research communications
μ3-acetato-tetraaquabis(μ2-cyclohexane-1,4-dicarboxylato)dilanthanum(III)] dihydrate]
of poly[[di-aDepartment of Chemistry, Mahatma Gandhi College, Thiruvananthapuram 695 004, Kerala, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
*Correspondence e-mail: msithambaresan@gmail.com
The title compound, {[La2(CH3COO)2(C8H10O4)2(H2O)4]·2H2O}n or [La2(ac)2(e,a-cis-1,4-chdc)2(H2O)4]·2H2O, where ac is acetate and 1,4-chdc is cyclohexane-1,4-dicarboxylate anion, is a binuclear lanthanum(III) complex. Each metal atom is decacoordinated by four O atoms from two distinct 1,4-chdc2− ligands, four O atoms from three acetate groups and two O atoms from coordinated water molecules to form a distorted bicapped square-antiprismatic geometry. Two non-coordinated water molecules are also present in the formula unit. The most remarkable feature of this compound is that it possesses a only cis conformation for cyclohexane-1,4-dicarboxylic acid, although the raw material consists of a mixture of cis and trans isomers. The μ3-η2:η2 coordination mode of the bridging acetate group and the flexible dicarboxylate fragments of 1,4-chdc2− results in the formation of infinite two-dimensional lanthanide–carboxylate layers within the The directionality of strong intermolecular O—H⋯O and weak C—H⋯O interactions provides robustness to the layers, which leads to the construction of a three-dimensional supramolecular network. The crystal studied was refined as a two-component twin.
CCDC reference: 1546730
1. Chemical context
1,4-Cyclohexanedicarboxyic acid (1,4-chdcH2) is a flexible alicyclic, ditopic ligand having a chair-type backbone structure, which has been used for the construction of many coordination polymers (CPs) with remarkable architectures (Liu et al., 2010). It can exist in three different conformations – two trans isomers, (a,a) and (e,e), and one cis (e,a) form. From a thermodynamical point of view, the trans (e,e) form is the most stable of the three different conformations as a result of the equatorial–equatorial –COOH groups and the trans (a,a) isomer is the least stable because of 1,3-diaxial hindrance (Yu et al., 2007; Gong et al., 2005; Bi et al., 2003; Du et al., 2005; Chen et al., 2014)·Theoretical calculations suggest that the isomers tend to cause conformational inversion within the ligand structure due to the flexibility of the C—C bond rotation and also because of the extremely low free energy change between them (Qiblawi et al., 2013; Lin & Tong, 2011; Liu et al., 2010). Furthermore, the isomeric separation of the organic ligand can be controlled by several factors such as the pH of the solution, the nature of the metal ion, the co-ligand, the reaction solvent and the temperature (Lin & Tong, 2011; Liu et al., 2010).
2. Structural commentary
The 2− anion, an acetate moiety and three water molecules (two coordinated and one non-coordinated). From the molecular structure (Fig. 1), it is evident that each LaIII atom has a distorted bicapped square-antiprismatic coordination sphere defined by four oxygen atoms from two distinct 1,4-chdc2− ligands (O1, O2, O7, O8), four oxygen atoms from three acetate groups (O5, O6, O5′, O6′) and two oxygen atoms from coordinated water molecules (O3, O4) to form a [LaO10] (Fig. 2). Of the three prevalent conformations of 1,4-chdcH2, low temperature usually favours the cis (e,a) and high temperature favours the trans (e,e) conformational compounds (Lin & Tong, 2011; Lu et al., 2008; Bi et al., 2004). Here, the bent structure of the organic linker possesses an L-shaped cis (e,a) conformation within the The corresponding La—O bond lengths are in the range 2.506 (8)—2.792 (7) Å and the O—La—O bond angles vary from 46.51 (19) to 170.7 (2)°. The La—O bond distances are comparable with those in several reported structures in which 1,4-cyclohexanedicarboxylic acid exists in various coordination modes and conformations (Rao et al., 2007; Qi et al., 2008).
of the title compound consists of one crystallographically unique La metal ion, a fully deprotonated 1,4-chdcThe bridging μ3-η2:η2 coordination mode (each oxygen atom connects two metal atoms) of the acetate group joins two [LaO10] polyhedra by edge sharing to form a dimeric structure. The dimers are then interlinked by La—O—La bonding and as a consequence of this, infinite zigzag 1D [La2O2] chains are formed. Within these chains, La⋯La non-bonding distances are found to be 4.5835 (9) and 4.4125 (9) Å. Additionally, the bis-bidentate chelating μ2-η1:η1:η1:η1 coordination mode of the dicarboxylate group of 1,4-chdc2− connects two metal atoms and hence converts it into a 2D coordination polymeric structure parallel to the ab plane. A perspective view of the packing along the c axis in a wireframe model (Fig. 3) shows the formation of infinite 2D lanthanide–carboxylate layers. The [La2O2] chains are then further interconnected by a dicarboxylate anion from two 1,4-chdc2− units to form a 24-membered macrocyclic ring as shown in Fig. 4. A series of organotin complexes of the cis and trans isomers of 1,4-chdcH2 show similar 2D networks containing 26- and 36-membered tetratin macrocyclic rings (Ma et al., 2009).
3. Supramolecular features
From the polyhedral view along the a axis (Fig. 5), it is clear that the two lattice water molecules residing in the voids of the 1,4-chdc2− units are responsible for the development of hydrophilic channels within the The hydrogen-bonding interactions (Table 1) shown in Fig. 6 play a vital role in increasing the stability and higher dimensionality of the crystal packing. Here, the oxygen atom O9 of the lattice water molecule acts as a donor for hydrogen bonds with oxygen atoms O1 and O2 of the carboxylate group of the 1,4-chdc2− ligand [O9—H9A⋯O2 = 2.786 (12) Å and O9—H9B⋯O1iii = 2.846 (11) Å]. It also acts as the hydrogen-bond acceptor for oxygen atoms O3 and O4 of the coordinated water molecules [O3—H3C⋯O9 = 2.858 (12) Å and O4—H4D⋯O9ii 2.812 (11) Å]. Similarly, oxygen atom O7 of the carboxylate group of 1,4-chdc acts as an acceptor to atoms O3 and O4 of the coordinated water molecules [O3—H3D⋯O7ii = 2.750 (11) Å and O4—H4C⋯O7i = 2.771 (10) Å]. Apart from this strong intermolecular hydrogen bonding, there are also weak C—H⋯O interactions between the carbon atom C10 of the coordinated acetate group and the O1 oxygen atom of a carboxylate group of the organic linker [C10—H10C⋯O1 = 3.295 (14) Å].
4. Database survey
In the three-dimensional structures of [La2(1,4-chdc)3(H2O)4], [La3(1,4-Hchdc)2(1,4-chdc)5(H2O)2]·H2O and [La2(1,4-chdc)3(H2O)]·2.5H2O, the dicarboxylate anion exists in different conformations obtained under hydrothermal conditions (Rao et al., 2007). Similarly a two-dimensional lanthanum coordination polymer [La2(1,10-phen)2(1,4-chdc)3]·2.5H2O with π–π stacking was observed by the incorporation of 1,10-phenanthroline as a co-ligand along with 1,4-cyclohexanedicarboxylic acid (Qi et al., 2008). Additionally, dimethyl formamide (DMF) and dimethyl sulfoxide (DMSO) solvent-coordinated lanthanum complexes, one-dimensional [La(cis-chdc)(DMF)2(NO3)] and three-dimensional [La2(trans-chdc)3(DMSO)4] have also been reported. The presence of solvent molecules can completely segregate the cis and trans conformations of 1,4-chdc (Tian et al., 2009).
5. Synthesis and crystallization
Single crystals of the title compound were prepared by the gel-diffusion technique at ambient temperature using sodium metasilicate nonahydrate (Na2S2O3·9H2O) as the gel medium. The optimum condition for crystal growth was obtained by dissolving 0.75 g of 1,4-H2chdc in 25 ml of 1.04 g cm−3 dense gel medium. 5 ml of the above solution was poured into glass tubes and the pH of the solution was set to 7.0 by adding glacial acetic acid drop by drop. On completion of the gel-setting process, 3 ml of 0.5 M concentration of aqueous lanthanum nitrate solution was added as the upper reagent. The whole arrangement was kept undisturbed at room temperature and was covered to protect it from the foreign matter present in the atmosphere. Within seven days, transparent, colourless block-shaped crystals were observed at the gel interface. The diffusion of La3+ ions and 1,4-chdcH2 through the fine pores of the gel media lead to the expected chemical reaction as shown below:
2La(NO3)3·6H2O + 2C8H12O4 + 2CH3COOH → [La2(CH3COO)2(C8H10O4)2(H2O)4]·2H2O + 6HNO3.
Elemental analysis calculated (%) for C20H38La2O18 (844.32): C, 28.42; H, 4.50. Found (%): C, 28.36; H, 4.33. IR (KBr, cm−1): 3380, 2940, 1573, 1460, 743, 673, 597.
6. Refinement
Crystal data, data collection and structure . Carbon-bound hydrogen atoms were placed in calculated positions and included in the in the riding-model approximation with C—H distances of 0.96–0.98 Å and with Uiso(H) = 1.2Ueq(C) for methyl hydrogen atoms and Uiso(H) = 1.2Ueq(C) for all others. Water hydrogen atoms were located from difference-Fourier maps and refined with an O—H distance restraint of 0.90 (2) Å and an H⋯H separation of 1.39 (2) Å. The isotropic displacement parameters of the hydrogen atoms attached to atoms O3, O4 and O9 were made equal by using an EDAP instruction. The crystal studied was refined as a two-component twin (BASF = 0.4203).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1546730
https://doi.org/10.1107/S2056989017016103/vn2132sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017016103/vn2132Isup2.hkl
Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010)'.[La2(C2H3O2)2(C8H10O4)2(H2O)4]·2H2O | Z = 1 |
Mr = 844.32 | F(000) = 416 |
Triclinic, P1 | Dx = 1.960 Mg m−3 |
a = 6.9341 (8) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.9597 (13) Å | Cell parameters from 7100 reflections |
c = 12.3030 (16) Å | θ = 2.8–30.9° |
α = 110.217 (5)° | µ = 3.02 mm−1 |
β = 91.060 (5)° | T = 293 K |
γ = 93.280 (5)° | Block, colourless |
V = 715.49 (16) Å3 | 0.20 × 0.15 × 0.15 mm |
Bruker Kappa APEXII CCD diffractometer | 2815 independent reflections |
Radiation source: Sealed tube | 2447 reflections with I > 2σ(I) |
ω and φ scan | θmax = 26.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −8→8 |
Tmin = 0.60, Tmax = 0.74 | k = −11→10 |
2818 measured reflections | l = 0→15 |
Refinement on F2 | 9 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.041 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.146 | w = 1/[σ2(Fo2) + (0.0821P)2 + 6.1459P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.005 |
2818 reflections | Δρmax = 2.17 e Å−3 |
204 parameters | Δρmin = −2.46 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a two-component twin. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2377 (17) | 0.7936 (10) | 0.7752 (7) | 0.0203 (18) | |
C2 | 0.2486 (18) | 0.7706 (11) | 0.8920 (8) | 0.030 (2) | |
H2 | 0.2447 | 0.8760 | 0.9522 | 0.036* | |
C3 | 0.0724 (17) | 0.6681 (16) | 0.9058 (11) | 0.033 (3) | |
H3A | 0.0698 | 0.6715 | 0.9855 | 0.040* | |
H3B | −0.0448 | 0.7116 | 0.8889 | 0.040* | |
C4 | 0.0778 (17) | 0.4962 (14) | 0.8253 (10) | 0.030 (3) | |
H4A | 0.0694 | 0.4919 | 0.7455 | 0.036* | |
H4B | −0.0331 | 0.4339 | 0.8379 | 0.036* | |
C5 | 0.2631 (16) | 0.4239 (11) | 0.8460 (7) | 0.024 (2) | |
H5 | 0.2633 | 0.4196 | 0.9245 | 0.028* | |
C6 | 0.4375 (16) | 0.5264 (15) | 0.8372 (11) | 0.030 (3) | |
H6A | 0.4468 | 0.5213 | 0.7574 | 0.036* | |
H6B | 0.5526 | 0.4836 | 0.8576 | 0.036* | |
C7 | 0.4325 (17) | 0.6994 (14) | 0.9147 (10) | 0.028 (2) | |
H7A | 0.5438 | 0.7602 | 0.9010 | 0.034* | |
H7B | 0.4403 | 0.7067 | 0.9952 | 0.034* | |
C8 | 0.2736 (16) | 0.2574 (10) | 0.7614 (8) | 0.0229 (19) | |
C9 | 0.7522 (14) | 1.0347 (9) | 0.6555 (7) | 0.0141 (16) | |
C10 | 0.7542 (18) | 1.0729 (13) | 0.7831 (8) | 0.030 (2) | |
H10A | 0.7030 | 1.1749 | 0.8194 | 0.046* | |
H10B | 0.8846 | 1.0758 | 0.8118 | 0.046* | |
H10C | 0.6763 | 0.9926 | 0.8006 | 0.046* | |
O1 | 0.3916 (11) | 0.7991 (10) | 0.7225 (7) | 0.0280 (18) | |
O2 | 0.0804 (11) | 0.8116 (10) | 0.7334 (7) | 0.0272 (18) | |
O3 | −0.0144 (11) | 0.6946 (10) | 0.4871 (7) | 0.0310 (18) | |
O4 | 0.3865 (13) | 0.6914 (10) | 0.4470 (8) | 0.039 (2) | |
O5 | 0.5999 (10) | 0.9978 (10) | 0.5957 (6) | 0.0219 (16) | |
O6 | 0.9100 (10) | 1.0455 (9) | 0.6066 (6) | 0.0220 (16) | |
O7 | 0.2827 (11) | 0.2366 (7) | 0.6530 (5) | 0.0223 (14) | |
O8 | 0.2635 (12) | 0.1397 (7) | 0.7932 (5) | 0.0283 (15) | |
O9 | −0.2682 (13) | 0.6345 (9) | 0.6499 (7) | 0.0384 (18) | |
La1 | 0.23952 (8) | 0.92768 (5) | 0.58722 (4) | 0.01486 (18) | |
H4C | 0.474 (15) | 0.704 (14) | 0.398 (8) | 0.05 (3)* | |
H4D | 0.326 (16) | 0.597 (8) | 0.406 (8) | 0.05 (3)* | |
H3C | −0.088 (14) | 0.668 (17) | 0.538 (9) | 0.06 (3)* | |
H3D | −0.105 (12) | 0.705 (17) | 0.437 (9) | 0.06 (3)* | |
H9A | −0.207 (15) | 0.687 (15) | 0.719 (6) | 0.06 (3)* | |
H9B | −0.388 (9) | 0.669 (17) | 0.663 (10) | 0.06 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.026 (5) | 0.012 (4) | 0.025 (4) | −0.004 (4) | 0.006 (5) | 0.008 (3) |
C2 | 0.047 (7) | 0.023 (5) | 0.019 (4) | 0.003 (5) | −0.002 (5) | 0.008 (4) |
C3 | 0.029 (7) | 0.041 (7) | 0.034 (7) | 0.011 (5) | 0.007 (5) | 0.017 (6) |
C4 | 0.031 (7) | 0.027 (6) | 0.030 (6) | 0.004 (5) | 0.003 (4) | 0.005 (5) |
C5 | 0.030 (6) | 0.026 (5) | 0.016 (4) | −0.005 (4) | −0.002 (4) | 0.011 (4) |
C6 | 0.022 (6) | 0.037 (7) | 0.033 (6) | 0.004 (5) | −0.005 (4) | 0.014 (5) |
C7 | 0.041 (8) | 0.025 (6) | 0.017 (5) | 0.001 (5) | −0.004 (4) | 0.007 (4) |
C8 | 0.017 (5) | 0.024 (5) | 0.029 (5) | 0.002 (4) | −0.001 (4) | 0.012 (4) |
C9 | 0.010 (4) | 0.012 (3) | 0.018 (4) | 0.003 (4) | −0.002 (4) | 0.001 (3) |
C10 | 0.026 (6) | 0.042 (6) | 0.020 (4) | −0.006 (5) | 0.003 (5) | 0.007 (4) |
O1 | 0.016 (4) | 0.039 (5) | 0.039 (5) | 0.005 (3) | 0.005 (3) | 0.025 (4) |
O2 | 0.026 (5) | 0.031 (5) | 0.028 (4) | 0.004 (3) | −0.005 (3) | 0.015 (4) |
O3 | 0.026 (5) | 0.035 (5) | 0.034 (5) | −0.005 (3) | −0.002 (3) | 0.017 (4) |
O4 | 0.033 (5) | 0.022 (4) | 0.051 (5) | −0.009 (3) | 0.023 (4) | −0.001 (4) |
O5 | 0.012 (4) | 0.037 (4) | 0.020 (4) | −0.001 (3) | 0.002 (3) | 0.014 (3) |
O6 | 0.011 (4) | 0.032 (4) | 0.025 (4) | −0.001 (3) | 0.002 (3) | 0.011 (3) |
O7 | 0.025 (4) | 0.024 (3) | 0.018 (3) | 0.001 (3) | 0.006 (3) | 0.007 (2) |
O8 | 0.042 (4) | 0.021 (3) | 0.024 (3) | −0.001 (4) | −0.004 (3) | 0.011 (3) |
O9 | 0.023 (5) | 0.033 (4) | 0.057 (5) | 0.004 (4) | 0.004 (4) | 0.013 (4) |
La1 | 0.0121 (3) | 0.0169 (3) | 0.0169 (3) | 0.0017 (2) | 0.0015 (2) | 0.00745 (18) |
C1—O2 | 1.240 (13) | C9—La1ii | 3.119 (8) |
C1—O1 | 1.266 (13) | C10—H10A | 0.9600 |
C1—C2 | 1.522 (12) | C10—H10B | 0.9600 |
C1—La1 | 2.952 (8) | C10—H10C | 0.9600 |
C2—C7 | 1.521 (17) | O1—La1 | 2.570 (7) |
C2—C3 | 1.533 (17) | O2—La1 | 2.601 (8) |
C2—H2 | 0.9800 | O3—La1 | 2.588 (8) |
C3—C4 | 1.519 (18) | O3—H3C | 0.90 (2) |
C3—H3A | 0.9700 | O3—H3D | 0.90 (2) |
C3—H3B | 0.9700 | O4—La1 | 2.506 (8) |
C4—C5 | 1.527 (16) | O4—H4C | 0.90 (2) |
C4—H4A | 0.9700 | O4—H4D | 0.89 (2) |
C4—H4B | 0.9700 | O5—La1 | 2.533 (7) |
C5—C8 | 1.502 (12) | O5—La1ii | 2.792 (7) |
C5—C6 | 1.505 (15) | O6—La1iii | 2.552 (7) |
C5—H5 | 0.9800 | O6—La1ii | 2.674 (7) |
C6—C7 | 1.516 (17) | O7—La1i | 2.598 (6) |
C6—H6A | 0.9700 | O8—La1i | 2.585 (6) |
C6—H6B | 0.9700 | O9—H9A | 0.90 (2) |
C7—H7A | 0.9700 | O9—H9B | 0.90 (2) |
C7—H7B | 0.9700 | La1—O6iv | 2.552 (7) |
C8—O8 | 1.244 (11) | La1—O8v | 2.585 (6) |
C8—O7 | 1.284 (11) | La1—O7v | 2.598 (6) |
C8—La1i | 2.983 (9) | La1—O6ii | 2.674 (7) |
C9—O5 | 1.237 (11) | La1—O5ii | 2.792 (7) |
C9—O6 | 1.273 (11) | La1—C8v | 2.983 (9) |
C9—C10 | 1.487 (11) | ||
O2—C1—O1 | 120.1 (8) | C9—O6—La1ii | 98.1 (5) |
O2—C1—C2 | 120.4 (9) | La1iii—O6—La1ii | 115.2 (3) |
O1—C1—C2 | 119.5 (10) | C8—O7—La1i | 94.3 (5) |
O2—C1—La1 | 61.6 (5) | C8—O8—La1i | 96.0 (5) |
O1—C1—La1 | 60.2 (5) | H9A—O9—H9B | 101 (3) |
C2—C1—La1 | 164.8 (6) | O4—La1—O5 | 73.2 (3) |
C1—C2—C7 | 114.2 (9) | O4—La1—O6iv | 135.8 (3) |
C1—C2—C3 | 110.9 (9) | O5—La1—O6iv | 143.4 (2) |
C7—C2—C3 | 109.4 (8) | O4—La1—O1 | 77.7 (3) |
C1—C2—H2 | 107.4 | O5—La1—O1 | 73.8 (2) |
C7—C2—H2 | 107.4 | O6iv—La1—O1 | 126.4 (2) |
C3—C2—H2 | 107.4 | O4—La1—O8v | 146.0 (3) |
C4—C3—C2 | 111.4 (9) | O5—La1—O8v | 82.5 (3) |
C4—C3—H3A | 109.4 | O6iv—La1—O8v | 76.9 (2) |
C2—C3—H3A | 109.4 | O1—La1—O8v | 72.8 (2) |
C4—C3—H3B | 109.4 | O4—La1—O3 | 67.5 (3) |
C2—C3—H3B | 109.4 | O5—La1—O3 | 140.7 (3) |
H3A—C3—H3B | 108.0 | O6iv—La1—O3 | 73.0 (3) |
C3—C4—C5 | 111.4 (10) | O1—La1—O3 | 96.1 (3) |
C3—C4—H4A | 109.4 | O8v—La1—O3 | 131.7 (3) |
C5—C4—H4A | 109.4 | O4—La1—O7v | 138.0 (2) |
C3—C4—H4B | 109.4 | O5—La1—O7v | 73.7 (2) |
C5—C4—H4B | 109.4 | O6iv—La1—O7v | 69.9 (2) |
H4A—C4—H4B | 108.0 | O1—La1—O7v | 116.4 (2) |
C8—C5—C6 | 110.0 (9) | O8v—La1—O7v | 49.88 (18) |
C8—C5—C4 | 111.2 (9) | O3—La1—O7v | 140.6 (2) |
C6—C5—C4 | 110.4 (8) | O4—La1—O2 | 103.1 (3) |
C8—C5—H5 | 108.4 | O5—La1—O2 | 121.8 (2) |
C6—C5—H5 | 108.4 | O6iv—La1—O2 | 78.8 (2) |
C4—C5—H5 | 108.4 | O1—La1—O2 | 49.7 (2) |
C5—C6—C7 | 113.4 (9) | O8v—La1—O2 | 69.9 (2) |
C5—C6—H6A | 108.9 | O3—La1—O2 | 67.7 (3) |
C7—C6—H6A | 108.9 | O7v—La1—O2 | 116.2 (2) |
C5—C6—H6B | 108.9 | O4—La1—O6ii | 83.0 (3) |
C7—C6—H6B | 108.9 | O5—La1—O6ii | 107.7 (2) |
H6A—C6—H6B | 107.7 | O6iv—La1—O6ii | 64.8 (3) |
C6—C7—C2 | 111.4 (9) | O1—La1—O6ii | 159.3 (3) |
C6—C7—H7A | 109.3 | O8v—La1—O6ii | 127.8 (2) |
C2—C7—H7A | 109.3 | O3—La1—O6ii | 69.3 (2) |
C6—C7—H7B | 109.3 | O7v—La1—O6ii | 83.2 (2) |
C2—C7—H7B | 109.3 | O2—La1—O6ii | 129.9 (2) |
H7A—C7—H7B | 108.0 | O4—La1—O5ii | 68.8 (3) |
O8—C8—O7 | 119.6 (8) | O5—La1—O5ii | 61.3 (3) |
O8—C8—C5 | 121.6 (8) | O6iv—La1—O5ii | 103.7 (2) |
O7—C8—C5 | 118.7 (7) | O1—La1—O5ii | 129.6 (2) |
O8—C8—La1i | 59.5 (5) | O8v—La1—O5ii | 119.3 (2) |
O7—C8—La1i | 60.3 (4) | O3—La1—O5ii | 104.2 (2) |
C5—C8—La1i | 172.5 (8) | O7v—La1—O5ii | 72.9 (2) |
O5—C9—O6 | 118.9 (7) | O2—La1—O5ii | 170.7 (2) |
O5—C9—C10 | 121.7 (9) | O6ii—La1—O5ii | 46.51 (19) |
O6—C9—C10 | 119.4 (9) | O4—La1—C1 | 93.6 (3) |
O5—C9—La1ii | 63.3 (4) | O5—La1—C1 | 97.2 (3) |
O6—C9—La1ii | 58.1 (4) | O6iv—La1—C1 | 101.4 (3) |
C10—C9—La1ii | 161.8 (6) | O1—La1—C1 | 25.3 (3) |
C9—C10—H10A | 109.5 | O8v—La1—C1 | 65.9 (2) |
C9—C10—H10B | 109.5 | O3—La1—C1 | 84.1 (3) |
H10A—C10—H10B | 109.5 | O7v—La1—C1 | 115.7 (2) |
C9—C10—H10C | 109.5 | O2—La1—C1 | 24.8 (3) |
H10A—C10—H10C | 109.5 | O6ii—La1—C1 | 152.5 (3) |
H10B—C10—H10C | 109.5 | O5ii—La1—C1 | 154.8 (3) |
C1—O1—La1 | 94.4 (6) | O4—La1—C8v | 151.3 (3) |
C1—O2—La1 | 93.6 (6) | O5—La1—C8v | 78.0 (3) |
La1—O3—H3C | 113 (9) | O6iv—La1—C8v | 70.6 (3) |
La1—O3—H3D | 120 (9) | O1—La1—C8v | 94.8 (3) |
H3C—O3—H3D | 101 (3) | O8v—La1—C8v | 24.5 (2) |
La1—O4—H4C | 121 (8) | O3—La1—C8v | 141.2 (3) |
La1—O4—H4D | 127 (8) | O7v—La1—C8v | 25.4 (2) |
H4C—O4—H4D | 102 (3) | O2—La1—C8v | 92.3 (3) |
C9—O5—La1 | 147.1 (6) | O6ii—La1—C8v | 105.7 (2) |
C9—O5—La1ii | 93.4 (5) | O5ii—La1—C8v | 97.0 (2) |
La1—O5—La1ii | 118.7 (3) | C1—La1—C8v | 90.4 (2) |
C9—O6—La1iii | 138.0 (6) | ||
O2—C1—C2—C7 | 161.8 (9) | C4—C5—C8—O7 | 63.7 (13) |
O1—C1—C2—C7 | −20.4 (13) | O2—C1—O1—La1 | 15.4 (9) |
La1—C1—C2—C7 | −105 (3) | C2—C1—O1—La1 | −162.5 (7) |
O2—C1—C2—C3 | 37.7 (12) | O1—C1—O2—La1 | −15.2 (9) |
O1—C1—C2—C3 | −144.5 (9) | C2—C1—O2—La1 | 162.6 (7) |
La1—C1—C2—C3 | 131 (3) | O6—C9—O5—La1 | 174.3 (8) |
C1—C2—C3—C4 | 69.6 (12) | C10—C9—O5—La1 | −8.2 (16) |
C7—C2—C3—C4 | −57.2 (11) | La1ii—C9—O5—La1 | −168.1 (12) |
C2—C3—C4—C5 | 57.2 (12) | O6—C9—O5—La1ii | −17.7 (8) |
C3—C4—C5—C8 | −176.5 (9) | C10—C9—O5—La1ii | 159.9 (7) |
C3—C4—C5—C6 | −54.1 (12) | O5—C9—O6—La1iii | −124.4 (8) |
C8—C5—C6—C7 | 176.5 (9) | C10—C9—O6—La1iii | 58.0 (12) |
C4—C5—C6—C7 | 53.4 (11) | La1ii—C9—O6—La1iii | −143.1 (9) |
C5—C6—C7—C2 | −55.0 (12) | O5—C9—O6—La1ii | 18.6 (9) |
C1—C2—C7—C6 | −69.6 (12) | C10—C9—O6—La1ii | −158.9 (7) |
C3—C2—C7—C6 | 55.3 (11) | O8—C8—O7—La1i | 4.7 (11) |
C6—C5—C8—O8 | 124.8 (11) | C5—C8—O7—La1i | −171.5 (9) |
C4—C5—C8—O8 | −112.5 (12) | O7—C8—O8—La1i | −4.8 (11) |
C6—C5—C8—O7 | −59.0 (13) | C5—C8—O8—La1i | 171.4 (9) |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+2, −z+1; (iii) x+1, y, z; (iv) x−1, y, z; (v) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10C···O1 | 0.96 | 2.49 | 3.295 (14) | 141 |
O4—H4C···O7vi | 0.90 (2) | 1.92 (5) | 2.771 (10) | 158 (12) |
O4—H4D···O9vii | 0.89 (2) | 1.96 (6) | 2.812 (11) | 158 (12) |
O3—H3C···O9 | 0.90 (2) | 1.97 (3) | 2.858 (12) | 172 (13) |
O3—H3D···O7vii | 0.90 (2) | 1.86 (3) | 2.750 (11) | 170 (14) |
O9—H9A···O2 | 0.90 (2) | 2.20 (11) | 2.786 (12) | 122 (11) |
O9—H9B···O1iv | 0.90 (2) | 1.97 (5) | 2.846 (11) | 164 (13) |
Symmetry codes: (iv) x−1, y, z; (vi) −x+1, −y+1, −z+1; (vii) −x, −y+1, −z+1. |
Acknowledgements
The authors are thankful to the authorities of SAIF, Kochi for instrumental facilities. We are indebted to Dr M. R. Prathachandra Kurup, Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, for helping us to visualize the DIAMOND software. RD is thankful to the University of Kerala, Trivandrum, India, for the award of a University Research Fellowship.
usingReferences
Bi, W., Cao, R., Sun, D., Yuan, D., Li, X. & Hong, M. (2003). Inorg. Chem. Commun. 6, 1426–1428. Web of Science CSD CrossRef CAS
Bi, W. H., Cao, R., Sun, D. F., Yuan, D. Q., Li, X., Wang, Y. Q., Li, X. J. & Hong, M. C. (2004). Chem. Commun. pp. 2104–2105. CSD CrossRef
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, Z. H., Zhao, Y., Wang, P., Chen, S. S. & Sun, W. Y. (2014). Polyhedron, 67, 253–263. CSD CrossRef CAS
Du, M., Cai, H. & Zhao, X. J. (2005). Inorg. Chim. Acta, 358, 4034–4038. CSD CrossRef CAS
Gong, Y., Hu, C. W., Li, H., Huang, K. L. & Tang, W. (2005). J. Solid State Chem. 178, 3152–3158. CSD CrossRef CAS
Lin, Z. & Tong, M. L. (2011). Coord. Chem. Rev. 255, 421–450. CrossRef CAS
Liu, T. F., Lü, J. & Cao, R. (2010). CrystEngComm, 12, 660–670. Web of Science CrossRef CAS
Lü, J., Bi, W. H., Xiao, F. X., Batten, S. R. & Cao, R. (2008). Chem. Asian J. 3, 542–547. PubMed
Ma, C., Wang, Y. & Zhang, R. (2009). Inorg. Chim. Acta, 362, 4137–4144. CSD CrossRef CAS
Qi, Y., Li, H., Liu, C. & Hu, C. (2008). J. Coord. Chem. 61, 315–321. CSD CrossRef CAS
Qiblawi, S. H., Sposato, L. K. & LaDuca, R. L. (2013). Inorg. Chim. Acta, 407, 297–305. CSD CrossRef CAS
Rao, K. P., Thirumurugan, A. & Rao, C. N. R. (2007). Chem. Eur. J. 13, 3193–3201. Web of Science CSD CrossRef PubMed CAS
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Tian, G., Zhu, G., Su, B.-L. & Qiu, S. (2009). J. Mater. Sci. 44, 6576–6582. CSD CrossRef CAS
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals
Yu, M., Xie, L., Liu, S., Wang, C., Cheng, H., Ren, Y. & Su, Z. (2007). Inorg. Chim. Acta, 360, 3108–3112. CSD CrossRef CAS
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.