research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of methyl 2-[5-(2-hy­dr­oxy­phen­yl)-2H-tetra­zol-2-yl]acetate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
*Correspondence e-mail: leespy@chonnam.ac.kr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 24 November 2017; accepted 26 November 2017; online 30 November 2017)

The title compound, C10H10N4O3, was synthesized by the esterification of hy­droxy­phenyl tetra­zole. There is an intra­molecular O—H⋯N hydrogen bond present involving the hy­droxy group and the tetra­zole ring. The tetra­zole ring is inclined to the phenol ring by 2.85 (13)°, while the methyl acetate group is almost normal to the tetra­zole ring, making a dihedral angle of 82.61 (14)°. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers. Within the dimers, the phenol rings are linked by offset ππ inter­actions [inter­centroid distance = 3.759 (2) Å]. There are no further significant inter­molecular inter­actions present in the crystal. The hy­droxy group is disordered about positions 2 and 6 on the benzene ring, with a refined occupancy ratio of 0.531 (5):0.469 (5).

1. Chemical context

Tetra­zole ligands are useful building blocks for the construction of high-dimensional metal–organic frameworks by providing various binding modes toward metal centers (Karaghiosoff et al., 2009[Karaghiosoff, K., Klapötke, T. M. & Miró Sabaté, C. (2009). Chem. Eur. J. 15, 1164-1176.]; Liu et al., 2013[Liu, Z.-Y., Zou, H.-A., Hou, Z.-J., Yang, E.-C. & Zhao, X.-J. (2013). Dalton Trans. 42, 15716-15725.]). Recently, we have used 5-(2-hy­droxy­phen­yl)tetra­zole as a chelating multidentate ligand and reported several inter­esting compounds (Park et al., 2015[Park, Y. J., Ryu, J. Y., Begum, H., Lee, M. H., Stang, P. J. & Lee, J. (2015). J. Am. Chem. Soc. 137, 5863-5866.]; 2014[Park, K. H., Lee, K. M., Go, M. J., Choi, S. H., Park, H. R., Kim, Y. & Lee, J. (2014). Inorg. Chem. 53, 8213-8220.]). It provides strong [N,O] chelation to metal centers with various additional binding modes. As part of a project on the study of the substitution effects on the tetra­zole ring on the self-assembly behaviour in solution, as well as in the solid state, we have synthesized a number of substituted hy­droxy­phenyl tetra­zole complexes. The substitution of the tetra­zole group may promote supra­molecular inter­action by weak inter­actions, such as hydrogen bonding. The reaction between hy­droxy­phenyl tetra­zole and bromo acetate methyl ester in the presence of potassium carbonate gave three isomeric products. Using column chromatography, the major product was isolated and its mol­ecular structure was determined unambiguously by X-ray crystallography. We report herein, the synthesis and crystal structure of this compound.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The structure analysis confirms the nature of the major product of the reaction, which yielded three isomeric compounds as described in Section 5, Synthesis and crystallization. The title mol­ecule consists of a tetra­zole ring (N1–N4/C1) and a phenol ring (C2–C7), which are connected by an intra­molecular O—H⋯N hydrogen bond (Fig. 1[link], Table 1[link]) and inclined to one another by 2.85 (13)°. The planar methyl acetate group [O2/O3/C8–C10; maximum deviation of 0.037 (2) Å for atom O2] is inclined to the tetra­zole ring by 82.61 (14)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 1.91 2.659 (4) 148
C5—H5⋯O3i 0.95 2.57 3.472 (3) 158
Symmetry code: (i) -x+1, -y, -z+1.
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with the atom labelling and 30% probability displacement ellipsoids. The intra­molecular O—H⋯N hydrogen bond (see Table 1[link]) is indicated by a dashed line. Only the major component of the disordered OH group, in position 2, is shown.

3. Supra­molecular features

In the crystal, the mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers with an R22(22) loop (Table 1[link], Fig. 2[link]). Within the dimers, the phenol rings are linked by offset ππ inter­actions [CgCgi = 3.759 (2) Å, inter­planar distance = 3.526 (1) Å, slippage 1.305 Å; Cg is the centroid of the C2–C7 phenol ring, symmetry code: (i) −x + 1, −y, −z + 1]. There are no further significant inter­molecular inter­actions present in the crystal.

[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. The intra- and inter­molecular hydrogen bonds (see Table 1[link]) are indicated by dashed lines. The offset ππ inter­actions are shown as dashed double arrows. Only H atoms H1 and H5, and the major component of the disordered OH group in position 2, have been included.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the methyl 2-(5-phenyl-2H-tetra­zol-2-yl)acetate skeleton revealed only two hits, viz. ethyl (Z)-3-phenyl-2-(5-phenyl-2H-tetra­zol-2-yl)-2-propenoate (SAKVIM; Ramazani et al., 2017[Ramazani, A., Nasrabadi, F. Z., Ślepokura, K., Lis, T. & Joo, S. W. (2017). J. Heterocycl. Chem. 54, 55-64.]) and methyl (5-phenyl-2H-tetra­zol-2-yl)acetate (WUKNUN; Saeed et al., 2015[Saeed, A., Qasim, M., Hussain, M., Flörke, U. & Erben, M. F. (2015). Spectrochim. Acta Part A, 150, 1-8.]). In WUKNUN, the 5-phenyl substituent is inclined to the tetra­zole ring by 3.89 (7)°, compared to 2.85 (13)° in the title compound. In contrast, the corresponding dihedral angle in SAKVIM is 19.97 (16)°. The meth­yl/ethyl acetate groups are inclined to the plane of the tetra­zole ring by 84.99 (7)° in WUKNUN and 84.57 (7)° in SAKVIM, similar to the value observed in the title compound, viz. 82.61 (14)°.

5. Synthesis and crystallization

The synthesis of the title compound is illustrated in Fig. 3[link]. 2-(2H-Tetra­zol-5-yl)phenol (100 mg, 0.62 mmol) and potassium carbonate (85.0 mg, 0.62 mmol) were dissolved in aceto­nitrile at 273 K while stirring for 30 min. To the resulting solution methyl 2-bromo­acetate (207 µl, 2.18 mmol) was added and stirring was continued for 24 h. The white solid that was obtained was filtered and the solvent removed under reduced pressure. The residue was purified by column chromatography on silica gel using ether:hexane (2:3) as eluent. Three isomeric compounds were obtained, as shown in Fig. 3[link]. The major product (I)[link] (yield = 59%), was recrystallized in di­chloro­methane and yielded needle-like colourless crystals of the title compound. Spectroscopic data: 1H NMR (CDCl3, 400MHz): δ = 9.59 (s, 1H, OH), 8.06 (d, 1H, Ph), 7.41 (t, 1H, Ph), 7.11 (d, 1H, Ph), 6.99 (t, 1H, Ph), 5.51 (s, 2H), 3.85 (s, 3H). 13C NMR (125 MHz, CDCl3): 165.06, 164.68, 156.42, 132.44, 127.50, 120.06, 117.62, 53.41, 53.38 ppm.

[Figure 3]
Figure 3
Reaction scheme for the synthesis of the title compound, (I)[link].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hy­droxy group is disordered about positions 2 and 6 on the phenol ring, with a refined occupancy ratio of 0.531 (5):0.469 (5). All the H atoms were included in calculated positions using a riding model: O—H = 0.84 Å, C-H = 0.95–1.00 Å with Uiso(H) = 1.5 Ueq(O-hydroxyl, C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C10H10N4O3
Mr 234.22
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 10.060 (2), 8.2538 (17), 13.536 (3)
β (°) 104.479 (10)
V3) 1088.2 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.15 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.987, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 14003, 2372, 1252
Rint 0.044
(sin θ/λ)max−1) 0.642
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.137, 1.02
No. of reflections 2372
No. of parameters 167
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.17
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Methyl 2-[5-(2-hydroxyphenyl)-2H-tetrazol-2-yl]acetate top
Crystal data top
C10H10N4O3F(000) = 488
Mr = 234.22Dx = 1.430 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.060 (2) ÅCell parameters from 3134 reflections
b = 8.2538 (17) Åθ = 2.9–24.3°
c = 13.536 (3) ŵ = 0.11 mm1
β = 104.479 (10)°T = 100 K
V = 1088.2 (4) Å3Needle, colourless
Z = 40.15 × 0.10 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1252 reflections with I > 2σ(I)
φ and ω scansRint = 0.044
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 27.2°, θmin = 2.1°
Tmin = 0.987, Tmax = 0.989h = 1212
14003 measured reflectionsk = 1010
2372 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.3171P]
where P = (Fo2 + 2Fc2)/3
2372 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.17 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3781 (3)0.2337 (4)0.3644 (3)0.0745 (14)0.531 (5)
H10.45340.27550.36230.112*0.531 (5)
O20.92819 (16)0.46762 (19)0.26859 (14)0.0718 (5)
O30.92563 (18)0.2756 (2)0.38419 (16)0.0879 (6)
O1A0.5939 (5)0.1877 (6)0.7094 (3)0.1031 (19)0.469 (5)
H1A0.65570.23770.69000.155*0.469 (5)
N10.61929 (19)0.3786 (2)0.43476 (16)0.0618 (5)
N20.7415 (2)0.4500 (2)0.46016 (19)0.0679 (6)
N30.8043 (2)0.4384 (3)0.5571 (2)0.0890 (7)
N40.7203 (2)0.3567 (3)0.59958 (17)0.0826 (7)
C10.6085 (2)0.3209 (3)0.5240 (2)0.0574 (6)
C20.4922 (2)0.2276 (2)0.53816 (19)0.0555 (6)
C30.4899 (3)0.1677 (3)0.6336 (3)0.0749 (7)
H30.56380.19110.69080.090*0.531 (5)
C40.3811 (4)0.0744 (3)0.6462 (3)0.0916 (10)
H40.38100.03340.71170.110*
C50.2743 (3)0.0412 (3)0.5647 (3)0.0913 (10)
H50.20010.02370.57340.110*
C60.2733 (3)0.1010 (3)0.4701 (3)0.0831 (8)
H60.19780.07900.41370.100*
C70.3818 (3)0.1929 (3)0.4565 (2)0.0652 (7)
H70.38080.23300.39050.078*0.469 (5)
C80.8045 (3)0.5246 (3)0.3866 (2)0.0778 (8)
H8A0.86190.61700.41890.093*
H8B0.73220.56700.32880.093*
C90.8923 (2)0.4048 (3)0.3474 (2)0.0635 (7)
C101.0223 (3)0.3749 (3)0.2257 (2)0.0834 (8)
H10A1.04020.43340.16740.125*
H10B0.98170.26910.20310.125*
H10C1.10870.35940.27760.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.063 (2)0.086 (3)0.071 (3)0.0122 (18)0.0098 (17)0.0043 (19)
O20.0666 (11)0.0501 (10)0.1035 (13)0.0043 (8)0.0303 (10)0.0086 (10)
O30.0893 (13)0.0446 (10)0.1425 (17)0.0147 (9)0.0529 (12)0.0194 (11)
O1A0.127 (4)0.118 (4)0.062 (3)0.006 (3)0.018 (3)0.011 (3)
N10.0533 (12)0.0445 (11)0.0897 (15)0.0028 (10)0.0215 (11)0.0002 (11)
N20.0570 (13)0.0463 (12)0.1035 (18)0.0007 (10)0.0260 (13)0.0040 (12)
N30.0684 (15)0.0838 (18)0.111 (2)0.0131 (14)0.0151 (15)0.0115 (16)
N40.0699 (15)0.0835 (16)0.0897 (17)0.0084 (13)0.0113 (13)0.0090 (13)
C10.0534 (15)0.0414 (12)0.0779 (17)0.0082 (11)0.0172 (13)0.0068 (13)
C20.0568 (14)0.0374 (12)0.0754 (17)0.0095 (11)0.0225 (13)0.0017 (12)
C30.085 (2)0.0605 (17)0.082 (2)0.0139 (15)0.0271 (18)0.0054 (16)
C40.118 (3)0.0586 (18)0.119 (3)0.0109 (19)0.069 (2)0.0116 (18)
C50.096 (2)0.0504 (17)0.151 (3)0.0090 (16)0.074 (2)0.015 (2)
C60.0686 (18)0.0668 (18)0.121 (3)0.0077 (15)0.0376 (17)0.0194 (18)
C70.0604 (16)0.0517 (15)0.088 (2)0.0008 (12)0.0273 (15)0.0047 (14)
C80.0703 (16)0.0433 (14)0.130 (2)0.0011 (12)0.0439 (17)0.0049 (15)
C90.0474 (13)0.0384 (13)0.106 (2)0.0044 (11)0.0219 (13)0.0004 (14)
C100.0779 (18)0.0708 (18)0.110 (2)0.0042 (15)0.0398 (16)0.0052 (16)
Geometric parameters (Å, º) top
O1—C71.282 (4)N4—C11.351 (3)
O2—C91.315 (3)C1—C21.452 (3)
O2—C101.447 (3)C2—C71.387 (3)
O3—C91.190 (3)C2—C31.388 (3)
O1A—C31.280 (5)C3—C41.383 (4)
N1—C11.328 (3)C4—C51.362 (4)
N1—N21.329 (3)C5—C61.370 (4)
N2—N31.310 (3)C6—C71.378 (3)
N2—C81.445 (3)C8—C91.508 (3)
N3—N41.319 (3)
C9—O2—C10117.19 (18)O1A—C3—C4119.1 (4)
C1—N1—N2101.8 (2)O1A—C3—C2119.9 (3)
N3—N2—N1114.2 (2)C4—C3—C2120.7 (3)
N3—N2—C8122.4 (2)C5—C4—C3120.0 (3)
N1—N2—C8123.2 (2)C4—C5—C6120.3 (3)
N2—N3—N4105.9 (2)C5—C6—C7120.1 (3)
N3—N4—C1106.5 (2)O1—C7—C6116.2 (3)
N1—C1—N4111.6 (2)O1—C7—C2122.9 (3)
N1—C1—C2124.2 (2)C6—C7—C2120.7 (3)
N4—C1—C2124.2 (2)N2—C8—C9111.09 (19)
C7—C2—C3118.1 (2)O3—C9—O2126.0 (2)
C7—C2—C1121.0 (2)O3—C9—C8124.7 (2)
C3—C2—C1120.8 (2)O2—C9—C8109.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.912.659 (4)148
C5—H5···O3i0.952.573.472 (3)158
Symmetry code: (i) x+1, y, z+1.
 

Funding information

We acknowledge financial support from the Basic Science Research Program (2016R1D1A1B03930507) and the BRL Program (2015R1A4A1041036) of the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT & Future Planning and Education.

References

First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationKaraghiosoff, K., Klapötke, T. M. & Miró Sabaté, C. (2009). Chem. Eur. J. 15, 1164–1176.  Web of Science CSD CrossRef PubMed CAS
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals
First citationLiu, Z.-Y., Zou, H.-A., Hou, Z.-J., Yang, E.-C. & Zhao, X.-J. (2013). Dalton Trans. 42, 15716–15725.  Web of Science CSD CrossRef CAS PubMed
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals
First citationPark, K. H., Lee, K. M., Go, M. J., Choi, S. H., Park, H. R., Kim, Y. & Lee, J. (2014). Inorg. Chem. 53, 8213–8220.  CrossRef CAS PubMed
First citationPark, Y. J., Ryu, J. Y., Begum, H., Lee, M. H., Stang, P. J. & Lee, J. (2015). J. Am. Chem. Soc. 137, 5863–5866.  CrossRef CAS PubMed
First citationRamazani, A., Nasrabadi, F. Z., Ślepokura, K., Lis, T. & Joo, S. W. (2017). J. Heterocycl. Chem. 54, 55–64.  CrossRef CAS
First citationSaeed, A., Qasim, M., Hussain, M., Flörke, U. & Erben, M. F. (2015). Spectrochim. Acta Part A, 150, 1–8.  CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds