research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a di­aryl carbonate: 1,3-phenyl­ene bis­­(phenyl carbonate)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Georgetown University, 37th and O Sts NW, Washington, DC, 20057, USA
*Correspondence e-mail: jas2@georgetown.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 10 November 2017; accepted 21 November 2017; online 28 November 2017)

The whole mol­ecule of the title compound, C20H14O6, is generated by mirror symmetry, the mirror bis­ecting the central benzene ring. The carbonate groups adopt an s-cis-s-cis conformation, with torsion angles of 58.7 (2) and 116.32 (15)°. The crystal structure of 1,3-phenyl­ene bis­(phenyl carbonate) contains no strong hydrogen bonds, though weak C—H⋯O and offset ππ inter­actions are observed, forming layers parallel to the ac plane.

1. Chemical context

Organic carbonates have a wide range of applications as polymers, surfactants, fuel additives, solvents for complex industrial syntheses and extractions, and even medical agents, dyes, and foodstuff (Shukla & Srivastava, 2017[Shukla, K. & Srivastava, V. C. (2017). Catal. Rev. 59, 1-43.]). They are commonly synthesized by treating alcohols with phosgene, a rather toxic reagent. Alternative preparatory methods include the reaction of alcohols and carbon monoxide in the presence of a catalyst, direct condensation of alcohols and carbon dioxide (Joe et al., 2012[Joe, W., Lee, H. J., Hong, U. G., Ahn, Y. S., Song, C. J., Kwon, B. J. & Song, I. K. (2012). J. Ind. Engineering Chem. 18, 1018-1022.]; Zhang et al. 2012[Zhang, C., Lu, B., Wang, X., Zhao, J. & Cai, Q. (2012). Catal. Sci. Technol. 2, 305-309.]; Zhao et al., 2009[Zhao, W., Peng, W., Wang, D., Zhao, N., Li, J., Xiao, F., Wei, W. & Sun, Y. (2009). Catal. Commun. 10, 655-658.]), or the alcoholysis of urea (Ball et al., 1980[Ball, P., Füllmann, H. & Heitz, W. (1980). Angew. Chem. Int. Ed. Engl. 19, 718-720.]; Bhanage et al., 2003[Bhanage, B. M., Fujita, S., Ikushima, Y. & Arai, M. (2003). Green Chem. 5, 429-432.]; Zhang et al., 2016[Zhang, Z., Zhang, L., Wu, C., Qian, Q., Zhu, Q. & Han, B. (2016). Green Chem. 18, 798-801.]; Mote & Ranade, 2017[Mote, D. R. & Ranade, V. V. (2017). Indian J. Chem. Technol. 24, 9-19.]).

The bis­(phenyl carbonate) structure reported herein was identified as an unexpected side product from the attempted recrystallization of 1-(m-phenol)-3-phenyl­urea from ethanol. We surmise this compound formed through a combination of inter­molecular `self-alcoholysis' reactions leading to a carb­amate inter­mediate (Mote & Ranade, 2017[Mote, D. R. & Ranade, V. V. (2017). Indian J. Chem. Technol. 24, 9-19.]), which subsequently over time yields the title compound, 1,3-phenyl­ene bis­(phenyl carbonate). Compared to the one-dimensional hydrogen-bonded chain motif so frequently seen in di­aryl­urea crystals (Solomos et al., 2017[Solomos, M. A., Watts, T. A. & Swift, J. A. (2017). Cryst. Growth Des. 17, 5065-5072.]; Capacci-Daniel et al., 2010[Capacci-Daniel, C., Gaskell, K. J. & Swift, J. (2010). Cryst. Growth Des. 10, 952-962.], 2015[Capacci-Daniel, C. A., Mohammadi, C., Urbelis, J. H., Heyrana, K., Khatri, N. M., Solomos, M. A. & Swift, J. A. (2015). Cryst. Growth Des. 15, 2373-2379.], 2016[Capacci-Daniel, C. A., Bertke, J. A., Dehghan, S., Hiremath-Darji, R. & Swift, J. A. (2016). Acta Cryst. C72, 692-696.]), di­aryl carbonates lack the ability to associate via strong inter­molecular hydrogen bonds. Analysis of the relatively limited number of di­aryl carbonate structures previously reported shows that the title compound shares some of the same structural features.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The asymmetric unit consists of half a mol­ecule, as atoms C9 and C11 sit on a mirror plane. The C7=O3 bond distance [1.1878 (18) Å] and the C7—O1 and C7—O2 bond distances [1.3446 (18) Å and 1.3442 (18) Å, respectively] are in good agreement with values reported for other carbonate structures (Cambridge Structural Database: Version 5.38, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The aromatic rings are both s-cis to the carbonate group with C7—O1—C1—C6 and C7—O2—C8—C10 torsion angles of 58.7 (2) and 116.32 (15)°, respectively. The 1,3-substitution of the central aromatic ring imparts the mol­ecule with a bent or `U-shape' conformation and a significant net dipole moment.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound, with atom labeling. Displacement ellipsoids are drawn at the 50% probability level. Unlabeled atoms are related to the labeled atoms by mirror symmetry (symmetry operation: x, −y + [{1\over 2}], z).

3. Supra­molecular Features

The lengths of the unit-cell axes in the 1,3-phenyl­ene bis­(phenyl carbonate) structure are strikingly different. Mol­ecules along the a-axis direction are related by glide symmetry and assemble into polar chains (Fig. 2[link]). A short inter­molecular C=O⋯H—C contact (2.59 Å; see Table 1[link]) between mol­ecules along this axis may favorably contribute to their assembly. The dipoles of adjacent chains in the ab plane adopt an anti­parallel alignment, which leads to the very long b axis. The very short c axis reflects the offset ππ stacking between mol­ecules that are related by translation (Fig. 3[link]). Details: Cg1⋯Cg1i,ii = 3.822 (1) Å, inter­planar distance = 3.438 (1) Å, with a slippage of 1.669 Å [Cg1 is the centroid of the phenyl ring C1–C6, symmetry codes: (i) x, y, z − 1; (ii) x, y, z + 1]; Cg2⋯Cg2iii,iv = 3.822 (1) Å, inter­planar distance = 3.398 (1) Å, with a slippage of 1.749 Å [Cg2 is the centroid of the central benzene ring, symmetry codes: (iii) x, −y + [{1\over 2}], z − 1; (iv) x, −y + [{1\over 2}], z + 1).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O3i 0.95 2.59 3.2105 (8) 123
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of the title compound viewed along the c axis, showing the anti­parallel alignment of adjacent rows of mol­ecules, which creates a long b axis of 31.548 (3) Å. The C—H⋯O hydrogen bonds (see Table 1[link]) are shown as dashed line.
[Figure 3]
Figure 3
A partial view along the long b axis of 31.548 (3) Å of the crystal packing of the title compound, showing the ππ stacking inter­actions (dashed lines).

4. Database Survey

A search of the Cambridge Structural Database (CSD, Version 5.38 with May 2017 update: Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for organic di­phenyl carbonates yielded 20 hits. Inter­estingly, most of the structures have unit-cell parameters with at least one considerably long axis. With a b-axis length of 31.548 (3) Å, the structure of 1,3-phenyl­ene bis­(phenyl carbonate) is consistent with this trend. Across the 20 structures, the C=O bond lengths range between 1.155 and 1.207 Å [average: 1.178 (11) Å], C—O bond lengths fall within 1.310 and 1.387 Å [average: 1.343 (9) Å], and O—C—O angles average 106 (1)°. However, torsion angles about the C—O—C—Carom bonds are extremely variable.

Only one other acyclic bis­(phenyl carbonate) was identified in this search, 4,4′-iso­propyl­idenediphenyl-bis­(phenyl­carbonate) (DINWOM10; Perez & Scaringe, 1987[Perez, S. & Scaringe, R. P. (1987). Macromolecules, 20, 68-77.]). The bond lengths and angles are in good agreement with our structure, with C=O = 1.152 and 1.173 Å; C—O = 1.326–1.337 Å and O—C—O = 106.6 and 105.5°. Also similar is the structure of diphenyl carbonate (ZZZPCA02; Hosten & Betz, 2014[Hosten, E. & Betz, R. (2014). Z. Kristallogr. New Cryst. Struct. 229, 327-328.]), with C=O = 1.188 Å; C—O = 1.343 and 1.337 Å; O—C—O = 104.85°. The aromatic torsion angles for diphenyl carbonate are also similar to the title compound, with C—O—C—C angles of 59.90 and 132.36°.

5. Synthesis and crystallization

Equimolar amounts of 3-amino­phenol and phenyl iso­cyanate were added to benzene under nitro­gen and stirred for 24 h. A white precipitate identified as 1-(m-phenol)-3-phenyl­urea was filtered, dried, and recrystallized in assorted organic solvents (ethanol, methanol, acetone, ethyl acetate, benzene, toluene, acetone:hexa­nes, aceto­nitrile). Slow evaporation of an ethano­lic solution in a 1 dram vial, capped with pierced lids, yielded large colorless plates of 1,3-phenyl­ene bis­(phenyl carbonate). Needle-like crystals identified within the same vials corresponded to 1-(m-phenol)-3-phenyl­urea. The appearance of 1,3-phenyl­ene bis­(phenyl carbonate) crystals was not consistent across multiple recrystallization experiments, suggesting that select impurities and/or longer, delayed evaporation methods that favor non-equilibrium products may be needed to obtain this material.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were included as riding idealized contributors with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C20H14O6
Mr 350.31
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 100
a, b, c (Å) 12.9597 (12), 31.548 (3), 3.8219 (4)
V3) 1562.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.51 × 0.36 × 0.29
 
Data collection
Diffractometer Bruker D8 Quest/Photon 100
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, SADABS, XCIF and XPREP. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.620, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 16409, 1625, 1409
Rint 0.044
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.093, 1.16
No. of reflections 1625
No. of parameters 121
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.28
Computer programs: APEX2, SAINT, XCIF and XPREP (Bruker, 2014[Bruker (2014). APEX2, SAINT, SADABS, XCIF and XPREP. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014) and XPREP (Bruker, 2014); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: XCIF (Bruker, 2014) and publCIF (Westrip, 2010).

(I) top
Crystal data top
C20H14O6Dx = 1.489 Mg m3
Mr = 350.31Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 6581 reflections
a = 12.9597 (12) Åθ = 2.6–28.1°
b = 31.548 (3) ŵ = 0.11 mm1
c = 3.8219 (4) ÅT = 100 K
V = 1562.6 (3) Å3Prism, colorless
Z = 40.51 × 0.36 × 0.29 mm
F(000) = 728
Data collection top
Bruker D8 Quest/Photon 100
diffractometer
1625 independent reflections
Radiation source: microfocus sealed tube1409 reflections with I > 2σ(I)
Multilayer mirrors monochromatorRint = 0.044
profile data from φ and ω scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1616
Tmin = 0.620, Tmax = 0.746k = 3939
16409 measured reflectionsl = 44
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0297P)2 + 1.0258P]
where P = (Fo2 + 2Fc2)/3
1625 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Experimental. One distinct cell was identified using APEX2 (Bruker, 2014). Four frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2014) then corrected for absorption by integration using SAINT/SADABS v2014/2 (Bruker, 2014) to sort, merge, and scale the combined data. No decay correction was applied.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Structure was phased by direct methods (Sheldrick, 2015). Systematic conditions suggested the ambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The final map had no other significant features. A final analysis of variance between observed and calculated structure factors showed some dependence on amplitude and little dependence on resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.53843 (8)0.37983 (3)0.6378 (3)0.0182 (3)
O20.64043 (8)0.32686 (3)0.6752 (3)0.0176 (3)
O30.49910 (8)0.32050 (3)0.3282 (3)0.0205 (3)
C10.45214 (11)0.40226 (5)0.5132 (4)0.0149 (3)
C20.47199 (12)0.44105 (5)0.3612 (4)0.0166 (3)
H20.54100.45060.33050.020*
C30.38982 (12)0.46595 (5)0.2539 (4)0.0185 (3)
H30.40220.49280.14940.022*
C40.28937 (12)0.45171 (5)0.2990 (4)0.0175 (3)
H40.23310.46870.22380.021*
C50.27117 (12)0.41276 (5)0.4532 (4)0.0178 (3)
H50.20230.40310.48390.021*
C60.35262 (12)0.38772 (5)0.5632 (4)0.0159 (3)
H60.34040.36110.67100.019*
C70.55226 (11)0.33988 (5)0.5243 (4)0.0144 (3)
C80.68026 (11)0.28716 (5)0.5719 (4)0.0141 (3)
C90.63026 (16)0.25000.6630 (6)0.0146 (4)
H90.56570.25000.78080.018*
C100.77487 (11)0.28802 (5)0.4077 (4)0.0152 (3)
H100.80680.31430.35130.018*
C110.82269 (16)0.25000.3264 (6)0.0159 (5)
H110.88820.25000.21490.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0145 (5)0.0142 (5)0.0258 (7)0.0025 (4)0.0060 (5)0.0041 (5)
O20.0132 (5)0.0147 (5)0.0250 (6)0.0033 (4)0.0045 (5)0.0041 (5)
O30.0155 (5)0.0189 (6)0.0272 (6)0.0020 (4)0.0062 (5)0.0059 (5)
C10.0134 (7)0.0153 (7)0.0159 (8)0.0029 (6)0.0022 (6)0.0035 (6)
C20.0142 (7)0.0162 (8)0.0193 (8)0.0034 (6)0.0018 (6)0.0025 (6)
C30.0207 (8)0.0151 (7)0.0198 (8)0.0005 (6)0.0015 (7)0.0000 (6)
C40.0153 (7)0.0180 (8)0.0192 (8)0.0043 (6)0.0014 (6)0.0011 (7)
C50.0131 (7)0.0217 (8)0.0187 (8)0.0009 (6)0.0020 (6)0.0035 (7)
C60.0176 (8)0.0141 (7)0.0161 (8)0.0014 (6)0.0014 (6)0.0002 (6)
C70.0110 (7)0.0149 (7)0.0173 (8)0.0002 (5)0.0012 (6)0.0010 (6)
C80.0139 (7)0.0133 (8)0.0151 (7)0.0019 (6)0.0043 (6)0.0019 (6)
C90.0091 (10)0.0175 (11)0.0171 (11)0.0000.0008 (8)0.000
C100.0144 (7)0.0162 (8)0.0151 (7)0.0027 (6)0.0024 (6)0.0010 (6)
C110.0116 (10)0.0211 (11)0.0150 (11)0.0000.0002 (8)0.000
Geometric parameters (Å, º) top
O1—C71.3446 (18)C4—H40.9500
O1—C11.4064 (18)C5—C61.384 (2)
O2—C71.3442 (18)C5—H50.9500
O2—C81.4109 (18)C6—H60.9500
O3—C71.1878 (18)C8—C101.377 (2)
C1—C21.379 (2)C8—C91.3842 (19)
C1—C61.382 (2)C9—C8i1.3841 (19)
C2—C31.385 (2)C9—H90.9500
C2—H20.9500C10—C111.3856 (18)
C3—C41.388 (2)C10—H100.9500
C3—H30.9500C11—C10i1.3856 (18)
C4—C51.383 (2)C11—H110.9500
C7—O1—C1117.93 (12)C1—C6—H6120.6
C7—O2—C8117.53 (12)C5—C6—H6120.6
C2—C1—C6121.79 (14)O3—C7—O2127.33 (14)
C2—C1—O1116.16 (13)O3—C7—O1127.50 (14)
C6—C1—O1121.89 (14)O2—C7—O1105.16 (12)
C1—C2—C3118.98 (14)C10—C8—C9123.23 (14)
C1—C2—H2120.5C10—C8—O2115.82 (13)
C3—C2—H2120.5C9—C8—O2120.67 (14)
C2—C3—C4120.04 (15)C8i—C9—C8115.8 (2)
C2—C3—H3120.0C8i—C9—H9122.1
C4—C3—H3120.0C8—C9—H9122.1
C5—C4—C3120.04 (14)C8—C10—C11118.90 (15)
C5—C4—H4120.0C8—C10—H10120.5
C3—C4—H4120.0C11—C10—H10120.5
C4—C5—C6120.43 (14)C10—C11—C10i119.9 (2)
C4—C5—H5119.8C10—C11—H11120.0
C6—C5—H5119.8C10i—C11—H11120.0
C1—C6—C5118.71 (14)
C7—O1—C1—C2125.86 (15)C8—O2—C7—O1173.24 (12)
C7—O1—C1—C658.7 (2)C1—O1—C7—O30.4 (2)
C6—C1—C2—C30.4 (2)C1—O1—C7—O2178.35 (12)
O1—C1—C2—C3175.82 (14)C7—O2—C8—C10116.32 (15)
C1—C2—C3—C40.2 (2)C7—O2—C8—C969.5 (2)
C2—C3—C4—C50.4 (2)C10—C8—C9—C8i1.4 (3)
C3—C4—C5—C60.1 (2)O2—C8—C9—C8i175.11 (11)
C2—C1—C6—C50.8 (2)C9—C8—C10—C110.5 (3)
O1—C1—C6—C5175.92 (14)O2—C8—C10—C11174.47 (15)
C4—C5—C6—C10.5 (2)C8—C10—C11—C10i0.5 (3)
C8—O2—C7—O35.6 (2)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O3ii0.952.593.2105 (8)123
Symmetry code: (ii) x+1/2, y, z+1/2.
 

Funding information

The authors acknowledge financial support provided by the National Science Foundation through awards DMR-1609541 and the ARCS Foundation for a predoctoral fellowship (MAS).

References

First citationBall, P., Füllmann, H. & Heitz, W. (1980). Angew. Chem. Int. Ed. Engl. 19, 718–720.  CrossRef Web of Science
First citationBhanage, B. M., Fujita, S., Ikushima, Y. & Arai, M. (2003). Green Chem. 5, 429–432.  Web of Science CrossRef CAS
First citationBruker (2014). APEX2, SAINT, SADABS, XCIF and XPREP. Bruker AXS, Inc., Madison, Wisconsin, USA.
First citationCapacci-Daniel, C. A., Bertke, J. A., Dehghan, S., Hiremath-Darji, R. & Swift, J. A. (2016). Acta Cryst. C72, 692–696.  Web of Science CSD CrossRef IUCr Journals
First citationCapacci-Daniel, C., Gaskell, K. J. & Swift, J. (2010). Cryst. Growth Des. 10, 952–962.  CAS
First citationCapacci-Daniel, C. A., Mohammadi, C., Urbelis, J. H., Heyrana, K., Khatri, N. M., Solomos, M. A. & Swift, J. A. (2015). Cryst. Growth Des. 15, 2373–2379.  CAS
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationHosten, E. & Betz, R. (2014). Z. Kristallogr. New Cryst. Struct. 229, 327–328.
First citationJoe, W., Lee, H. J., Hong, U. G., Ahn, Y. S., Song, C. J., Kwon, B. J. & Song, I. K. (2012). J. Ind. Engineering Chem. 18, 1018–1022.  Web of Science CrossRef CAS
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals
First citationMote, D. R. & Ranade, V. V. (2017). Indian J. Chem. Technol. 24, 9–19.
First citationPerez, S. & Scaringe, R. P. (1987). Macromolecules, 20, 68–77.  CSD CrossRef CAS Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationShukla, K. & Srivastava, V. C. (2017). Catal. Rev. 59, 1–43.  Web of Science CrossRef CAS
First citationSolomos, M. A., Watts, T. A. & Swift, J. A. (2017). Cryst. Growth Des. 17, 5065–5072.  Web of Science CSD CrossRef CAS
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationZhang, C., Lu, B., Wang, X., Zhao, J. & Cai, Q. (2012). Catal. Sci. Technol. 2, 305–309.  Web of Science CrossRef
First citationZhang, Z., Zhang, L., Wu, C., Qian, Q., Zhu, Q. & Han, B. (2016). Green Chem. 18, 798–801.  Web of Science CrossRef CAS
First citationZhao, W., Peng, W., Wang, D., Zhao, N., Li, J., Xiao, F., Wei, W. & Sun, Y. (2009). Catal. Commun. 10, 655–658.  Web of Science CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds