research communications
A one-dimensional HgII coordination polymer based on bis(pyridin-3-ylmethyl)sulfane
aDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, bDivision of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea, and cResearch institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: kangy@kangwon.ac.kr, kmpark@gnu.ac.kr
The reaction of mercury(II) chloride with bis(pyridin-3-ylmethyl)sulfane (L, C12H12N2S) in methanol afforded the title crystalline coordination polymer catena-poly[[dichloridomercury(II)]-μ-bis(pyridin-3-ylmethyl)sulfane-κ2N:N′], [HgCl2L]n. The consists of one HgII cation, one L ligand and two chloride anions. Each HgII ion is coordinated by two pyridine N atoms from separate L ligands and two chloride anions. The metal adopts a highly distorted tetrahedral geometry, with bond angles about the central atom in the range 97.69 (12)–153.86 (7)°. Each L ligand bridges two HgII ions, forming an infinite –(Hg–L)n– zigzag chain along the b axis, with an Hg⋯Hg separation of 10.3997 (8) Å. In the crystal, adjacent chains are connected by intermolecular C—H⋯Cl hydrogen bonds, together with Hg—Cl⋯π interactions [chloride-to-centroid distance = 3.902 (3) Å], that form between a chloride anion and the one of the pyridine rings of L, generating a two-dimensional layer extending parallel to (101). These layers are further linked by intermolecular C—H⋯π hydrogen bonds, forming a three-dimensional supramolecular network.
Keywords: crystal structure; HgII compound; dipyridyl ligand; zigzag coordination polymer; hydrogen bonding; C—H⋯π interactions.
CCDC reference: 1584773
1. Chemical context
The structural topology of coordination polymers generated from the self-assembly of transition metal ions and organic molecules functioning as spacer ligands depends mainly on the structures of the spacer ligands and the coordination geometries adopted by the metal ions. The flexibility, length and coordinating ability of the spacer ligands exert strong influences on the formation of coordination polymers and their resulting diverse topologies (Zheng et al., 2009; Leong & Vittal, 2011; Liu et al. 2011). For this reason, both rigid and flexible dipyridyl-type spacer ligands with strong coordinating ability and functional characteristics have been widely used to construct a variety of coordination polymers with interesting structures and attractive potential applications in material science (Silva et al., 2015; Furukawa et al., 2014; Wang et al., 2012).
Our group has also synthesized the flexible dipyridyl-type ligand bis(pyridine-3-ylmethyl)sulfane (L), and has reported its AgI and CoII coordination polymers (Moon et al., 2017a,b). Our continuing interest in the development of coordination polymers based on this ligand led us to investigate a coordination polymer with an HgII cation. The reaction of mercury(II) chloride with L (synthesized according to a previously reported procedure: Park et al., 2010; Lee et al., 2012) afforded the title compound. Herein, we describe its structure, which involves a one-dimensional zigzag-chain.
2. Structural commentary
Fig. 1 shows the molecular structure of the title compound, [HgLCl2]n, L = bis(pyridine-3-ylmethyl)sulfane, C12H12N2S. The comprises one HgII cation, one L ligand and two chloride anions. The HgII ion is four-coordinated, binding to two Cl anions and two pyridine N atoms from two separate symmetry-related L ligands, forming a highly distorted tetrahedral geometry (Fig. 1), with the tetrahedral angles falling in the range of 97.69 (12)–153.86 (7)° (Table 1). The S atoms of the L ligands are surprisingly not bound to the soft HgII cations. Each L ligand bridges two HgII cations, resulting in an infinite zigzag chain propagating along the b-axis direction (Fig. 2). The separation between the HgII ions in the chain is 10.3997 (8) Å. In the L ligand, the dihedral angle between the two terminal pyridine rings is 78.52 (18)°, and the flexible thioether moiety [C4–C6–S1–C7–C8] shows a bent arrangement with a gauche--anti configuration [C4—C6—S1—C7 = 71.9 (5)°; C6—S1—C7—C8 = 172.1 (5)°]. The conformation of the L ligand, along with its Npy—Hg—Npy coordination angle [98.39 (16)°], may induce the zigzag topology of the chain.
3. Supramolecular features
In the , Table 2) and Hg—Cl⋯π interactions (Chifotides & Dunbar, 2013; Matter et al., 2009) between the chloride anions and the pyridine rings of L with Cl2⋯Cg1iv = 3.902 (3) Å and Hg1—Cl2⋯Cg1iv = 77.21 (6)° [Fig. 3; Cg1 is the centroid of the N1/C1–C5 ring; symmetry code: (iv) −x + 1, −y + 1, −z + 1], generating layers extending parallel to (101). Neighboring layers are linked by C2—H2⋯Cg2 hydrogen bonds (Table 2; Fig. 4), resulting in the formation of a three-dimensional supramolecular network.
adjacent zigzag chains are connected by C10—H10⋯Cl1 hydrogen bonds (Fig. 34. Database survey
A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016) for the title ligand (L) gave three hits. Two (REJCAL, RENHOI; Hanton et al., 2006) are copper(I) iodide coordination polymers adopting staircase- and loop-type structures, respectively. The other (EXEZOW; Seo et al., 2003) is a cyclic dimer-type silver(I) BF4 complex. Recently, our group has also reported the crystal structures of silver(I) (Moon et al., 2017a) and cobalt(II) (Moon et al., 2017b) NO3 coordination polymers that display twisted ribbon- and loop-type topologies, respectively. In these complexes, the flexible thioether moiety (Cpy–C–S–C–Cpy) of the L ligand adopts a bent arrangement that is similar to that of the HgII polymer described here. However, the title compound displays a zigzag topology and is the first example of an HgII coordination polymer with the ligand L.
5. Synthesis and crystallization
The L ligand was synthesized according to a literature method (Park et al., 2010; Lee et al., 2012). Crystals of the title compound were obtained by slow evaporation of a methanol solution of L with HgCl2 in a 1:1 molar ratio.
6. Refinement
Crystal data, data collection and structure . All H atoms were positioned geometrically and refined as riding: C—H = 0.93 Å for Csp2—H and 0.97 Å for methylene C—H with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3Supporting information
CCDC reference: 1584773
https://doi.org/10.1107/S205698901701619X/sj5541sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901701619X/sj5541Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).[HgCl2(C12H12N2S)] | F(000) = 912 |
Mr = 487.79 | Dx = 2.200 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.4724 (11) Å | Cell parameters from 9216 reflections |
b = 13.1128 (14) Å | θ = 2.5–28.2° |
c = 10.8914 (12) Å | µ = 10.94 mm−1 |
β = 100.1171 (18)° | T = 298 K |
V = 1472.4 (3) Å3 | Plate, colorless |
Z = 4 | 0.45 × 0.40 × 0.30 mm |
Bruker SMART APEX CCD diffractometer | 2413 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.047 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 27.0°, θmin = 2.5° |
Tmin = 0.447, Tmax = 0.746 | h = −13→11 |
8706 measured reflections | k = −16→10 |
3197 independent reflections | l = −13→13 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.076 | w = 1/[σ2(Fo2) + (0.0315P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
3197 reflections | Δρmax = 0.62 e Å−3 |
163 parameters | Δρmin = −1.62 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 0.62237 (2) | 0.33807 (2) | 0.42736 (2) | 0.04266 (10) | |
Cl1 | 0.54910 (16) | 0.36205 (14) | 0.21164 (15) | 0.0559 (4) | |
Cl2 | 0.75516 (17) | 0.37587 (15) | 0.62207 (16) | 0.0633 (5) | |
S1 | −0.06074 (16) | 0.35443 (14) | 0.33023 (18) | 0.0598 (5) | |
N1 | 0.4127 (5) | 0.3509 (4) | 0.4938 (4) | 0.0416 (12) | |
N2 | −0.1449 (4) | 0.6533 (4) | 0.0651 (4) | 0.0408 (12) | |
C1 | 0.4063 (6) | 0.3940 (5) | 0.6036 (6) | 0.0467 (15) | |
H1 | 0.4823 | 0.4178 | 0.6525 | 0.056* | |
C2 | 0.2918 (7) | 0.4044 (5) | 0.6469 (6) | 0.0551 (17) | |
H2 | 0.2897 | 0.4384 | 0.7215 | 0.066* | |
C3 | 0.1800 (7) | 0.3642 (5) | 0.5789 (7) | 0.0537 (17) | |
H3 | 0.1018 | 0.3697 | 0.6079 | 0.064* | |
C4 | 0.1849 (6) | 0.3153 (4) | 0.4666 (6) | 0.0414 (14) | |
C5 | 0.3037 (6) | 0.3121 (4) | 0.4282 (6) | 0.0425 (14) | |
H5 | 0.3081 | 0.2812 | 0.3523 | 0.051* | |
C6 | 0.0678 (6) | 0.2659 (5) | 0.3898 (7) | 0.0545 (17) | |
H6A | 0.0341 | 0.2151 | 0.4405 | 0.065* | |
H6B | 0.0944 | 0.2307 | 0.3201 | 0.065* | |
C7 | 0.0153 (6) | 0.4169 (5) | 0.2132 (6) | 0.0462 (15) | |
H7A | 0.0896 | 0.4559 | 0.2536 | 0.055* | |
H7B | 0.0457 | 0.3660 | 0.1605 | 0.055* | |
C8 | −0.0790 (5) | 0.4860 (5) | 0.1354 (5) | 0.0403 (13) | |
C9 | −0.0627 (5) | 0.5903 (4) | 0.1356 (5) | 0.0379 (13) | |
H9 | 0.0090 | 0.6181 | 0.1873 | 0.045* | |
C10 | −0.2482 (6) | 0.6139 (5) | −0.0097 (6) | 0.0464 (15) | |
H10 | −0.3048 | 0.6575 | −0.0601 | 0.056* | |
C11 | −0.2726 (6) | 0.5132 (5) | −0.0141 (6) | 0.0574 (17) | |
H11 | −0.3457 | 0.4882 | −0.0663 | 0.069* | |
C12 | −0.1897 (6) | 0.4473 (5) | 0.0583 (6) | 0.0503 (16) | |
H12 | −0.2068 | 0.3776 | 0.0563 | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.03985 (13) | 0.04678 (16) | 0.03812 (15) | 0.00356 (11) | −0.00208 (9) | −0.00140 (12) |
Cl1 | 0.0515 (9) | 0.0733 (12) | 0.0385 (9) | 0.0022 (8) | −0.0039 (7) | −0.0006 (8) |
Cl2 | 0.0602 (10) | 0.0726 (12) | 0.0482 (10) | −0.0080 (9) | −0.0154 (8) | −0.0059 (9) |
S1 | 0.0373 (8) | 0.0776 (13) | 0.0666 (12) | 0.0107 (8) | 0.0149 (8) | 0.0249 (10) |
N1 | 0.041 (3) | 0.048 (3) | 0.035 (3) | 0.011 (2) | 0.006 (2) | −0.002 (2) |
N2 | 0.039 (3) | 0.042 (3) | 0.039 (3) | −0.004 (2) | 0.000 (2) | 0.002 (2) |
C1 | 0.047 (3) | 0.046 (4) | 0.046 (4) | −0.003 (3) | 0.004 (3) | 0.001 (3) |
C2 | 0.063 (4) | 0.061 (5) | 0.045 (4) | 0.004 (3) | 0.021 (3) | −0.009 (3) |
C3 | 0.056 (4) | 0.053 (4) | 0.057 (4) | −0.001 (3) | 0.024 (3) | −0.002 (3) |
C4 | 0.043 (3) | 0.033 (3) | 0.049 (4) | 0.011 (2) | 0.009 (3) | 0.012 (3) |
C5 | 0.044 (3) | 0.047 (4) | 0.037 (3) | 0.010 (3) | 0.007 (3) | −0.003 (3) |
C6 | 0.044 (4) | 0.047 (4) | 0.071 (5) | −0.001 (3) | 0.008 (3) | 0.017 (3) |
C7 | 0.039 (3) | 0.051 (4) | 0.051 (4) | 0.000 (3) | 0.013 (3) | 0.006 (3) |
C8 | 0.043 (3) | 0.047 (4) | 0.031 (3) | 0.001 (3) | 0.006 (2) | −0.003 (3) |
C9 | 0.032 (3) | 0.045 (4) | 0.036 (3) | −0.005 (2) | 0.003 (2) | −0.002 (3) |
C10 | 0.040 (3) | 0.055 (4) | 0.039 (4) | −0.005 (3) | −0.006 (3) | 0.001 (3) |
C11 | 0.056 (4) | 0.055 (4) | 0.053 (4) | −0.013 (3) | −0.011 (3) | −0.004 (3) |
C12 | 0.051 (4) | 0.040 (4) | 0.056 (4) | −0.014 (3) | −0.002 (3) | −0.003 (3) |
Hg1—Cl1 | 2.3610 (16) | C4—C5 | 1.381 (8) |
Hg1—Cl2 | 2.3751 (16) | C4—C6 | 1.504 (9) |
Hg1—N2i | 2.434 (5) | C5—H5 | 0.9300 |
Hg1—N1 | 2.436 (5) | C6—H6A | 0.9700 |
S1—C6 | 1.810 (6) | C6—H6B | 0.9700 |
S1—C7 | 1.813 (6) | C7—C8 | 1.490 (8) |
N1—C5 | 1.335 (8) | C7—H7A | 0.9700 |
N1—C1 | 1.336 (7) | C7—H7B | 0.9700 |
N2—C9 | 1.334 (7) | C8—C9 | 1.378 (8) |
N2—C10 | 1.339 (7) | C8—C12 | 1.402 (8) |
N2—Hg1ii | 2.434 (5) | C9—H9 | 0.9300 |
C1—C2 | 1.370 (8) | C10—C11 | 1.345 (9) |
C1—H1 | 0.9300 | C10—H10 | 0.9300 |
C2—C3 | 1.376 (10) | C11—C12 | 1.372 (9) |
C2—H2 | 0.9300 | C11—H11 | 0.9300 |
C3—C4 | 1.390 (9) | C12—H12 | 0.9300 |
C3—H3 | 0.9300 | ||
Cl1—Hg1—Cl2 | 153.86 (7) | C4—C6—S1 | 113.9 (4) |
Cl1—Hg1—N2i | 100.29 (12) | C4—C6—H6A | 108.8 |
Cl2—Hg1—N2i | 98.03 (12) | S1—C6—H6A | 108.8 |
Cl1—Hg1—N1 | 97.69 (12) | C4—C6—H6B | 108.8 |
Cl2—Hg1—N1 | 97.91 (13) | S1—C6—H6B | 108.8 |
N2i—Hg1—N1 | 98.39 (16) | H6A—C6—H6B | 107.7 |
C6—S1—C7 | 98.7 (3) | C8—C7—S1 | 110.2 (4) |
C5—N1—C1 | 117.9 (5) | C8—C7—H7A | 109.6 |
C5—N1—Hg1 | 123.0 (4) | S1—C7—H7A | 109.6 |
C1—N1—Hg1 | 119.0 (4) | C8—C7—H7B | 109.6 |
C9—N2—C10 | 118.8 (5) | S1—C7—H7B | 109.6 |
C9—N2—Hg1ii | 123.3 (4) | H7A—C7—H7B | 108.1 |
C10—N2—Hg1ii | 117.9 (4) | C9—C8—C12 | 116.7 (6) |
N1—C1—C2 | 122.3 (6) | C9—C8—C7 | 122.2 (5) |
N1—C1—H1 | 118.8 | C12—C8—C7 | 121.0 (6) |
C2—C1—H1 | 118.8 | N2—C9—C8 | 123.1 (5) |
C1—C2—C3 | 119.3 (6) | N2—C9—H9 | 118.4 |
C1—C2—H2 | 120.3 | C8—C9—H9 | 118.4 |
C3—C2—H2 | 120.3 | N2—C10—C11 | 121.9 (6) |
C2—C3—C4 | 119.4 (6) | N2—C10—H10 | 119.0 |
C2—C3—H3 | 120.3 | C11—C10—H10 | 119.0 |
C4—C3—H3 | 120.3 | C10—C11—C12 | 120.1 (6) |
C5—C4—C3 | 117.0 (6) | C10—C11—H11 | 120.0 |
C5—C4—C6 | 120.6 (6) | C12—C11—H11 | 120.0 |
C3—C4—C6 | 122.4 (6) | C11—C12—C8 | 119.3 (6) |
N1—C5—C4 | 123.9 (6) | C11—C12—H12 | 120.4 |
N1—C5—H5 | 118.1 | C8—C12—H12 | 120.4 |
C4—C5—H5 | 118.1 | ||
C5—N1—C1—C2 | −3.7 (9) | C6—S1—C7—C8 | 172.1 (5) |
Hg1—N1—C1—C2 | 179.6 (5) | S1—C7—C8—C9 | 114.8 (5) |
N1—C1—C2—C3 | 3.8 (10) | S1—C7—C8—C12 | −65.0 (7) |
C1—C2—C3—C4 | −1.1 (10) | C10—N2—C9—C8 | −0.1 (8) |
C2—C3—C4—C5 | −1.4 (9) | Hg1ii—N2—C9—C8 | 176.9 (4) |
C2—C3—C4—C6 | 177.5 (6) | C12—C8—C9—N2 | −1.4 (9) |
C1—N1—C5—C4 | 0.9 (9) | C7—C8—C9—N2 | 178.9 (5) |
Hg1—N1—C5—C4 | 177.5 (4) | C9—N2—C10—C11 | 1.2 (9) |
C3—C4—C5—N1 | 1.6 (9) | Hg1ii—N2—C10—C11 | −175.9 (5) |
C6—C4—C5—N1 | −177.4 (5) | N2—C10—C11—C12 | −0.7 (10) |
C5—C4—C6—S1 | −117.0 (5) | C10—C11—C12—C8 | −0.8 (10) |
C3—C4—C6—S1 | 64.1 (7) | C9—C8—C12—C11 | 1.8 (9) |
C7—S1—C6—C4 | 71.9 (5) | C7—C8—C12—C11 | −178.5 (6) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+1/2, y+1/2, −z+1/2. |
Cg2 is the centroid of the N2/C8–C12 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···Cl1iii | 0.93 | 2.80 | 3.526 (6) | 136 |
C2—H2···Cg2iv | 0.93 | 2.89 | 3.689 (7) | 145 |
Symmetry codes: (iii) −x, −y+1, −z; (iv) −x, −y+1, −z+1. |
Funding information
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A3A01020410) and a 2017 Research Grant from Kangwon National University (No. 520170312).
References
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chifotides, H. T. & Dunbar, K. R. (2013). Acc. Chem. Res. 46, 894–906. Web of Science CrossRef CAS PubMed
Furukawa, S., Reboul, J., Diring, S., Sumida, K. & Kitagawa, S. (2014). Chem. Soc. Rev. 43, 5700–5734. Web of Science CrossRef CAS PubMed
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals
Hanton, L. R., Hellyer, R. M. & Spicer, M. D. (2006). Inorg. Chim. Acta, 359, 3659–3665. Web of Science CSD CrossRef CAS
Lee, E., Seo, J., Lee, S. S. & Park, K.-M. (2012). Cryst. Growth Des. 12, 3834–3837. Web of Science CSD CrossRef CAS
Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764. Web of Science CrossRef CAS PubMed
Liu, D., Chang, Y.-J. & Lang, J.-P. (2011). CrystEngComm, 13, 1851–1857. Web of Science CSD CrossRef CAS
Matter, H., Nazaré, M., Güssregen, S., Will, D. W., Schreuder, H., Bauer, A., Urmann, M., Ritter, K., Wagner, M. & Wehner, V. (2009). Angew. Chem. Int. Ed. 48, 2911–2916. Web of Science CrossRef CAS
Moon, S.-H., Kang, Y. & Park, K.-M. (2017a). Acta Cryst. E73, 1587–1589. Web of Science CSD CrossRef IUCr Journals
Moon, S.-H., Seo, J. & Park, K.-M. (2017b). Acta Cryst. E73, 1700–1703. Web of Science CSD CrossRef IUCr Journals
Park, K.-M., Seo, J., Moon, S.-H. & Lee, S. S. (2010). Cryst. Growth Des. 10, 4148–4154. Web of Science CSD CrossRef CAS
Seo, J., Moon, S.-T., Kim, J., Lee, S. S. & Park, K.-M. (2003). Bull. Korean Chem. Soc. 24, 1393–1395. CAS
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Silva, P., Vilela, S. M. F., Tomé, J. P. C. & Almeida Paz, F. A. (2015). Chem. Soc. Rev. 44, 6774–6803. Web of Science CrossRef CAS PubMed
Wang, C., Zhang, T. & Lin, W. (2012). Chem. Rev. 112, 1084–1104. Web of Science CrossRef CAS PubMed
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals
Zheng, S.-R., Yang, Q.-Y., Yang, R., Pan, M., Cao, R. & Su, C.-Y. (2009). Cryst. Growth Des. 9, 2341–2353. Web of Science CSD CrossRef CAS
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.