179.7 (3)C21—O3—C22—C23179.8 (4)
C3—C2—C9—C10176.2 (3)C2—C1—C24—C25110.9 (4)
C1—C2—C9—C103.4 (6)C13—C1—C24—C2518.9 (5)
C11—O2—C10—O14.5 (5)C2—C1—C24—C2969.4 (4)
C11—O2—C10—C9173.4 (3)C13—C1—C24—C29160.8 (3)
N1—C9—C10—O13.8 (5)C29—C24—C25—C262.0 (5)
C2—C9—C10—O1179.5 (4)C1—C24—C25—C26178.3 (3)
N1—C9—C10—O2174.1 (3)C24—C25—C26—C270.0 (6)
C2—C9—C10—O22.5 (5)C25—C26—C27—C281.5 (6)
C10—O2—C11—C12167.2 (3)C25—C26—C27—Cl1178.8 (3)
C2—C1—C13—C20162.4 (3)C26—C27—C28—C290.9 (7)
C24—C1—C13—C2068.8 (4)Cl1—C27—C28—C29179.4 (3)
C2—C1—C13—C1416.4 (5)C27—C28—C29—C241.2 (7)
C24—C1—C13—C14112.3 (4)C27—C28—C29—Cl2179.8 (3)
C20—C13—C14—C15179.2 (4)C25—C24—C29—C282.6 (6)
C1—C13—C14—C151.8 (7)C1—C24—C29—C28177.7 (4)
C20—C13—C14—C190.4 (4)C25—C24—C29—Cl2178.8 (3)
C1—C13—C14—C19179.4 (3)C1—C24—C29—Cl20.9 (5)
C19—C14—C15—C160.2 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg5 are the centroids of the N1,C8,C3,C2,C9 and C24–C29 rings respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.072.864 (4)152
N2—H2A···O4ii0.862.042.871 (4)161
C11—H11A···Cl1iii0.972.813.731 (5)158
C4—H4A···Cg50.932.773.516 (4)137
C15—H15A···Cg10.932.723.476 (5)139
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z; (iii) x1, y+3/2, z1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Funding information

Funding for this research was provided by: University of Natural Science Foundation in Jiangsu Province (grant No. 17KJB320001); Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (grant No. PPZY2015B179); Training program of Students innovation and entrepreneurship in Jiangsu Province (grant No. 201712920001Y); Qing Lan Project of Jiangsu Province.

References

First citationChang, Y.-C., Riby, J., Chang, G. H., Peng, G.-F., Firestone, G. & Bjeldanes, L. F. (1999). Biochem. Pharmacol. 58, 825–834.  Web of Science CrossRef PubMed CAS
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.
First citationGe, X., Fares, F. A. & Yannai, S. (1999). Anticancer Res. 19, 3199–3203.  Web of Science PubMed CAS
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
First citationLi, Y., Sun, H., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 259–261.  CSD CrossRef IUCr Journals
First citationLu, X.-H., Sun, H.-S. & Hu, J. (2014). Acta Cryst. E70, 593–595.  CSD CrossRef IUCr Journals
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals
First citationNi, Y.-C. (2008). Curr. Med. Imaging Rev. 4, 96–112.  Web of Science CrossRef CAS
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science
First citationPorter, J. K., Bacon, C. W., Robbins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88–93.  CrossRef CAS Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSun, H.-S., Li, Y., Jiang, H., Xu, N. & Xu, H. (2015). Acta Cryst. E71, 1140–1142.  Web of Science CSD CrossRef IUCr Journals
First citationSun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764.  CSD CrossRef IUCr Journals
First citationSundberg, R. J. (1996). The Chemistry of Indoles, p. 113 New York: Academic Press.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds