research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A one-dimensional HgII coordination polymer based on bis­­(pyridin-3-ylmeth­yl)sulfane

CROSSMARK_Color_square_no_text.svg

aDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, bDivision of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea, and cResearch institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: kangy@kangwon.ac.kr, kmpark@gnu.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 5 November 2017; accepted 9 November 2017; online 17 November 2017)

The reaction of mercury(II) chloride with bis­(pyridin-3-ylmeth­yl)sulfane (L, C12H12N2S) in methanol afforded the title crystalline coordination polymer catena-poly[[di­chlorido­mercury(II)]-μ-bis­(pyridin-3-ylmeth­yl)sulfane-κ2N:N′], [HgCl2L]n. The asymmetric unit consists of one HgII cation, one L ligand and two chloride anions. Each HgII ion is coordinated by two pyridine N atoms from separate L ligands and two chloride anions. The metal adopts a highly distorted tetra­hedral geometry, with bond angles about the central atom in the range 97.69 (12)–153.86 (7)°. Each L ligand bridges two HgII ions, forming an infinite –(Hg–L)n– zigzag chain along the b axis, with an Hg⋯Hg separation of 10.3997 (8) Å. In the crystal, adjacent chains are connected by inter­molecular C—H⋯Cl hydrogen bonds, together with Hg—Cl⋯π inter­actions [chloride-to-centroid distance = 3.902 (3) Å], that form between a chloride anion and the one of the pyridine rings of L, generating a two-dimensional layer extending parallel to (101). These layers are further linked by inter­molecular C—H⋯π hydrogen bonds, forming a three-dimensional supra­molecular network.

1. Chemical context

The structural topology of coordination polymers generated from the self-assembly of transition metal ions and organic mol­ecules functioning as spacer ligands depends mainly on the structures of the spacer ligands and the coordination geom­etries adopted by the metal ions. The flexibility, length and coordinating ability of the spacer ligands exert strong influences on the formation of coordination polymers and their resulting diverse topologies (Zheng et al., 2009[Zheng, S.-R., Yang, Q.-Y., Yang, R., Pan, M., Cao, R. & Su, C.-Y. (2009). Cryst. Growth Des. 9, 2341-2353.]; Leong & Vittal, 2011[Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688-764.]; Liu et al. 2011[Liu, D., Chang, Y.-J. & Lang, J.-P. (2011). CrystEngComm, 13, 1851-1857.]). For this reason, both rigid and flexible dipyridyl-type spacer ligands with strong coordinating ability and functional characteristics have been widely used to construct a variety of coordination polymers with inter­esting structures and attractive potential applications in material science (Silva et al., 2015[Silva, P., Vilela, S. M. F., Tomé, J. P. C. & Almeida Paz, F. A. (2015). Chem. Soc. Rev. 44, 6774-6803.]; Furukawa et al., 2014[Furukawa, S., Reboul, J., Diring, S., Sumida, K. & Kitagawa, S. (2014). Chem. Soc. Rev. 43, 5700-5734.]; Wang et al., 2012[Wang, C., Zhang, T. & Lin, W. (2012). Chem. Rev. 112, 1084-1104.]).

[Scheme 1]

Our group has also synthesized the flexible dipyridyl-type ligand bis­(pyridine-3-ylmeth­yl)sulfane (L), and has reported its AgI and CoII coordination polymers (Moon et al., 2017a[Moon, S.-H., Kang, Y. & Park, K.-M. (2017a). Acta Cryst. E73, 1587-1589.],b[Moon, S.-H., Seo, J. & Park, K.-M. (2017b). Acta Cryst. E73, 1700-1703.]). Our continuing inter­est in the development of coordination polymers based on this ligand led us to investigate a coordin­ation polymer with an HgII cation. The reaction of mercury(II) chloride with L (synthesized according to a previously reported procedure: Park et al., 2010[Park, K.-M., Seo, J., Moon, S.-H. & Lee, S. S. (2010). Cryst. Growth Des. 10, 4148-4154.]; Lee et al., 2012[Lee, E., Seo, J., Lee, S. S. & Park, K.-M. (2012). Cryst. Growth Des. 12, 3834-3837.]) afforded the title compound. Herein, we describe its structure, which involves a one-dimensional zigzag-chain.

2. Structural commentary

Fig. 1[link] shows the mol­ecular structure of the title compound, [HgLCl2]n, L = bis­(pyridine-3-ylmeth­yl)sulfane, C12H12N2S. The asymmetric unit comprises one HgII cation, one L ligand and two chloride anions. The HgII ion is four-coordinated, binding to two Cl anions and two pyridine N atoms from two separate symmetry-related L ligands, forming a highly distorted tetra­hedral geometry (Fig. 1[link]), with the tetra­hedral angles falling in the range of 97.69 (12)–153.86 (7)° (Table 1[link]). The S atoms of the L ligands are surprisingly not bound to the soft HgII cations. Each L ligand bridges two HgII cations, resulting in an infinite zigzag chain propagating along the b-axis direction (Fig. 2[link]). The separation between the HgII ions in the chain is 10.3997 (8) Å. In the L ligand, the dihedral angle between the two terminal pyridine rings is 78.52 (18)°, and the flexible thio­ether moiety [C4–C6–S1–C7–C8] shows a bent arrangement with a gauche--anti configuration [C4—C6—S1—C7 = 71.9 (5)°; C6—S1—C7—C8 = 172.1 (5)°]. The conformation of the L ligand, along with its Npy—Hg—Npy coordination angle [98.39 (16)°], may induce the zigzag topology of the chain.

Table 1
Selected geometric parameters (Å, °)

Hg1—Cl1 2.3610 (16) Hg1—N2i 2.434 (5)
Hg1—Cl2 2.3751 (16) Hg1—N1 2.436 (5)
       
Cl1—Hg1—Cl2 153.86 (7) Cl1—Hg1—N1 97.69 (12)
Cl1—Hg1—N2i 100.29 (12) Cl2—Hg1—N1 97.91 (13)
Cl2—Hg1—N2i 98.03 (12) N2i—Hg1—N1 98.39 (16)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
View of the mol­ecular structure of the title compound, showing the atom-numbering scheme [symmetry codes: (i) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (ii) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]]. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The polymeric zigzag chain propagating along the b-axis direction. H atoms are omitted for clarity.

3. Supra­molecular features

In the crystal structure, adjacent zigzag chains are connected by C10—H10⋯Cl1 hydrogen bonds (Fig. 3[link], Table 2[link]) and Hg—Cl⋯π inter­actions (Chifotides & Dunbar, 2013[Chifotides, H. T. & Dunbar, K. R. (2013). Acc. Chem. Res. 46, 894-906.]; Matter et al., 2009[Matter, H., Nazaré, M., Güssregen, S., Will, D. W., Schreuder, H., Bauer, A., Urmann, M., Ritter, K., Wagner, M. & Wehner, V. (2009). Angew. Chem. Int. Ed. 48, 2911-2916.]) between the chloride anions and the pyridine rings of L with Cl2⋯Cg1iv = 3.902 (3) Å and Hg1—Cl2⋯Cg1iv = 77.21 (6)° [Fig. 3[link]; Cg1 is the centroid of the N1/C1–C5 ring; symmetry code: (iv) −x + 1, −y + 1, −z + 1], generating layers extending parallel to (101). Neighboring layers are linked by C2—H2⋯Cg2 hydrogen bonds (Table 2[link]; Fig. 4[link]), resulting in the formation of a three-dimensional supra­molecular network.

Table 2
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the N2/C8–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cl1ii 0.93 2.80 3.526 (6) 136
C2—H2⋯Cg2iii 0.93 2.89 3.689 (7) 145
Symmetry codes: (ii) -x, -y+1, -z; (iii) -x, -y+1, -z+1.
[Figure 3]
Figure 3
The layer formed through inter­molecular C–H⋯Cl hydrogen bonds (yellow dashed lines) and Hg—Cl⋯π inter­actions (black dashed lines) between the zigzag chains. H atoms not involved in inter­molecular inter­actions are omitted for clarity.
[Figure 4]
Figure 4
The three-dimensional supra­molecular network generated by inter­molecular C—H⋯π inter­actions (yellow dashed lines) between the layers of polymer chains. H atoms not involved in inter­molecular inter­actions are omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the title ligand (L) gave three hits. Two (REJCAL, RENHOI; Hanton et al., 2006[Hanton, L. R., Hellyer, R. M. & Spicer, M. D. (2006). Inorg. Chim. Acta, 359, 3659-3665.]) are copper(I) iodide coordination polymers adopting staircase- and loop-type structures, respectively. The other (EXEZOW; Seo et al., 2003[Seo, J., Moon, S.-T., Kim, J., Lee, S. S. & Park, K.-M. (2003). Bull. Korean Chem. Soc. 24, 1393-1395.]) is a cyclic dimer-type silver(I) BF4 complex. Recently, our group has also reported the crystal structures of silver(I) (Moon et al., 2017a[Moon, S.-H., Kang, Y. & Park, K.-M. (2017a). Acta Cryst. E73, 1587-1589.]) and cobalt(II) (Moon et al., 2017b[Moon, S.-H., Seo, J. & Park, K.-M. (2017b). Acta Cryst. E73, 1700-1703.]) NO3 coordination polymers that display twisted ribbon- and loop-type topologies, respectively. In these complexes, the flexible thio­ether moiety (Cpy–C–S–C–Cpy) of the L ligand adopts a bent arrangement that is similar to that of the HgII polymer described here. However, the title compound displays a zigzag topology and is the first example of an HgII coordination polymer with the ligand L.

5. Synthesis and crystallization

The L ligand was synthesized according to a literature method (Park et al., 2010[Park, K.-M., Seo, J., Moon, S.-H. & Lee, S. S. (2010). Cryst. Growth Des. 10, 4148-4154.]; Lee et al., 2012[Lee, E., Seo, J., Lee, S. S. & Park, K.-M. (2012). Cryst. Growth Des. 12, 3834-3837.]). Crystals of the title compound were obtained by slow evaporation of a methanol solution of L with HgCl2 in a 1:1 molar ratio.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and refined as riding: C—H = 0.93 Å for Csp2—H and 0.97 Å for methyl­ene C—H with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [HgCl2(C12H12N2S)]
Mr 487.79
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 10.4724 (11), 13.1128 (14), 10.8914 (12)
β (°) 100.1171 (18)
V3) 1472.4 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 10.94
Crystal size (mm) 0.45 × 0.40 × 0.30
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.447, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 8706, 3197, 2413
Rint 0.047
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.076, 1.03
No. of reflections 3197
No. of parameters 163
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.62, −1.62
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

catena-Poly[[dichloridomercury(II)]-µ-bis(pyridin-3-ylmethyl)sulfane-κ2N:N'] top
Crystal data top
[HgCl2(C12H12N2S)]F(000) = 912
Mr = 487.79Dx = 2.200 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.4724 (11) ÅCell parameters from 9216 reflections
b = 13.1128 (14) Åθ = 2.5–28.2°
c = 10.8914 (12) ŵ = 10.94 mm1
β = 100.1171 (18)°T = 298 K
V = 1472.4 (3) Å3Plate, colorless
Z = 40.45 × 0.40 × 0.30 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2413 reflections with I > 2σ(I)
φ and ω scansRint = 0.047
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 27.0°, θmin = 2.5°
Tmin = 0.447, Tmax = 0.746h = 1311
8706 measured reflectionsk = 1610
3197 independent reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0315P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3197 reflectionsΔρmax = 0.62 e Å3
163 parametersΔρmin = 1.62 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.62237 (2)0.33807 (2)0.42736 (2)0.04266 (10)
Cl10.54910 (16)0.36205 (14)0.21164 (15)0.0559 (4)
Cl20.75516 (17)0.37587 (15)0.62207 (16)0.0633 (5)
S10.06074 (16)0.35443 (14)0.33023 (18)0.0598 (5)
N10.4127 (5)0.3509 (4)0.4938 (4)0.0416 (12)
N20.1449 (4)0.6533 (4)0.0651 (4)0.0408 (12)
C10.4063 (6)0.3940 (5)0.6036 (6)0.0467 (15)
H10.48230.41780.65250.056*
C20.2918 (7)0.4044 (5)0.6469 (6)0.0551 (17)
H20.28970.43840.72150.066*
C30.1800 (7)0.3642 (5)0.5789 (7)0.0537 (17)
H30.10180.36970.60790.064*
C40.1849 (6)0.3153 (4)0.4666 (6)0.0414 (14)
C50.3037 (6)0.3121 (4)0.4282 (6)0.0425 (14)
H50.30810.28120.35230.051*
C60.0678 (6)0.2659 (5)0.3898 (7)0.0545 (17)
H6A0.03410.21510.44050.065*
H6B0.09440.23070.32010.065*
C70.0153 (6)0.4169 (5)0.2132 (6)0.0462 (15)
H7A0.08960.45590.25360.055*
H7B0.04570.36600.16050.055*
C80.0790 (5)0.4860 (5)0.1354 (5)0.0403 (13)
C90.0627 (5)0.5903 (4)0.1356 (5)0.0379 (13)
H90.00900.61810.18730.045*
C100.2482 (6)0.6139 (5)0.0097 (6)0.0464 (15)
H100.30480.65750.06010.056*
C110.2726 (6)0.5132 (5)0.0141 (6)0.0574 (17)
H110.34570.48820.06630.069*
C120.1897 (6)0.4473 (5)0.0583 (6)0.0503 (16)
H120.20680.37760.05630.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.03985 (13)0.04678 (16)0.03812 (15)0.00356 (11)0.00208 (9)0.00140 (12)
Cl10.0515 (9)0.0733 (12)0.0385 (9)0.0022 (8)0.0039 (7)0.0006 (8)
Cl20.0602 (10)0.0726 (12)0.0482 (10)0.0080 (9)0.0154 (8)0.0059 (9)
S10.0373 (8)0.0776 (13)0.0666 (12)0.0107 (8)0.0149 (8)0.0249 (10)
N10.041 (3)0.048 (3)0.035 (3)0.011 (2)0.006 (2)0.002 (2)
N20.039 (3)0.042 (3)0.039 (3)0.004 (2)0.000 (2)0.002 (2)
C10.047 (3)0.046 (4)0.046 (4)0.003 (3)0.004 (3)0.001 (3)
C20.063 (4)0.061 (5)0.045 (4)0.004 (3)0.021 (3)0.009 (3)
C30.056 (4)0.053 (4)0.057 (4)0.001 (3)0.024 (3)0.002 (3)
C40.043 (3)0.033 (3)0.049 (4)0.011 (2)0.009 (3)0.012 (3)
C50.044 (3)0.047 (4)0.037 (3)0.010 (3)0.007 (3)0.003 (3)
C60.044 (4)0.047 (4)0.071 (5)0.001 (3)0.008 (3)0.017 (3)
C70.039 (3)0.051 (4)0.051 (4)0.000 (3)0.013 (3)0.006 (3)
C80.043 (3)0.047 (4)0.031 (3)0.001 (3)0.006 (2)0.003 (3)
C90.032 (3)0.045 (4)0.036 (3)0.005 (2)0.003 (2)0.002 (3)
C100.040 (3)0.055 (4)0.039 (4)0.005 (3)0.006 (3)0.001 (3)
C110.056 (4)0.055 (4)0.053 (4)0.013 (3)0.011 (3)0.004 (3)
C120.051 (4)0.040 (4)0.056 (4)0.014 (3)0.002 (3)0.003 (3)
Geometric parameters (Å, º) top
Hg1—Cl12.3610 (16)C4—C51.381 (8)
Hg1—Cl22.3751 (16)C4—C61.504 (9)
Hg1—N2i2.434 (5)C5—H50.9300
Hg1—N12.436 (5)C6—H6A0.9700
S1—C61.810 (6)C6—H6B0.9700
S1—C71.813 (6)C7—C81.490 (8)
N1—C51.335 (8)C7—H7A0.9700
N1—C11.336 (7)C7—H7B0.9700
N2—C91.334 (7)C8—C91.378 (8)
N2—C101.339 (7)C8—C121.402 (8)
N2—Hg1ii2.434 (5)C9—H90.9300
C1—C21.370 (8)C10—C111.345 (9)
C1—H10.9300C10—H100.9300
C2—C31.376 (10)C11—C121.372 (9)
C2—H20.9300C11—H110.9300
C3—C41.390 (9)C12—H120.9300
C3—H30.9300
Cl1—Hg1—Cl2153.86 (7)C4—C6—S1113.9 (4)
Cl1—Hg1—N2i100.29 (12)C4—C6—H6A108.8
Cl2—Hg1—N2i98.03 (12)S1—C6—H6A108.8
Cl1—Hg1—N197.69 (12)C4—C6—H6B108.8
Cl2—Hg1—N197.91 (13)S1—C6—H6B108.8
N2i—Hg1—N198.39 (16)H6A—C6—H6B107.7
C6—S1—C798.7 (3)C8—C7—S1110.2 (4)
C5—N1—C1117.9 (5)C8—C7—H7A109.6
C5—N1—Hg1123.0 (4)S1—C7—H7A109.6
C1—N1—Hg1119.0 (4)C8—C7—H7B109.6
C9—N2—C10118.8 (5)S1—C7—H7B109.6
C9—N2—Hg1ii123.3 (4)H7A—C7—H7B108.1
C10—N2—Hg1ii117.9 (4)C9—C8—C12116.7 (6)
N1—C1—C2122.3 (6)C9—C8—C7122.2 (5)
N1—C1—H1118.8C12—C8—C7121.0 (6)
C2—C1—H1118.8N2—C9—C8123.1 (5)
C1—C2—C3119.3 (6)N2—C9—H9118.4
C1—C2—H2120.3C8—C9—H9118.4
C3—C2—H2120.3N2—C10—C11121.9 (6)
C2—C3—C4119.4 (6)N2—C10—H10119.0
C2—C3—H3120.3C11—C10—H10119.0
C4—C3—H3120.3C10—C11—C12120.1 (6)
C5—C4—C3117.0 (6)C10—C11—H11120.0
C5—C4—C6120.6 (6)C12—C11—H11120.0
C3—C4—C6122.4 (6)C11—C12—C8119.3 (6)
N1—C5—C4123.9 (6)C11—C12—H12120.4
N1—C5—H5118.1C8—C12—H12120.4
C4—C5—H5118.1
C5—N1—C1—C23.7 (9)C6—S1—C7—C8172.1 (5)
Hg1—N1—C1—C2179.6 (5)S1—C7—C8—C9114.8 (5)
N1—C1—C2—C33.8 (10)S1—C7—C8—C1265.0 (7)
C1—C2—C3—C41.1 (10)C10—N2—C9—C80.1 (8)
C2—C3—C4—C51.4 (9)Hg1ii—N2—C9—C8176.9 (4)
C2—C3—C4—C6177.5 (6)C12—C8—C9—N21.4 (9)
C1—N1—C5—C40.9 (9)C7—C8—C9—N2178.9 (5)
Hg1—N1—C5—C4177.5 (4)C9—N2—C10—C111.2 (9)
C3—C4—C5—N11.6 (9)Hg1ii—N2—C10—C11175.9 (5)
C6—C4—C5—N1177.4 (5)N2—C10—C11—C120.7 (10)
C5—C4—C6—S1117.0 (5)C10—C11—C12—C80.8 (10)
C3—C4—C6—S164.1 (7)C9—C8—C12—C111.8 (9)
C7—S1—C6—C471.9 (5)C7—C8—C12—C11178.5 (6)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the N2/C8–C12 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cl1iii0.932.803.526 (6)136
C2—H2···Cg2iv0.932.893.689 (7)145
Symmetry codes: (iii) x, y+1, z; (iv) x, y+1, z+1.
 

Funding information

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A3A01020410) and a 2017 Research Grant from Kangwon National University (No. 520170312).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChifotides, H. T. & Dunbar, K. R. (2013). Acc. Chem. Res. 46, 894–906.  Web of Science CrossRef CAS PubMed
First citationFurukawa, S., Reboul, J., Diring, S., Sumida, K. & Kitagawa, S. (2014). Chem. Soc. Rev. 43, 5700–5734.  Web of Science CrossRef CAS PubMed
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationHanton, L. R., Hellyer, R. M. & Spicer, M. D. (2006). Inorg. Chim. Acta, 359, 3659–3665.  Web of Science CSD CrossRef CAS
First citationLee, E., Seo, J., Lee, S. S. & Park, K.-M. (2012). Cryst. Growth Des. 12, 3834–3837.  Web of Science CSD CrossRef CAS
First citationLeong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764.  Web of Science CrossRef CAS PubMed
First citationLiu, D., Chang, Y.-J. & Lang, J.-P. (2011). CrystEngComm, 13, 1851–1857.  Web of Science CSD CrossRef CAS
First citationMatter, H., Nazaré, M., Güssregen, S., Will, D. W., Schreuder, H., Bauer, A., Urmann, M., Ritter, K., Wagner, M. & Wehner, V. (2009). Angew. Chem. Int. Ed. 48, 2911–2916.  Web of Science CrossRef CAS
First citationMoon, S.-H., Kang, Y. & Park, K.-M. (2017a). Acta Cryst. E73, 1587–1589.  Web of Science CSD CrossRef IUCr Journals
First citationMoon, S.-H., Seo, J. & Park, K.-M. (2017b). Acta Cryst. E73, 1700–1703.  Web of Science CSD CrossRef IUCr Journals
First citationPark, K.-M., Seo, J., Moon, S.-H. & Lee, S. S. (2010). Cryst. Growth Des. 10, 4148–4154.  Web of Science CSD CrossRef CAS
First citationSeo, J., Moon, S.-T., Kim, J., Lee, S. S. & Park, K.-M. (2003). Bull. Korean Chem. Soc. 24, 1393–1395.  CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSilva, P., Vilela, S. M. F., Tomé, J. P. C. & Almeida Paz, F. A. (2015). Chem. Soc. Rev. 44, 6774–6803.  Web of Science CrossRef CAS PubMed
First citationWang, C., Zhang, T. & Lin, W. (2012). Chem. Rev. 112, 1084–1104.  Web of Science CrossRef CAS PubMed
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationZheng, S.-R., Yang, Q.-Y., Yang, R., Pan, M., Cao, R. & Su, C.-Y. (2009). Cryst. Growth Des. 9, 2341–2353.  Web of Science CSD CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds