research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Nitro­sonium complexation by the tetra­phospho­nate cavitand 5,11,17,23-tetra­methyl-6,10:12,16:18,22:24,4-tetra­kis­(phenyl­phospho­nato-κ2O,O)resorcin(4)arene

CROSSMARK_Color_square_no_text.svg

aDipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
*Correspondence e-mail: chiara.massera@unipr.it

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 27 October 2017; accepted 31 October 2017; online 3 November 2017)

The crystal structure of a new supra­molecular complex between the tetra­phos­pho­nate cavitand 5,11,17,23-tetra­methyl-6,10:12,16:18,22:24,4-tetra­kis(phenyl­phospho­nato-κ2O,O′)resorcin(4)arene and the nitrosyl cation NO+, as the BF4 salt, is reported. The complex, of general formula [(C56H44P4O12)(NO)]BF4·CH2Cl2 or NO@Tiiii[H, CH3, C6H5] BF4·CH2Cl2, crystallizes in the space group P-1. The nitrosyl cation is disordered over two equivalent positions, with occupancies of 0.503 (2) and 0.497 (2), and inter­acts with two adjacent P=O groups at the upper rim of the cavitand through dipole–charge inter­actions. In the lattice, the cavitands are connected through a series of C—H⋯π inter­actions involving the methyl and methyl­enic H atoms and the aromatic rings of the macrocycle. The structure is further stabilized by the presence of C—H⋯F inter­actions between the hydrogen atoms of the cavitands and the F atoms of the tetra­fluorido­borate anion. As a result of the disorder, the lattice di­chloro­methane mol­ecules could not be modelled in terms of atomic sites, and were treated using the PLATON SQUEEZE procedure [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18]. The complexation process has also been studied in solution through NMR titrations.

1. Chemical context

Cavitands (Cram, 1983[Cram, D. J. (1983). Science, 219, 1177-1183.]; Cram & Cram, 1994[Cram, D. J. & Cram, J. M. (1994). Container Molecules and their Guests, Monographs in Supramolecular Chemistry, edited by J. F. Stoddart, vol. 4. Royal Society of Chemistry, Cambridge, UK.]) are synthetic organic compounds endowed with a rigid, pre-organized cavity that have been used extensively both in solution (Hooley & Rebek, 2009[Hooley, R. J. & Rebek, J. Jr (2009). Chem. Biol. 16, 255-264.]; Pochorovski et al., 2012[Pochorovski, I., Ebert, M.-O., Gisselbrecht, J.-P., Boudon, C., Schweizer, W. B. & Diederich, F. (2012). J. Am. Chem. Soc. 134, 14702-14705.]) and in the solid state (Riboni et al., 2016[Riboni, N., Trzcinski, J. W., Bianchi, F., Massera, C., Pinalli, R., Sidisky, L., Dalcanale, E. & Careri, M. (2016). Anal. Chim. Acta, 905, 79-84.]) as mol­ecular receptors for neutral mol­ecules and cationic species (Pinalli & Dalcanale, 2013[Pinalli, R. & Dalcanale, E. (2013). Acc. Chem. Res. 46, 399-411.]). This versatility stems from the possibility of decorating both the upper and the lower rim of the resorcinarene skeleton with desired functionalities.

In our group, we have been particularly inter­ested in tetraphospho­nate cavitands of the general formula Tiiii[R, R1, R2] (R = lower rim substituents; R1 = upper rim substituents; R2 = substituents on the P atom) in which the upper rim of the macrocycle is functionalized with four P=O groups, all pointing inwards towards the cavity (Pinalli & Dalcanale, 2013[Pinalli, R. & Dalcanale, E. (2013). Acc. Chem. Res. 46, 399-411.]). In this way, the π basicity of the cavity, useful for C—H⋯π recognition, is enriched with dipolar groups that can act both as hydrogen-bond acceptors and inter­act with cationic species through cation–dipole inter­actions.

The nitro­sonium ion and its salts have been studied in the past to investigate similarities and differences with the O2+ ion in terms of size, ionization potential, electron affinity, oxidation power etc (Mazej et al., 2009[Mazej, Z., Ponikvar-Svet, M., Liebman, J. F., Passmore, J. & Jenkins, H. D. B. (2009). J. Fluor. Chem. 130, 788-791.]). Moreover, the NO+ cation can be used as a model for nitro­gen oxides in mol­ecular recognition phenomena. Indeed, the formation of stable, host–guest complexes between NO+ cations and organic mol­ecular receptors has been studied in solution with resorcinarenes (Botta et al., 2007[Botta, B., D'Acquarica, I., Delle Monache, G., Nevola, L., Tullo, D., Ugozzoli, F. & Pierini, M. (2007). J. Am. Chem. Soc. 129, 11202-11212.]) or with calixarenes, both in solution (Zyryanov et al., 2002[Zyryanov, G. V., Kang, Y., Stampp, S. P. & Rudkevich, D. M. (2002). Chem. Commun. pp. 2792-2793.], 2003[Zyryanov, G. V., Kang, Y. & Rudkevich, D. M. (2003). J. Am. Chem. Soc. 125, 2997-3007.]) and in the solid state (Rathore et al., 2000[Rathore, R., Lindeman, S. V., Rao, K. S. S. P., Sun, D. & Kochi, J. K. (2000). Angew. Chem. Int. Ed. 39, 2123-2127.]). In particular, nitro­sonium hexa­chloro­anti­monate was shown to form an inclusion compound with tetra­meth­oxy- and tetra-n-propoxycalix(4)arenes due to the inter­action between the positive charge of the guest and the electron-rich aromatic cavity of the host (Rathore et al., 2000[Rathore, R., Lindeman, S. V., Rao, K. S. S. P., Sun, D. & Kochi, J. K. (2000). Angew. Chem. Int. Ed. 39, 2123-2127.]). Inspired by this work, we decided to carry out a combined solution and solid-state study of the complexation properties of the rigid tetra­phospho­nate cavitand 5,11,17,23-tetra­methyl-6,10:12,16:18,22:24,4-tetra­kis­(phenyl­phospho­nato-O,O′)res­orcin(4)arene (from now on indicated as Tiiii[H, CH3, C6H5]) towards NOBF4.

[Scheme 1]

2. Studies in solution

Preliminary 31P and 1H NMR studies were performed to probe the complexation properties of the cavitand towards the nitro­sonium ion in solution. To this purpose, we synthesized the cavitand Tiiii[C3H7, CH3, C6H5], functionalized at the lower rim with four –C3H7 alkyl chains to enhance the cavitand solubility. The NMR tube was filled with 0.5 ml of a CDCl3 solution containing the cavitand (1 mmol concentration). The NOBF4 titrant solution was prepared by dissolving the guest in 0.4 ml (10 mmol) of the above-mentioned cavitand solution to keep the concentration of the host constant during the titration. Portions (0.25 eq., 22.5 µL) of the titrant were added by syringe to the NMR tube. During the titration, the phospho­rous singlet of the cavitand shifted slightly downfield, from 6.01 (signal for the free host) to 7.42 ppm upon addition of an excess (2.5 eq.) of the guest (see Fig. S1 in the Supporting information), indicating the presence of cation–dipole inter­actions between the nitro­sonium ion and the phospho­nate groups at the upper rim. The broadening of the signal is due to the fast exchange (at the NMR time scale) of the guest inside the cavity.

In Fig. 1[link], the comparison between the 1H spectra recorded after each guest addition is reported. As can be seen, the protons of the methyl group in the apical position of the cavitand skeleton (purple dot) are shifted up-field, increasing the guest concentration; this means that the presence of the NO+ cation in proximity to the cavitand upper rim creates a change in the environment, which results in an overall shielding effect. On the contrary, the signals of the protons at the lower rim, namely the aromatic hydrogens (light-blue dot), the bridging methines (green dot) and the alkyl methylenic groups (red dot), are shifted downfield. This is due to the perturbation created by the BF4 anion, which is likely positioned among the alkyl feet of the cavitand, as already observed for counter-anions in other crystal structures previously reported (Pinalli et al., 2016[Pinalli, R., Brancatelli, G., Pedrini, A., Menozzi, D., Hernández, D., Ballester, P., Geremia, S. & Dalcanale, E. (2016). J. Am. Chem. Soc. 138, 8569-8580.]). Also in this case, broadening of the signals was observed.

[Figure 1]
Figure 1
Selected portions of the 1H NMR (400 MHz, CDCl3, 298 K) spectra recorded during the titration of the cavitand with increasing equivalents of NOBF4.

Following these results, solid-state studies were carried out to obtain an insight into the type, number, strength and geometry of the weak inter­actions taking place in the system.

3. Structural commentary

The mol­ecular structure of NO@Tiiii[H, CH3, C6H5]BF4·CH2Cl2 is reported in Fig. 2[link]. The complex crystallizes in the space group P[\overline{1}], and the asymmetric unit comprises one cavitand, one mol­ecule of NOBF4 (with the cation disordered over two equivalent positions) and one disordered mol­ecule of di­chloro­methane. The NO+BF4 ionic pair is separated, and the nitro­sonium ion is located within the macrocycle, not deep inside the cavity, but lying in the mean plane passing through the four phospho­nate oxygen atoms O3A, O3B, O3C and O3D (for detailed geometrical parameters, see Table 1[link]). The nitro­gen and oxygen atoms of the guest point towards the lower and the upper rims, respectively, and are held in place via cation–dipole inter­actions with two adjacent P=O groups. It is inter­esting to note that the NO+ ion is disordered with 50% probability over two equivalent orientations [N1O1 with occupancy of 0.503 (2) and N2O2 with occupancy of 0.497 (2)], thus forming alternately an inter­action with each of the two opposite P=O groups (Fig. 2[link]; the second orientation is not shown), namely P1A=O3A and P1B=O3B for N1O1 and P1C=O3C and P1D=O3D with N2O2 [O3A⋯O1, 2.621 (5); O3A⋯N1, 2.661 (6); O3B⋯O1, 2.609 (3); O3B⋯N1, 2.664 (5); O3C⋯O2, 2.621 (4); O3C⋯N2, 2.625 (7); O3D⋯O2, 2.604 (4); O3D⋯N2, 2.650 (4) Å]. This phenomenon has already been observed in the solid state with phospho­nate cavitands hosting methanol and ethanol mol­ecules (Melegari et al., 2008[Melegari, M., Suman, M., Pirondini, L., Moiani, D., Massera, C., Ugozzoli, F., Kalenius, E., Vainiotalo, P., Mulatier, J.-C., Dutasta, J.-P. & Dalcanale, E. (2008). Chem. Eur. J. 14, 5772-5779.]) and confirms that, for these systems, the stability of the host–guest complex is entropic in origin, since the guest can choose from two up to four energetically and geometrically equivalent inter­action modes with the host. In this case, the NO+ cation forms two sets of strong inter­actions with two adjacent P=O groups, which results in a better stabilizing effect than four weaker inter­actions with all the phospho­nate moieties of the upper rim. The BF4 ion is outside the cavity, forming weak C—H⋯F inter­actions with the cavitands (see Section 4 for details).

Table 1
Host–guest inter­actions (Å) in NO@Tiiii[H, CH3, C6H5]BF4

O3A···O1 2.621 (5) O3D···O2 2.604 (4)
O3A···N1 2.661 (6) O3D···N2 2.650 (4)
O3B···O1 2.609 (3) O1···PL 0.471 (4)
O3B···N1 2.664 (5) N1···PL 0.492 (6)
O3C···O2 2.621 (4) O2···PL 0.466 (4)
O3C···N2 2.625 (7) N2···PL 0.416 (6)
PL is the mean plane passing through the four phospho­nate oxygen atoms, O3A, O3B, O3C and O3D.
[Figure 2]
Figure 2
Top and side views of the title compound, NO@Tiiii[H, CH3, C6H5], with a partial atom-labelling scheme. Displacement ellipsoids are drawn at the 20% probability level. Only one of the two disordered NO+ ions is shown. In the side view, the hydrogen atoms and the BF4 counter-ion are not shown for clarity. Cation–dipole inter­actions are represented as blue dashed lines.

The di­chloro­methane solvent mol­ecule is heavily disordered and could not be modelled, but its residual electron density, occupying a void of 312 Å3 (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) is located in the hydro­phobic pockets among the cavitands.

4. Supra­molecular features

In the lattice, the cavitands form a supra­molecular ribbon along the a-axis direction through a series of C—H⋯π inter­actions between the H atoms of the methyl groups at the upper rim and the phenyl rings of the phospho­nato moieties. In particular, each cavitand inter­acts with two adjacent ones acting simultaneously as a donor to two methyl groups and as an acceptor to two aromatic rings (see Table 2[link] and Fig. 3[link]; the centroids involved are Cg1 and Cg2, represented as red and green spheres, respectively). Moreover, pairs of centrosymmetric cavitands form another set of C—H⋯π inter­actions involving the methyl­enic hydrogen atoms at the lower rim and the aromatic walls of the macrocycle (see Table 2[link] and Fig. 3[link], Cg3, blue centroids). The structure is further stabilized by the presence of C—H⋯F inter­actions between the hydrogen atoms of the cavitands and the fluorine atoms of the tetra­fluorido­borate anion. More precisely, each BF4 is surrounded by five cavitands (Fig. 4[link]), with C—H⋯F distances ranging from 2.408 (2) to 2.653 (2) Å (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the aromatic rings C9B–C14B, C9D–C14D and C1A–C6A, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1Bi—H1Bi⋯F1 0.95 2.41 3.344 (3) 169
C14Bii—H14Bii⋯F2 0.95 2.57 3.357 (3) 140
C7Cii—H7C3ii⋯F2 0.98 2.62 3.484 (2) 147
C8Ci—H8C1i⋯F2 0.98 2.49 3.379 (3) 150
C1Di—H1Di⋯F2 0.95 2.60 3.439 (2) 147
C11Aiii—H11Aiii⋯F3 0.95 2.45 3.254 (2) 142
C7Cii—H7C3ii⋯F3 0.98 2.64 3.569 (3) 160
C11C—H11C⋯F4 0.95 2.53 3.447 (3) 162
C1Di—H1Di⋯F4 0.95 2.65 3.509 (3) 150
C14Div—H14Div⋯F4 0.95 2.63 3.336 (4) 131
C7D—H7D1⋯Cg1v 0.98 2.80 3.524 (4) 131
C7B—H7B1⋯Cg2vi 0.98 2.88 3.530 (4) 124
C8D—H8D2⋯Cg3vii 0.98 2.87 3.594 (3) 131
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z; (iii) x, y, z-1; (iv) -x, -y+1, -z+1; (v) x-1, y, z; (vi) x+1, y, z; (vii) -x, -y+2, -z+1.
[Figure 3]
Figure 3
C—H⋯π inter­actions (green dashed lines) forming a ribbon along the a-axis direction of the unit cell. Centroids Cg1 (C9B–C14B), Cg2 (C9D–C14D) and Cg3 (C1A–C6A) are represented as red, green and blue spheres, respectively.
[Figure 4]
Figure 4
View of the BF4 ion surrounded by the five closest cavitands through C—H⋯F inter­actions. [Symmetry codes: (i) x, y − 1, z; (ii) −x + 1, −y + 1, −z; (iii) x, y, z − 1; (iv) −x, −y + 1, −z + 1.]

5. Database survey

A search in the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures containing the isolated NO fragment, with no restrictions on the charge or on the type of bond connecting nitro­gen and oxygen, yielded 65 species which are, of course, very different in nature. Meaningful comparisons with our complex are only possible with the series of calixarene-based, host–guest complexes already cited in the introduction, namely GOTCAT, GOTDEY, GOTGEB, GOTHAY and GOTHAY01 (Rathore et al., 2000[Rathore, R., Lindeman, S. V., Rao, K. S. S. P., Sun, D. & Kochi, J. K. (2000). Angew. Chem. Int. Ed. 39, 2123-2127.]) and with a cationic radical calixarene derivative capable of binding neutral nitric oxide (JAHFOO; Rathore et al., 2004[Rathore, R., Abdelwahed, S. H. & Guzei, I. A. (2004). J. Am. Chem. Soc. 126, 13582-13583.]). In particular, in GOTCAT, the NO+ cation is buried deep inside the cavity, where it inter­acts with two distal aromatic groups of the calixarene guest. Since the calixarene is in the 1,3-alternate conformation, two sets of co-facial benzene rings are present, and the NO+ ion is equally distributed between them (see Fig. 5[link], one pair of rings is shown in space-filling model, the other one in capped-stick mode). The electron-rich pocket formed by the co-facial pair is essential for the complexation, and the NO+ ion is not bound by a single aromatic ring alone (see, for instance, GOTDEY and GOTGEB). In the case of JAHFOO, the calixarene has been oxidized to carry an overall positive charge on its core, in order to make it a good receptor for an electron rich-guest such as nitric oxide. Nevertheless, the inter­action mode is similar to that observed for GOTCAT, with two disordered NO mol­ecules buried between two distinct pairs of distal aromatic rings (Fig. 5[link]). Also, in the title complex the guest is disordered over two equivalent positions, but its inter­action with the electron-rich cavity is negligible due to the presence of the dipolar phospho­nate groups which `hold' the NO+ ion at the brim of the upper rim (Fig. 5[link]).

[Figure 5]
Figure 5
Comparison of the inter­action modes of GOTCAT, JAHFOO (side view), and of the title compound, NO@Tiiii[H, CH3, C6H5] (top view), highlighting the disorder of the guest over two equivalent positions. The space-filling view is only partial for reasons of clarity.

6. Synthesis and crystallization

1H NMR spectra were obtained using a Bruker AMX-400 (400 MHz) spectrometer. All chemical shifts (δ) were reported in ppm relative to the proton resonances resulting from incomplete deuteration of the NMR solvents. 31P NMR spectra were obtained using a Bruker AMX-400 (162 MHz) spectrometer. All chemical shifts (δ) were recorded in ppm relative to external 85% H3PO4 at 0.00 ppm. All commercial reagents were ACS reagent grade and used as received. The cavitands Tiiii[H, CH3, C6H5] and Tiiii[C3H7, CH3, C6H5] were prepared following published procedures (Tonezzer et al., 2008[Tonezzer, M., Melegari, M., Maggioni, G., Milan, R., Della Mea, G. & Dalcanale, E. (2008). Chem. Mater. 20, 6535-6542.]; Menozzi et al., 2015[Menozzi, D., Pinalli, R., Massera, C., Maffei, F. & Dalcanale, E. (2015). Molecules, 20, 4460-4472.]).

NO@Tiiii[H, CH3, C6H5]BF4·CH2Cl2 was obtained by mixing a di­chloro­methane solution of Tiiii[H, CH3, C6H5] (1 eq.) with a di­chloro­methane solution of NOBF4 (1 eq.). The mixture was left to evaporate to yield colourless single crystals of the 1:1 complex that were suitable for X-ray diffraction analysis.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The nitro­sonium ion was found to be disordered over two positions, with a refined occupancy ratio of 0.503 (2):0.497 (2). The C-bound H atoms were placed in calculated positions and refined using a riding model: C—H = 0.95-0.98 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C56H44P4O12·NO+·BF4·CH2Cl2
Mr 1234.54
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 190
a, b, c (Å) 13.856 (1), 14.909 (2), 16.357 (2)
α, β, γ (°) 63.224 (2), 73.137 (2), 88.093 (2)
V3) 2868.2 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.30
Crystal size (mm) 0.16 × 0.13 × 0.10
 
Data collection
Diffractometer Bruker SMART BREEZE CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.812, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 36384, 14109, 9478
Rint 0.033
(sin θ/λ)max−1) 0.690
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.128, 1.00
No. of reflections 14109
No. of parameters 735
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.63, −0.41
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

As a result of severe disorder, the CH2Cl2 solvent could not be sensibly modelled in terms of atomic sites, and was treated using the PLATON SQUEEZE procedure (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]); the solvent contribution to the diffraction pattern was removed and modified Fo2 written to a new HKL file. The number of electrons corresponding to the solvent mol­ecules were included in the formula, formula weight, calculated density, μ and F(000).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), PARST (Nardelli, 1995) and publCIF (Westrip, 2010).

Nitrosonium tetrafluoridoborate–5,11,17,23-tetramethyl-6,10:12,16:18,22:24,4-tetrakis(phenylphosphonato-κ2O,O)resorcin(4)arene–dichloromethane (1/1/1) top
Crystal data top
C56H44P4O12·NO+·BF4·CH2Cl2Z = 2
Mr = 1234.54F(000) = 1268
Triclinic, P1Dx = 1.429 Mg m3
a = 13.856 (1) ÅMo Kα radiation, λ = 0.71069 Å
b = 14.909 (2) ÅCell parameters from 250 reflections
c = 16.357 (2) Åθ = 1.5–29.4°
α = 63.224 (2)°µ = 0.30 mm1
β = 73.137 (2)°T = 190 K
γ = 88.093 (2)°Prismatic, colourless
V = 2868.2 (6) Å30.16 × 0.13 × 0.10 mm
Data collection top
Bruker SMART BREEZE CCD area-detector
diffractometer
14109 independent reflections
Radiation source: fine-focus sealed tube9478 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scanθmax = 29.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1818
Tmin = 0.812, Tmax = 1.000k = 2020
36384 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0693P)2]
where P = (Fo2 + 2Fc2)/3
14109 reflections(Δ/σ)max = 0.001
735 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.41 e Å3
Special details top

Experimental. The calculated molar mass, density and absorption coefficient include two disordered dichloromethane molecules per cell which do not appear in the final files because of the refinements carried out with data subjected to SQUEEZE.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.3415 (3)0.7159 (4)0.4179 (3)0.0386 (10)0.503 (2)
O10.3391 (2)0.6435 (3)0.4543 (2)0.0307 (8)0.503 (2)
N20.2020 (3)0.7031 (4)0.3846 (3)0.0426 (11)0.497 (2)
O20.1903 (2)0.6363 (3)0.4165 (2)0.0266 (7)0.497 (2)
B10.2882 (2)0.2304 (2)0.12591 (19)0.0410 (6)
F10.34181 (17)0.16872 (13)0.18534 (15)0.0875 (6)
F20.28773 (14)0.19718 (12)0.05981 (11)0.0638 (4)
F30.33203 (12)0.32872 (10)0.08112 (10)0.0553 (4)
F40.19008 (14)0.22111 (13)0.18451 (14)0.0790 (6)
P1A0.35319 (4)0.75850 (4)0.63016 (3)0.02411 (12)
P1B0.60883 (4)0.73524 (4)0.25305 (4)0.02623 (12)
P1C0.19872 (4)0.71498 (4)0.14576 (3)0.02352 (11)
P1D0.05960 (4)0.73655 (4)0.52317 (4)0.02430 (12)
O1A0.26652 (10)0.82864 (10)0.64092 (9)0.0264 (3)
O2A0.45495 (10)0.83412 (10)0.56545 (9)0.0256 (3)
O3A0.33168 (11)0.69279 (11)0.59071 (10)0.0315 (3)
O1B0.64868 (10)0.81454 (11)0.27975 (10)0.0286 (3)
O2B0.60145 (10)0.80000 (11)0.14780 (9)0.0275 (3)
O3B0.51418 (10)0.67359 (11)0.32481 (10)0.0344 (3)
O1C0.29952 (10)0.78374 (10)0.06637 (9)0.0250 (3)
O2C0.11212 (10)0.78858 (10)0.13782 (9)0.0260 (3)
O3C0.20873 (11)0.66232 (11)0.24296 (10)0.0310 (3)
O1D0.08197 (10)0.80541 (10)0.42444 (9)0.0265 (3)
O2D0.03700 (9)0.81178 (10)0.56143 (9)0.0251 (3)
O3D0.02187 (10)0.67259 (11)0.51314 (10)0.0331 (3)
C1A0.19513 (14)0.99115 (14)0.42444 (13)0.0239 (4)
H1A0.22221.05010.36480.029*
C2A0.25267 (14)0.95390 (14)0.48748 (13)0.0233 (4)
C3A0.21105 (14)0.86730 (15)0.57387 (13)0.0239 (4)
C4A0.11502 (14)0.81716 (14)0.60086 (14)0.0246 (4)
C5A0.06242 (14)0.85866 (14)0.53393 (13)0.0235 (4)
C6A0.09877 (14)0.94465 (14)0.44598 (13)0.0227 (4)
C7A0.07040 (16)0.72542 (16)0.69608 (15)0.0345 (5)
H7A10.11990.70670.73170.052*
H7A20.05340.66920.68530.052*
H7A30.00880.74050.73340.052*
C8A0.35871 (14)1.00412 (15)0.46023 (14)0.0253 (4)
H8A10.37210.99760.51880.030*
H8A20.36301.07710.41600.030*
C9A0.36897 (14)0.69707 (15)0.74569 (14)0.0265 (4)
C10A0.35124 (16)0.59170 (16)0.79585 (15)0.0338 (5)
H10A0.32990.55450.76860.041*
C11A0.36511 (18)0.54167 (19)0.88606 (16)0.0443 (6)
H11A0.35280.47000.92080.053*
C12A0.39638 (18)0.5952 (2)0.92518 (16)0.0463 (6)
H12A0.40630.56040.98660.056*
C13A0.41351 (19)0.6994 (2)0.87595 (17)0.0473 (6)
H13A0.43490.73600.90370.057*
C14A0.39949 (17)0.75105 (18)0.78587 (15)0.0378 (5)
H14A0.41080.82280.75220.045*
C1B0.46749 (14)0.99163 (14)0.31262 (13)0.0244 (4)
H1B0.43921.04880.27510.029*
C2B0.53674 (14)0.94606 (14)0.26635 (13)0.0241 (4)
C3B0.57720 (14)0.86308 (15)0.32371 (14)0.0250 (4)
C4B0.55347 (14)0.82460 (15)0.42299 (14)0.0263 (4)
C5B0.48240 (14)0.87296 (15)0.46416 (13)0.0246 (4)
C6B0.43862 (14)0.95615 (14)0.41178 (13)0.0232 (4)
C7B0.60064 (17)0.73656 (17)0.48175 (15)0.0365 (5)
H7B10.60480.74250.53790.055*
H7B20.66900.73600.44250.055*
H7B30.55900.67350.50330.055*
C8B0.56298 (15)0.98464 (15)0.15868 (13)0.0267 (4)
H8B10.63380.97350.13310.032*
H8B20.55841.05830.12750.032*
C9B0.71418 (15)0.66821 (16)0.23315 (15)0.0296 (4)
C10B0.72732 (17)0.58210 (17)0.31116 (18)0.0373 (5)
H10B0.68100.56050.37390.045*
C11B0.80909 (18)0.52802 (18)0.2962 (2)0.0459 (6)
H11B0.81880.46970.34890.055*
C12B0.87546 (18)0.5590 (2)0.2052 (2)0.0470 (6)
H12B0.93130.52230.19550.056*
C13B0.86170 (18)0.6421 (2)0.1286 (2)0.0497 (7)
H13B0.90750.66200.06590.060*
C14B0.78131 (17)0.6980 (2)0.14123 (17)0.0434 (6)
H14B0.77240.75600.08770.052*
C1C0.40529 (14)0.97320 (14)0.11292 (13)0.0241 (4)
H1C0.39041.03540.11400.029*
C2C0.33983 (14)0.92483 (14)0.09105 (12)0.0227 (4)
C3C0.36369 (14)0.83356 (14)0.09052 (13)0.0232 (4)
C4C0.44987 (14)0.78914 (15)0.10945 (13)0.0246 (4)
C5C0.51171 (14)0.84139 (15)0.13116 (13)0.0241 (4)
C6C0.49252 (14)0.93202 (14)0.13327 (13)0.0240 (4)
C7C0.47466 (16)0.69088 (16)0.10745 (16)0.0317 (5)
H7C10.41560.65870.10530.048*
H7C20.49230.64590.16550.048*
H7C30.53220.70410.05030.048*
C8C0.24356 (14)0.96932 (14)0.07192 (13)0.0241 (4)
H8C10.25441.04390.04410.029*
H8C20.22760.95290.02470.029*
C9C0.16854 (14)0.63680 (15)0.09894 (14)0.0251 (4)
C10C0.17014 (16)0.53322 (16)0.14934 (16)0.0331 (5)
H10C0.18670.50550.20780.040*
C11C0.14744 (17)0.47044 (18)0.11403 (19)0.0418 (6)
H11C0.14950.39960.14780.050*
C12C0.12199 (17)0.5105 (2)0.0301 (2)0.0457 (6)
H12C0.10540.46700.00670.055*
C13C0.12048 (19)0.6130 (2)0.02015 (19)0.0462 (6)
H13C0.10300.64000.07810.055*
C14C0.14423 (17)0.67743 (18)0.01321 (16)0.0368 (5)
H14C0.14390.74840.02200.044*
C1D0.13485 (14)0.97464 (14)0.22290 (13)0.0239 (4)
H1D0.17511.03560.20270.029*
C2D0.05730 (14)0.93516 (14)0.31036 (13)0.0231 (4)
C3D0.00030 (14)0.84668 (15)0.33686 (13)0.0242 (4)
C4D0.01450 (14)0.79593 (15)0.28118 (14)0.0255 (4)
C5D0.09407 (14)0.83894 (14)0.19564 (13)0.0232 (4)
C6D0.15514 (14)0.92744 (14)0.16438 (13)0.0228 (4)
C7D0.05138 (17)0.70142 (17)0.31159 (16)0.0365 (5)
H7D10.05300.69610.25440.055*
H7D20.12040.70410.34810.055*
H7D30.02370.64240.35210.055*
C8D0.03903 (14)0.98661 (14)0.37464 (13)0.0235 (4)
H8D10.05941.06020.33420.028*
H8D20.03430.97630.41010.028*
C9D0.18126 (14)0.67358 (15)0.60172 (14)0.0258 (4)
C10D0.21742 (16)0.59045 (16)0.59617 (15)0.0319 (5)
H10D0.17630.56800.55300.038*
C11D0.31361 (16)0.54133 (16)0.65406 (16)0.0367 (5)
H11D0.33880.48520.65050.044*
C12D0.37320 (16)0.57426 (17)0.71741 (16)0.0386 (5)
H12D0.43930.54060.75670.046*
C13D0.33707 (16)0.65558 (18)0.72374 (16)0.0388 (5)
H13D0.37810.67700.76780.047*
C14D0.24110 (16)0.70591 (16)0.66583 (15)0.0321 (5)
H14D0.21630.76200.66980.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.026 (2)0.068 (3)0.030 (2)0.002 (2)0.0062 (16)0.031 (2)
O10.0231 (15)0.0457 (19)0.0267 (16)0.0007 (14)0.0038 (12)0.0216 (15)
N20.025 (2)0.084 (4)0.036 (3)0.012 (2)0.0103 (18)0.041 (3)
O20.0266 (16)0.0343 (17)0.0239 (16)0.0087 (14)0.0083 (12)0.0176 (15)
B10.0572 (18)0.0266 (13)0.0331 (14)0.0055 (12)0.0109 (13)0.0106 (11)
F10.1356 (18)0.0472 (10)0.0887 (13)0.0254 (11)0.0712 (13)0.0180 (10)
F20.0914 (12)0.0594 (10)0.0434 (9)0.0021 (9)0.0133 (8)0.0296 (8)
F30.0762 (11)0.0290 (7)0.0436 (8)0.0007 (7)0.0064 (7)0.0092 (6)
F40.0738 (12)0.0646 (11)0.0825 (13)0.0121 (9)0.0162 (10)0.0432 (10)
P1A0.0246 (3)0.0281 (3)0.0190 (2)0.0001 (2)0.0069 (2)0.0100 (2)
P1B0.0213 (2)0.0333 (3)0.0237 (3)0.0047 (2)0.0060 (2)0.0135 (2)
P1C0.0246 (3)0.0281 (3)0.0211 (2)0.0035 (2)0.0079 (2)0.0136 (2)
P1D0.0200 (2)0.0283 (3)0.0246 (3)0.00258 (19)0.0042 (2)0.0137 (2)
O1A0.0255 (7)0.0335 (8)0.0207 (7)0.0036 (6)0.0088 (6)0.0119 (6)
O2A0.0254 (7)0.0322 (7)0.0175 (6)0.0013 (6)0.0063 (5)0.0100 (6)
O3A0.0361 (8)0.0342 (8)0.0264 (7)0.0018 (6)0.0103 (6)0.0151 (6)
O1B0.0234 (7)0.0387 (8)0.0259 (7)0.0058 (6)0.0076 (6)0.0170 (6)
O2B0.0219 (7)0.0378 (8)0.0237 (7)0.0060 (6)0.0073 (6)0.0150 (6)
O3B0.0269 (8)0.0400 (9)0.0297 (8)0.0012 (6)0.0030 (6)0.0139 (7)
O1C0.0237 (7)0.0313 (7)0.0241 (7)0.0020 (6)0.0074 (5)0.0161 (6)
O2C0.0258 (7)0.0333 (7)0.0261 (7)0.0062 (6)0.0090 (6)0.0193 (6)
O3C0.0372 (8)0.0351 (8)0.0227 (7)0.0052 (6)0.0116 (6)0.0136 (6)
O1D0.0211 (7)0.0349 (8)0.0232 (7)0.0012 (6)0.0036 (5)0.0149 (6)
O2D0.0198 (6)0.0314 (7)0.0241 (7)0.0003 (5)0.0042 (5)0.0143 (6)
O3D0.0259 (7)0.0353 (8)0.0372 (8)0.0081 (6)0.0053 (6)0.0190 (7)
C1A0.0292 (10)0.0212 (9)0.0206 (9)0.0029 (8)0.0048 (8)0.0107 (8)
C2A0.0234 (9)0.0245 (10)0.0243 (10)0.0027 (7)0.0053 (8)0.0143 (8)
C3A0.0238 (10)0.0295 (10)0.0215 (9)0.0051 (8)0.0089 (8)0.0133 (8)
C4A0.0227 (9)0.0280 (10)0.0220 (9)0.0019 (8)0.0044 (8)0.0121 (8)
C5A0.0190 (9)0.0285 (10)0.0245 (10)0.0017 (7)0.0038 (7)0.0152 (8)
C6A0.0260 (10)0.0237 (9)0.0234 (9)0.0071 (8)0.0084 (8)0.0150 (8)
C7A0.0294 (11)0.0365 (12)0.0269 (11)0.0024 (9)0.0079 (9)0.0058 (9)
C8A0.0268 (10)0.0260 (10)0.0242 (10)0.0005 (8)0.0072 (8)0.0127 (8)
C9A0.0207 (9)0.0348 (11)0.0206 (9)0.0016 (8)0.0049 (8)0.0107 (8)
C10A0.0332 (11)0.0338 (11)0.0283 (11)0.0051 (9)0.0065 (9)0.0112 (9)
C11A0.0400 (13)0.0418 (13)0.0295 (12)0.0120 (11)0.0036 (10)0.0030 (10)
C12A0.0374 (13)0.0701 (18)0.0227 (11)0.0156 (12)0.0118 (10)0.0132 (12)
C13A0.0482 (15)0.0689 (18)0.0307 (12)0.0020 (13)0.0183 (11)0.0237 (13)
C14A0.0420 (13)0.0430 (13)0.0264 (11)0.0031 (10)0.0121 (10)0.0129 (10)
C1B0.0251 (10)0.0230 (9)0.0226 (9)0.0024 (7)0.0081 (8)0.0075 (8)
C2B0.0227 (9)0.0259 (10)0.0211 (9)0.0051 (7)0.0048 (8)0.0092 (8)
C3B0.0194 (9)0.0331 (11)0.0229 (10)0.0016 (8)0.0048 (8)0.0142 (8)
C4B0.0234 (10)0.0331 (11)0.0243 (10)0.0020 (8)0.0095 (8)0.0134 (9)
C5B0.0239 (9)0.0310 (10)0.0171 (9)0.0041 (8)0.0050 (7)0.0100 (8)
C6B0.0214 (9)0.0242 (10)0.0235 (9)0.0032 (7)0.0063 (8)0.0106 (8)
C7B0.0389 (12)0.0436 (13)0.0253 (11)0.0145 (10)0.0136 (9)0.0128 (10)
C8B0.0277 (10)0.0282 (10)0.0194 (9)0.0032 (8)0.0052 (8)0.0079 (8)
C9B0.0232 (10)0.0376 (11)0.0345 (11)0.0060 (8)0.0112 (9)0.0207 (10)
C10B0.0312 (11)0.0327 (12)0.0453 (13)0.0029 (9)0.0123 (10)0.0155 (10)
C11B0.0396 (13)0.0287 (12)0.0712 (18)0.0076 (10)0.0239 (13)0.0206 (12)
C12B0.0305 (12)0.0490 (15)0.081 (2)0.0129 (11)0.0206 (13)0.0453 (15)
C13B0.0350 (13)0.0731 (19)0.0529 (16)0.0167 (13)0.0103 (12)0.0414 (15)
C14B0.0358 (13)0.0615 (16)0.0351 (12)0.0169 (11)0.0117 (10)0.0243 (12)
C1C0.0290 (10)0.0238 (9)0.0155 (9)0.0007 (8)0.0039 (8)0.0074 (7)
C2C0.0221 (9)0.0264 (10)0.0136 (8)0.0009 (7)0.0020 (7)0.0064 (7)
C3C0.0231 (9)0.0285 (10)0.0174 (9)0.0005 (8)0.0053 (7)0.0104 (8)
C4C0.0244 (10)0.0279 (10)0.0185 (9)0.0014 (8)0.0032 (7)0.0102 (8)
C5C0.0200 (9)0.0311 (10)0.0178 (9)0.0029 (8)0.0045 (7)0.0091 (8)
C6C0.0254 (10)0.0269 (10)0.0140 (8)0.0035 (8)0.0029 (7)0.0061 (8)
C7C0.0295 (11)0.0348 (11)0.0355 (11)0.0076 (9)0.0103 (9)0.0201 (10)
C8C0.0261 (10)0.0251 (10)0.0188 (9)0.0033 (8)0.0062 (8)0.0086 (8)
C9C0.0220 (9)0.0308 (10)0.0269 (10)0.0032 (8)0.0063 (8)0.0179 (9)
C10C0.0302 (11)0.0330 (11)0.0360 (12)0.0052 (9)0.0082 (9)0.0172 (10)
C11C0.0346 (12)0.0349 (12)0.0553 (15)0.0012 (10)0.0030 (11)0.0266 (12)
C12C0.0331 (12)0.0603 (17)0.0659 (17)0.0036 (11)0.0112 (12)0.0499 (15)
C13C0.0460 (14)0.0673 (18)0.0474 (14)0.0100 (12)0.0237 (12)0.0396 (14)
C14C0.0420 (13)0.0415 (13)0.0356 (12)0.0095 (10)0.0180 (10)0.0218 (10)
C1D0.0249 (10)0.0225 (9)0.0236 (10)0.0046 (7)0.0092 (8)0.0092 (8)
C2D0.0243 (9)0.0256 (10)0.0231 (9)0.0078 (8)0.0102 (8)0.0129 (8)
C3D0.0200 (9)0.0319 (10)0.0204 (9)0.0037 (8)0.0050 (7)0.0125 (8)
C4D0.0227 (9)0.0314 (10)0.0262 (10)0.0034 (8)0.0081 (8)0.0161 (9)
C5D0.0235 (9)0.0302 (10)0.0229 (9)0.0078 (8)0.0093 (8)0.0171 (8)
C6D0.0227 (9)0.0258 (10)0.0201 (9)0.0067 (7)0.0089 (7)0.0096 (8)
C7D0.0336 (12)0.0433 (13)0.0365 (12)0.0068 (10)0.0026 (10)0.0258 (11)
C8D0.0250 (10)0.0243 (9)0.0232 (9)0.0067 (8)0.0077 (8)0.0126 (8)
C9D0.0212 (9)0.0282 (10)0.0238 (10)0.0027 (8)0.0066 (8)0.0088 (8)
C10D0.0305 (11)0.0316 (11)0.0324 (11)0.0034 (9)0.0093 (9)0.0139 (9)
C11D0.0326 (12)0.0286 (11)0.0417 (13)0.0010 (9)0.0120 (10)0.0095 (10)
C12D0.0242 (11)0.0371 (12)0.0360 (12)0.0006 (9)0.0053 (9)0.0035 (10)
C13D0.0289 (11)0.0463 (14)0.0326 (12)0.0053 (10)0.0007 (9)0.0165 (11)
C14D0.0289 (11)0.0363 (12)0.0296 (11)0.0034 (9)0.0048 (9)0.0163 (9)
Geometric parameters (Å, º) top
N1—O10.966 (5)C7B—H7B20.9800
N2—O20.885 (5)C7B—H7B30.9800
B1—F31.374 (3)C8B—C6C1.524 (3)
B1—F21.379 (3)C8B—H8B10.9900
B1—F11.382 (3)C8B—H8B20.9900
B1—F41.387 (3)C9B—C14B1.392 (3)
P1A—O3A1.4716 (14)C9B—C10B1.397 (3)
P1A—O1A1.5894 (14)C10B—C11B1.397 (3)
P1A—O2A1.5950 (14)C10B—H10B0.9500
P1A—C9A1.768 (2)C11B—C12B1.374 (4)
P1B—O3B1.4688 (15)C11B—H11B0.9500
P1B—O2B1.5825 (14)C12B—C13B1.366 (4)
P1B—O1B1.5943 (15)C12B—H12B0.9500
P1B—C9B1.776 (2)C13B—C14B1.392 (3)
P1C—O3C1.4695 (14)C13B—H13B0.9500
P1C—O1C1.5911 (14)C14B—H14B0.9500
P1C—O2C1.5921 (14)C1C—C2C1.391 (3)
P1C—C9C1.7727 (19)C1C—C6C1.396 (3)
P1D—O3D1.4738 (14)C1C—H1C0.9500
P1D—O2D1.5867 (14)C2C—C3C1.393 (3)
P1D—O1D1.5916 (14)C2C—C8C1.521 (3)
P1D—C9D1.7708 (19)C3C—C4C1.392 (3)
O1A—C3A1.420 (2)C4C—C5C1.392 (3)
O2A—C5B1.418 (2)C4C—C7C1.506 (3)
O1B—C3B1.425 (2)C5C—C6C1.382 (3)
O2B—C5C1.412 (2)C7C—H7C10.9800
O1C—C3C1.418 (2)C7C—H7C20.9800
O2C—C5D1.418 (2)C7C—H7C30.9800
O1D—C3D1.422 (2)C8C—C6D1.518 (3)
O2D—C5A1.418 (2)C8C—H8C10.9900
C1A—C2A1.392 (3)C8C—H8C20.9900
C1A—C6A1.399 (3)C9C—C10C1.388 (3)
C1A—H1A0.9500C9C—C14C1.394 (3)
C2A—C3A1.389 (3)C10C—C11C1.386 (3)
C2A—C8A1.520 (3)C10C—H10C0.9500
C3A—C4A1.397 (3)C11C—C12C1.377 (4)
C4A—C5A1.391 (3)C11C—H11C0.9500
C4A—C7A1.502 (3)C12C—C13C1.374 (4)
C5A—C6A1.388 (3)C12C—H12C0.9500
C6A—C8D1.519 (3)C13C—C14C1.387 (3)
C7A—H7A10.9800C13C—H13C0.9500
C7A—H7A20.9800C14C—H14C0.9500
C7A—H7A30.9800C1D—C6D1.389 (3)
C8A—C6B1.521 (3)C1D—C2D1.393 (3)
C8A—H8A10.9900C1D—H1D0.9500
C8A—H8A20.9900C2D—C3D1.385 (3)
C9A—C14A1.385 (3)C2D—C8D1.522 (3)
C9A—C10A1.396 (3)C3D—C4D1.395 (3)
C10A—C11A1.391 (3)C4D—C5D1.389 (3)
C10A—H10A0.9500C4D—C7D1.502 (3)
C11A—C12A1.370 (4)C5D—C6D1.391 (3)
C11A—H11A0.9500C7D—H7D10.9800
C12A—C13A1.380 (4)C7D—H7D20.9800
C12A—H12A0.9500C7D—H7D30.9800
C13A—C14A1.391 (3)C8D—H8D10.9900
C13A—H13A0.9500C8D—H8D20.9900
C14A—H14A0.9500C9D—C14D1.394 (3)
C1B—C6B1.391 (3)C9D—C10D1.402 (3)
C1B—C2B1.398 (3)C10D—C11D1.385 (3)
C1B—H1B0.9500C10D—H10D0.9500
C2B—C3B1.392 (3)C11D—C12D1.390 (3)
C2B—C8B1.515 (3)C11D—H11D0.9500
C3B—C4B1.392 (3)C12D—C13D1.384 (3)
C4B—C5B1.396 (3)C12D—H12D0.9500
C4B—C7B1.498 (3)C13D—C14D1.387 (3)
C5B—C6B1.391 (3)C13D—H13D0.9500
C7B—H7B10.9800C14D—H14D0.9500
F3—B1—F2111.3 (2)H8B1—C8B—H8B2107.9
F3—B1—F1109.5 (2)C14B—C9B—C10B119.8 (2)
F2—B1—F1108.9 (2)C14B—C9B—P1B121.19 (17)
F3—B1—F4110.4 (2)C10B—C9B—P1B118.96 (16)
F2—B1—F4110.1 (2)C11B—C10B—C9B119.5 (2)
F1—B1—F4106.6 (2)C11B—C10B—H10B120.3
O3A—P1A—O1A113.25 (8)C9B—C10B—H10B120.3
O3A—P1A—O2A113.39 (8)C12B—C11B—C10B120.1 (2)
O1A—P1A—O2A105.21 (7)C12B—C11B—H11B119.9
O3A—P1A—C9A116.42 (9)C10B—C11B—H11B119.9
O1A—P1A—C9A103.86 (8)C13B—C12B—C11B120.5 (2)
O2A—P1A—C9A103.48 (8)C13B—C12B—H12B119.7
O3B—P1B—O2B114.65 (8)C11B—C12B—H12B119.7
O3B—P1B—O1B112.61 (8)C12B—C13B—C14B120.8 (2)
O2B—P1B—O1B105.36 (8)C12B—C13B—H13B119.6
O3B—P1B—C9B116.20 (10)C14B—C13B—H13B119.6
O2B—P1B—C9B102.10 (9)C9B—C14B—C13B119.3 (2)
O1B—P1B—C9B104.63 (8)C9B—C14B—H14B120.3
O3C—P1C—O1C113.22 (8)C13B—C14B—H14B120.3
O3C—P1C—O2C113.28 (8)C2C—C1C—C6C121.17 (18)
O1C—P1C—O2C105.45 (7)C2C—C1C—H1C119.4
O3C—P1C—C9C116.01 (9)C6C—C1C—H1C119.4
O1C—P1C—C9C103.90 (8)C1C—C2C—C3C117.94 (17)
O2C—P1C—C9C103.83 (8)C1C—C2C—C8C120.41 (17)
O3D—P1D—O2D113.92 (8)C3C—C2C—C8C121.62 (17)
O3D—P1D—O1D112.87 (8)C4C—C3C—C2C123.55 (17)
O2D—P1D—O1D105.77 (7)C4C—C3C—O1C117.27 (16)
O3D—P1D—C9D116.93 (9)C2C—C3C—O1C119.14 (16)
O2D—P1D—C9D103.46 (8)C5C—C4C—C3C115.43 (17)
O1D—P1D—C9D102.56 (8)C5C—C4C—C7C121.96 (18)
C3A—O1A—P1A120.78 (12)C3C—C4C—C7C122.60 (18)
C5B—O2A—P1A118.31 (11)C6C—C5C—C4C124.08 (18)
C3B—O1B—P1B119.32 (12)C6C—C5C—O2B118.99 (17)
C5C—O2B—P1B121.91 (11)C4C—C5C—O2B116.88 (17)
C3C—O1C—P1C120.00 (11)C5C—C6C—C1C117.82 (17)
C5D—O2C—P1C118.16 (11)C5C—C6C—C8B121.32 (18)
C3D—O1D—P1D119.51 (12)C1C—C6C—C8B120.85 (17)
C5A—O2D—P1D121.38 (11)C4C—C7C—H7C1109.5
C2A—C1A—C6A122.21 (17)C4C—C7C—H7C2109.5
C2A—C1A—H1A118.9H7C1—C7C—H7C2109.5
C6A—C1A—H1A118.9C4C—C7C—H7C3109.5
C3A—C2A—C1A117.45 (17)H7C1—C7C—H7C3109.5
C3A—C2A—C8A121.68 (17)H7C2—C7C—H7C3109.5
C1A—C2A—C8A120.82 (17)C6D—C8C—C2C110.63 (15)
C2A—C3A—C4A123.67 (18)C6D—C8C—H8C1109.5
C2A—C3A—O1A118.98 (16)C2C—C8C—H8C1109.5
C4A—C3A—O1A117.30 (16)C6D—C8C—H8C2109.5
C5A—C4A—C3A115.46 (17)C2C—C8C—H8C2109.5
C5A—C4A—C7A121.91 (17)H8C1—C8C—H8C2108.1
C3A—C4A—C7A122.63 (18)C10C—C9C—C14C120.11 (19)
C6A—C5A—C4A124.41 (17)C10C—C9C—P1C118.53 (16)
C6A—C5A—O2D118.99 (17)C14C—C9C—P1C121.36 (16)
C4A—C5A—O2D116.51 (16)C11C—C10C—C9C119.7 (2)
C5A—C6A—C1A116.79 (17)C11C—C10C—H10C120.2
C5A—C6A—C8D122.56 (17)C9C—C10C—H10C120.2
C1A—C6A—C8D120.65 (17)C12C—C11C—C10C120.1 (2)
C4A—C7A—H7A1109.5C12C—C11C—H11C119.9
C4A—C7A—H7A2109.5C10C—C11C—H11C119.9
H7A1—C7A—H7A2109.5C13C—C12C—C11C120.4 (2)
C4A—C7A—H7A3109.5C13C—C12C—H12C119.8
H7A1—C7A—H7A3109.5C11C—C12C—H12C119.8
H7A2—C7A—H7A3109.5C12C—C13C—C14C120.5 (2)
C2A—C8A—C6B111.10 (15)C12C—C13C—H13C119.8
C2A—C8A—H8A1109.4C14C—C13C—H13C119.8
C6B—C8A—H8A1109.4C13C—C14C—C9C119.2 (2)
C2A—C8A—H8A2109.4C13C—C14C—H14C120.4
C6B—C8A—H8A2109.4C9C—C14C—H14C120.4
H8A1—C8A—H8A2108.0C6D—C1D—C2D121.92 (18)
C14A—C9A—C10A120.16 (19)C6D—C1D—H1D119.0
C14A—C9A—P1A121.45 (16)C2D—C1D—H1D119.0
C10A—C9A—P1A118.38 (16)C3D—C2D—C1D117.33 (17)
C11A—C10A—C9A119.4 (2)C3D—C2D—C8D121.87 (17)
C11A—C10A—H10A120.3C1D—C2D—C8D120.79 (17)
C9A—C10A—H10A120.3C2D—C3D—C4D124.00 (17)
C12A—C11A—C10A120.4 (2)C2D—C3D—O1D119.04 (16)
C12A—C11A—H11A119.8C4D—C3D—O1D116.93 (17)
C10A—C11A—H11A119.8C5D—C4D—C3D115.41 (17)
C11A—C12A—C13A120.4 (2)C5D—C4D—C7D122.33 (17)
C11A—C12A—H12A119.8C3D—C4D—C7D122.26 (18)
C13A—C12A—H12A119.8C4D—C5D—C6D123.81 (17)
C12A—C13A—C14A120.2 (2)C4D—C5D—O2C116.92 (16)
C12A—C13A—H13A119.9C6D—C5D—O2C119.27 (16)
C14A—C13A—H13A119.9C1D—C6D—C5D117.52 (17)
C9A—C14A—C13A119.5 (2)C1D—C6D—C8C120.72 (17)
C9A—C14A—H14A120.3C5D—C6D—C8C121.72 (17)
C13A—C14A—H14A120.3C4D—C7D—H7D1109.5
C6B—C1B—C2B122.22 (18)C4D—C7D—H7D2109.5
C6B—C1B—H1B118.9H7D1—C7D—H7D2109.5
C2B—C1B—H1B118.9C4D—C7D—H7D3109.5
C3B—C2B—C1B117.18 (17)H7D1—C7D—H7D3109.5
C3B—C2B—C8B122.31 (18)H7D2—C7D—H7D3109.5
C1B—C2B—C8B120.48 (18)C6A—C8D—C2D111.24 (15)
C4B—C3B—C2B123.83 (18)C6A—C8D—H8D1109.4
C4B—C3B—O1B116.91 (17)C2D—C8D—H8D1109.4
C2B—C3B—O1B119.24 (16)C6A—C8D—H8D2109.4
C3B—C4B—C5B115.61 (18)C2D—C8D—H8D2109.4
C3B—C4B—C7B122.11 (18)H8D1—C8D—H8D2108.0
C5B—C4B—C7B122.28 (18)C14D—C9D—C10D120.33 (18)
C6B—C5B—C4B123.92 (17)C14D—C9D—P1D121.92 (16)
C6B—C5B—O2A119.10 (17)C10D—C9D—P1D117.74 (15)
C4B—C5B—O2A116.97 (17)C11D—C10D—C9D119.5 (2)
C5B—C6B—C1B117.21 (18)C11D—C10D—H10D120.3
C5B—C6B—C8A122.02 (17)C9D—C10D—H10D120.3
C1B—C6B—C8A120.71 (17)C10D—C11D—C12D119.9 (2)
C4B—C7B—H7B1109.5C10D—C11D—H11D120.0
C4B—C7B—H7B2109.5C12D—C11D—H11D120.0
H7B1—C7B—H7B2109.5C13D—C12D—C11D120.6 (2)
C4B—C7B—H7B3109.5C13D—C12D—H12D119.7
H7B1—C7B—H7B3109.5C11D—C12D—H12D119.7
H7B2—C7B—H7B3109.5C12D—C13D—C14D120.1 (2)
C2B—C8B—C6C112.07 (15)C12D—C13D—H13D119.9
C2B—C8B—H8B1109.2C14D—C13D—H13D119.9
C6C—C8B—H8B1109.2C13D—C14D—C9D119.5 (2)
C2B—C8B—H8B2109.2C13D—C14D—H14D120.2
C6C—C8B—H8B2109.2C9D—C14D—H14D120.2
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the aromatic rings C9B–C14B, C9D–C14D and C1A–C6A, respectively.
D—H···AD—HH···AD···AD—H···A
C1Bi—H1Bi···F10.952.413.344 (3)169
C14Bii—H14Bii···F20.952.573.357 (3)140
C7Cii—H7C3ii···F20.982.623.484 (2)147
C8Ci—H8C1i···F20.982.493.379 (3)150
C1Di—H1Di···F20.952.603.439 (2)147
C11Aiii—H11Aiii···F30.952.453.254 (2)142
C7Cii—H7C3ii···F30.982.643.569 (3)160
C11C—H11C···F40.952.533.447 (3)162
C1Di—H1Di···F40.952.653.509 (3)150
C14Div—H14Div···F40.952.633.336 (4)131
C7D—H7D1···Cg1v0.982.803.524 (4)131
C7B—H7B1···Cg2vi0.982.883.530 (4)124
C8D—H8D2···Cg3vii0.982.873.594 (3)131
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z; (iii) x, y, z1; (iv) x, y+1, z+1; (v) x1, y, z; (vi) x+1, y, z; (vii) x, y+2, z+1.
Host–guest interactions (Å) in NO@Tiiii[H, CH3, C6H5]BF4 top
O3A···O12.621 (5)O3D···O22.604 (4)
O3A···N12.661 (6)O3D···N22.650 (4)
O3B···O12.609 (3)O1···PL0.471 (4)
O3B···N12.664 (5)N1···PL0.492 (6)
O3C···O22.621 (4)O2···PL0.466 (4)
O3C···N22.625 (7)N2···PL0.416 (6)
PL is the mean plane passing through the four phosphonate oxygen atoms, O3A, O3B, O3C and O3D.
 

Acknowledgements

The Centro Inter­facoltà di Misure "G. Casnati" and the "Laboratorio di Strutturistica Mario Nardelli" of the University of Parma are kindly acknowledged for the use of NMR facilities and of the Diffractometer.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals
First citationBotta, B., D'Acquarica, I., Delle Monache, G., Nevola, L., Tullo, D., Ugozzoli, F. & Pierini, M. (2007). J. Am. Chem. Soc. 129, 11202–11212.  Web of Science CSD CrossRef PubMed CAS
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCram, D. J. (1983). Science, 219, 1177–1183.  CrossRef PubMed CAS Web of Science
First citationCram, D. J. & Cram, J. M. (1994). Container Molecules and their Guests, Monographs in Supramolecular Chemistry, edited by J. F. Stoddart, vol. 4. Royal Society of Chemistry, Cambridge, UK.
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationHooley, R. J. & Rebek, J. Jr (2009). Chem. Biol. 16, 255–264.  Web of Science CrossRef PubMed CAS
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals
First citationMazej, Z., Ponikvar-Svet, M., Liebman, J. F., Passmore, J. & Jenkins, H. D. B. (2009). J. Fluor. Chem. 130, 788–791.  Web of Science CrossRef CAS
First citationMelegari, M., Suman, M., Pirondini, L., Moiani, D., Massera, C., Ugozzoli, F., Kalenius, E., Vainiotalo, P., Mulatier, J.-C., Dutasta, J.-P. & Dalcanale, E. (2008). Chem. Eur. J. 14, 5772–5779.  Web of Science CSD CrossRef PubMed CAS
First citationMenozzi, D., Pinalli, R., Massera, C., Maffei, F. & Dalcanale, E. (2015). Molecules, 20, 4460–4472.  Web of Science CSD CrossRef CAS PubMed
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals
First citationPinalli, R., Brancatelli, G., Pedrini, A., Menozzi, D., Hernández, D., Ballester, P., Geremia, S. & Dalcanale, E. (2016). J. Am. Chem. Soc. 138, 8569–8580.  Web of Science CSD CrossRef CAS PubMed
First citationPinalli, R. & Dalcanale, E. (2013). Acc. Chem. Res. 46, 399–411.  Web of Science CrossRef CAS PubMed
First citationPochorovski, I., Ebert, M.-O., Gisselbrecht, J.-P., Boudon, C., Schweizer, W. B. & Diederich, F. (2012). J. Am. Chem. Soc. 134, 14702–14705.  Web of Science CSD CrossRef CAS PubMed
First citationRathore, R., Abdelwahed, S. H. & Guzei, I. A. (2004). J. Am. Chem. Soc. 126, 13582–13583.  Web of Science CSD CrossRef PubMed CAS
First citationRathore, R., Lindeman, S. V., Rao, K. S. S. P., Sun, D. & Kochi, J. K. (2000). Angew. Chem. Int. Ed. 39, 2123–2127.  CrossRef CAS
First citationRiboni, N., Trzcinski, J. W., Bianchi, F., Massera, C., Pinalli, R., Sidisky, L., Dalcanale, E. & Careri, M. (2016). Anal. Chim. Acta, 905, 79–84.  Web of Science CrossRef CAS PubMed
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals
First citationTonezzer, M., Melegari, M., Maggioni, G., Milan, R., Della Mea, G. & Dalcanale, E. (2008). Chem. Mater. 20, 6535–6542.  Web of Science CrossRef CAS
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationZyryanov, G. V., Kang, Y. & Rudkevich, D. M. (2003). J. Am. Chem. Soc. 125, 2997–3007.  Web of Science CrossRef PubMed CAS
First citationZyryanov, G. V., Kang, Y., Stampp, S. P. & Rudkevich, D. M. (2002). Chem. Commun. pp. 2792–2793.  Web of Science CrossRef

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds