research communications
2(AsO4)2 containing discrete [Mn4O18]28− units
of BaMnaDivision of Science, Mathematics and Technology, Governors State University, 1 University Parkway, University Park, IL 60484-0975, USA
*Correspondence e-mail: kranmohotti@govst.edu
In our attempt to search for mixed alkaline-earth and transition metal arsenates, the title compound, barium dimanganese(II) bis(arsenate), has been synthesized by employing a high-temperature RbCl 2(AsO4)2 is made up of MnO6 octahedra and AsO4 tetrahedra assembled by sharing corners and edges into infinite slabs with composition [Mn2(AsO4)2]2− that extend parallel to the ab plane. The barium cations reside between parallel slabs maintaining the interslab connectivity through coordination to eight oxygen anions. The layered anionic framework comprises weakly interacting [Mn4O18]28− tetrameric units. In each tetramer, the manganese(II) cations are in a planar arrangement related by a center of inversion. Within the slabs, the tetrameric units are separated from each other by 6.614 (2) Å (Mn⋯Mn distances). The title compound has isostructural analogues amongst synthetic SrM2(XO4)2 compounds with M = Ni, Co, and X = As, P.
The of BaMnKeywords: orthoarsenate; tetrameric units; layered framework stucture; bond-valence sum calculations; crystal structure.
CCDC reference: 1584656
1. Chemical context
Compounds of vanadates, phosphates, and arsenates with the general formula AM2(XO4)2, where A = Pb or an alkaline earth metal, M = Mg or a divalent first row transition metal, and X = V, P or As, can adopt different structure types. They have attracted much attention in solid-state physics due to magnetic ordering at low temperatures and the occurrence of (multiple) phase transitions. For AM2(XO4)2 compounds with Pb or an alkaline earth metal ion on the A2+ site and a transition metal with partially filled 3d orbitals on the M2+ site, one-dimensional magnetic properties with high anisotropy and weak interchain interactions have been reported (Bera et al., 2013). The crystal structures of some of these compounds comprise screw-chains made up of MO6 octahedra, separated by non-magnetic VO4 (V5+; 3d0) tetrahedra, resulting in a quasi one-dimensional structure. Five representatives of this family have been characterized crystallographically, viz. BaMg2(VO4)2 (Velikodnyi et al., 1982), BaCo2(VO4)2 (Wichmann & Müller-Buschbaum, 1986a), BaMn2(VO4)2, BaMgZn(VO4)2 and Ba1/2Sr1/2Ni2(VO4)2 (Von Postel & Müller-Buschbaum, 1992). They crystallize in the tetragonal in I41/acd (No. 142). For the related compounds SrMn2(VO4)2 (Niesen et al., 2011), SrCo2(VO4)2 (Osterloh & Müller-Buschbaum, 1994a), PbCo2(VO4)2 (He et al., 2007) and PbNi2(VO4)2 (Uchiyama et al., 1999), it was found that they adopt the SrNi2(VO4)2 structure type (Wichmann & Müller-Buschbaum, 1986b), crystallizing in I41cd (No.110), a of the latter. The only copper(II) vanadate compound with an AM2(XO4)2 composition is BaCu2(VO4)2 (Vogt & Müller-Buschbaum, 1990). The is also tetragonal but belongs to I2d (No. 122), another of I41/acd. BaNi2(VO4)2 (Rogado et al., 2002) adopts a different structure type as it belongs to the rhombohedral R (No. 148) and represents the only quasi-two-dimensional system within the above-mentioned vanadates.
Phosphates containing transition metals have been widely investigated because of their variety of potential applications. They can adopt a plethora of different structure types and show various magnetic properties. With respect to the AM2(XO4)2 family of compounds, the phosphates BaCu2(PO4)2 (Moqine et al., 1993), α-SrCo2(PO4)2 (El Bali et al., 1993a), β-SrCo2(PO4)2 (Yang et al., 2016), SrNi2(PO4)2 (El Bali et al., 1993b), SrNiZn(PO4)2 (El Bali et al., 2004) and SrMn2(PO4)2 (El Bali et al., 2000) crystallize in P (No. 2). SrCu2(PO4)2 (Belik et al., 2005) and PbCu2(PO4)2 (Belik et al., 2006) are isotypic and crystallize in the orthorhombic [space group Pccn (No. 56)]. The crystal structures of BaNi2(PO4)2 (Čabrić et al., 1982), and BaFe2(PO4)2 (Kabbour et al., 2012) possess trigonal symmetry in R (No. 148). BaCo2(PO4)2, in particular, can exist in several polymorphs such as the rhombohedral γ-phase [(R (No. 148); Bircsak & Harrison, 1998], the monoclinic α-phase [P21/a (No. 14)] and the trigonal β-phase [P (No. 147); David et al., 2013], depending on the synthetic conditions and thermal history. It has been reported that α-SrZn2(PO4)2 (Hemon & Courbion, 1990) and SrFe2(PO4)2 (Belik et al., 2001) adopt different structure types and crystallize in the monoclinic P21/c (No. 14).
Thus far, compared to vanadates and phosphates, only a few arsenates of the AM2(XO4)2 family have been studied, viz. BaNi2(AsO4)2 (Eymond et al., 1969a), BaMg2(AsO4)2 and BaCo2(AsO4)2 (Eymond et al., 1969b) in R, and SrCo2(AsO4)2 (Osterloh & Müller-Buschbaum, 1994a) and BaCu2(AsO4)2 (Osterloh & Müller-Buschbaum, 1994b) in space groups P and P21/n, respectively. To extend our knowledge of the AM2(XO4)2 system, we have undertaken an investigation of the BaO/MnO/As2O5 phase diagram and employed a method for crystal growth. The present work deals with the determination of the of a new mixed-metal orthoarsenate, BaMn2(AsO4)2.
2. Structural commentary
Besides Ba2Mn(AsO4)2 (Adams et al., 1996), BaMn2(AsO4)2 represents the second compound to be structurally characterized in the system BaO/MnO/As2O5. BaMn2(AsO4)2 is isotypic with β-SrCo2(PO4)2 (Yang et al., 2016), SrCo2(AsO4)2 (Osterloh & Müller-Buschbaum, 1994a) and SrNi2(PO4)2 (El Bali et al., 1993b) (for numerical data for these structures, see Supplementary Table 1 in the Supporting information). The of BaMn2(AsO4)2 can be described as a three-dimensional framework containing slabs of composition [Mn2(AsO4)2]2− that are built up from two different MnO6 and two different AsO4 polyhedra (Fig. 1) and extend parallel to the ab plane (Fig. 2). Mn1 possesses a distorted octahedral coordination environment and exhibits five normal Mn—O bonds and one long Mn—O bond. Mn2 is also six-coordinated and has two long Mn—O bonds, again forming a distorted MnO6 octahedron (Table1, Fig. 3a). Similar distortions in MnO6 octahedra have been observed previously (Adams et al., 1996; Weil & Kremer, 2017). The two arsenic atoms are part of AsO4 tetrahedra (Fig. 3b), with As—O bond lengths ranging from 1.663 (5)–1.710 (4) Å (Table 1) and O—As—O bond angles from 99.8 (2)–114.6 (2)°. The average As—O bond length (1.688 Å) in the title compound is identical to those of previously reported arsenates (Ulutagay-Kartin et al., 2003). The bond lengths are also consistent with the sum of the Shannon crystal radii (Shannon, 1976), 1.68 Å, of four-coordinate As5+ (0.475 Å) and two-coordinate O2− (1.21 Å). The barium cations reside between parallel slabs and maintain the interslab connectivity through coordination to eight oxygen anions (Fig. 3c). The average Ba—O bond length, 2.83 Å, matches closely with 2.77 Å, the sum of the Shannon radii for eight-coordinate Ba2+ (1.56 Å) and two-coordinated O2− (1.21 Å) ions, and is in agreement with those of other barium arsenates (Weil, 2016).
Fig. 4a shows two Mn1O6 octahedra sharing a common edge, O1v—O1vii (symmetry codes refer to Table 1) to form a Mn2O10 unit with an Mn1⋯Mn1 separation of 3.1854 (17) Å and an Mn1—O1—Mn1 angle of 93.34 (18)°. Mn2O6 octahedra share corners with the Mn2O10 unit through O3 and O4, resulting in a tetrameric [Mn4O18]28− unit (Fig. 4b). These [Mn4O18]28− units are interlinked through AsO4 tetrahedra to give slabs with overall composition [Mn2(AsO4)2]2−. Each [Mn4O18]28− unit interacts weakly by sharing oxygen vertices with six other units, whereby the tetrameric units are separated from each other along the b axis by 4.2616 (19) Å [Mn1⋯Mn2(1 − x, −y, 2 − z)] and along the a axis by 3.490 (18) Å [Mn1⋯Mn2(x, −1 + y, −1 + z)]. The distance between the Mn atoms of adjacent slabs [Mn2⋯Mn2(−x, 1 − y, −z)] is 6.614 (2) Å (Fig. 1a).
As shown in Fig. 4a, the roles of the two arsenate groups are different. As1O4 tetrahedra share oxygen atoms O1 with Mn1O6 octahedra, and O3 and O5 atoms with Mn1O6 and Mn2O6 octahedra while oxygen atom O6 points towards neighboring slabs to form a bond with a Ba2+ cation (Fig. 4a). As2O4 tetrahedra, on the other hand, share an edge (O4–O7) with Mn2O6 octahedra of one tetrameric unit and share two corners (O7 and O8) with Mn1O6 and Mn2O6 octahedra of two other neighboring tetrameric units. Thus As1O4 and As2O4 tetrahedra interlink two and three neighboring tetrameric units, respectively. As shown in Fig. 1c, As1O4 and As2O4 tetrahedra alternate along the b axis, and this template-like arrangement allows the barium cations to propagate in a zigzag fashion to maintain the distance between the [Mn2(AsO4)2]2− slabs.
Bond-valence sum (BVS) calculations (Brese & O'Keefe, 1991) for BaMn2(AsO4)2 result in values of 2.19, 1.84, 4.87, 5.05 and 1.98 valence units for Mn1, Mn2, As1, As2 and Ba1, respectively, which in each case is close to the expected values of 2 for Mn, 5 for As and 2 for Ba.
It is important to note that the barium cations reside in the gaps between adjacent [Mn2(AsO4)2]2− slabs. The large inter-slab separation [6.614 (2) Å] leads us to believe that magnetic interactions that occur between these slabs are expected to be extremely weak, and the dominant magnetic exchange is expected to appear between Mn2+ ions in the tetrameric units within a slab. Judging from the reported magnetic properties for related BaM2(XO4)2 (M = Co, Ni; X = As, P) compounds with the magnetic ions sitting on a honeycomb lattice (Martin et al., 2012), or those of β-SrCo2(PO4)2 (Yang et al., 2016) and SrNi2(PO4)2 (He et al., 2008), we also expect interesting magnetic phenomena for BaMn2(AsO4)2.
3. Synthesis and crystallization
Light-pink crystals of BaMn2(AsO4)2 were grown by employing an RbCl in a fused silica ampoule under vacuum. MnO (3.81 mmol, 99.999+%, Alfa), BaO (1.90 mmol, 99.99+%, Aldrich) and As2O5 (1.90 mmol, 99.9+%, Strem) were mixed and ground with RbCl (1:3 by weight) in a nitrogen-blanketed drybox. The resulting mixture was heated to 818 K at 1 K min−1, isothermed for two days, heated to 1023 K at 1 K min−1, isothermed for another four days, then slowly cooled to 673 K at 0.1 K min−1, followed by furnace-cooling to room temperature. Prismatic crystals of BaMn2(AsO4)2 (Fig. 5) were retrieved upon washing off recrystallized RbCl with deionized water.
4. Refinement
Crystal data, data collection and structure . The final Fourier difference synthesis showed the maximum residual electron density 0.96 Å from Ba1 and the minimum 0.83 Å from the same site.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1584656
https://doi.org/10.1107/S2056989017016152/wm5420sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017016152/wm5420Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017016152/wm5420sup3.pdf
Data collection: CrystalClear (Rigaku, 2006); cell
CrystalClear (Rigaku, 2006); data reduction: CrystalClear (Rigaku, 2006); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).BaMn2(AsO4)2 | Z = 2 |
Mr = 525.06 | F(000) = 472 |
Triclinic, P1 | Dx = 4.787 Mg m−3 |
a = 5.7981 (12) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.0938 (14) Å | Cell parameters from 3100 reflections |
c = 9.817 (2) Å | θ = 2.3–25.2° |
α = 109.75 (3)° | µ = 17.78 mm−1 |
β = 100.42 (3)° | T = 293 K |
γ = 98.40 (3)° | Column, light pink |
V = 364.26 (15) Å3 | 0.20 × 0.10 × 0.06 mm |
Rigaku AFC8S diffractometer | 1254 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.035 |
φ and ω scans | θmax = 25.5°, θmin = 2.3° |
Absorption correction: multi-scan (REQAB; Rigaku, 1998) | h = −6→7 |
Tmin = 0.808, Tmax = 1.000 | k = −8→8 |
3149 measured reflections | l = −11→11 |
1330 independent reflections | 1 standard reflections every 1 reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | w = 1/[σ2(Fo2) + (0.0674P)2 + 0.2802P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.097 | (Δ/σ)max = 0.001 |
S = 1.14 | Δρmax = 3.25 e Å−3 |
1330 reflections | Δρmin = −2.93 e Å−3 |
119 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.076 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ba1 | 0.24355 (7) | 0.79849 (6) | 0.05371 (4) | 0.0100 (2) | |
Mn1 | 0.36901 (17) | 1.15237 (15) | 0.44407 (11) | 0.0091 (3) | |
Mn2 | 0.00727 (18) | 0.59526 (15) | 0.35472 (12) | 0.0105 (3) | |
As1 | −0.15775 (11) | 1.02502 (10) | 0.30239 (7) | 0.0061 (3) | |
As2 | 0.40017 (11) | 0.42782 (10) | 0.24010 (7) | 0.0062 (3) | |
O1 | −0.3934 (8) | 0.9502 (7) | 0.3669 (5) | 0.0092 (10) | |
O2 | 0.3546 (8) | 0.1879 (7) | 0.2382 (5) | 0.0124 (10) | |
O3 | 0.0571 (8) | 0.8910 (7) | 0.3296 (5) | 0.0105 (10) | |
O4 | 0.3801 (8) | 0.5917 (7) | 0.4075 (5) | 0.0099 (10) | |
O5 | −0.0125 (8) | 1.2729 (7) | 0.4122 (5) | 0.0125 (10) | |
O6 | −0.2437 (9) | 0.9808 (7) | 0.1213 (5) | 0.0139 (11) | |
O7 | 0.1684 (8) | 0.4587 (7) | 0.1276 (6) | 0.0133 (11) | |
O8 | 0.6676 (8) | 0.4888 (7) | 0.2047 (5) | 0.0127 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.0116 (3) | 0.0073 (3) | 0.0072 (3) | −0.00194 (18) | 0.00103 (18) | 0.0003 (2) |
Mn1 | 0.0061 (5) | 0.0097 (5) | 0.0073 (5) | −0.0021 (4) | 0.0006 (4) | 0.0000 (4) |
Mn2 | 0.0053 (5) | 0.0125 (6) | 0.0087 (6) | 0.0006 (4) | 0.0003 (4) | −0.0009 (4) |
As1 | 0.0043 (4) | 0.0072 (4) | 0.0043 (4) | −0.0005 (3) | 0.0007 (3) | −0.0001 (3) |
As2 | 0.0036 (4) | 0.0060 (4) | 0.0069 (4) | −0.0002 (3) | 0.0007 (3) | 0.0007 (3) |
O1 | 0.006 (2) | 0.011 (2) | 0.010 (2) | 0.0021 (17) | 0.0015 (17) | 0.0034 (19) |
O2 | 0.017 (2) | 0.006 (2) | 0.012 (3) | 0.0009 (18) | 0.0022 (19) | 0.0023 (19) |
O3 | 0.006 (2) | 0.009 (2) | 0.016 (3) | 0.0021 (17) | 0.0009 (18) | 0.005 (2) |
O4 | 0.009 (2) | 0.009 (2) | 0.008 (2) | 0.0015 (18) | 0.0040 (17) | −0.0008 (18) |
O5 | 0.013 (2) | 0.013 (2) | 0.006 (2) | −0.0032 (18) | 0.0037 (18) | −0.001 (2) |
O6 | 0.017 (3) | 0.018 (3) | 0.004 (2) | 0.002 (2) | −0.0009 (19) | 0.004 (2) |
O7 | 0.008 (2) | 0.013 (2) | 0.016 (3) | −0.0008 (18) | −0.0042 (19) | 0.007 (2) |
O8 | 0.006 (2) | 0.018 (2) | 0.011 (2) | −0.0018 (18) | 0.0055 (18) | 0.002 (2) |
Ba1—O2i | 2.647 (4) | Mn2—O8viii | 2.094 (5) |
Ba1—O7ii | 2.682 (5) | Mn2—O4 | 2.136 (5) |
Ba1—O6iii | 2.687 (5) | Mn2—O5vii | 2.152 (5) |
Ba1—O7 | 2.741 (5) | Mn2—O3 | 2.178 (5) |
Ba1—O8iv | 2.853 (5) | Mn2—O7 | 2.518 (5) |
Ba1—O6v | 2.921 (5) | Mn2—O5ix | 2.526 (5) |
Ba1—O3 | 3.000 (5) | As1—O6 | 1.663 (5) |
Ba1—O1v | 3.131 (5) | As1—O1 | 1.697 (5) |
Mn1—O4vi | 2.052 (5) | As1—O5 | 1.709 (5) |
Mn1—O2i | 2.108 (5) | As1—O3 | 1.710 (4) |
Mn1—O1v | 2.179 (4) | As2—O7 | 1.669 (5) |
Mn1—O1vii | 2.200 (5) | As2—O2 | 1.677 (5) |
Mn1—O3 | 2.202 (5) | As2—O8 | 1.677 (4) |
Mn1—O5 | 2.491 (5) | As2—O4 | 1.698 (5) |
Mn1—Mn1vi | 3.185 (2) | ||
O2i—Ba1—O7ii | 133.63 (15) | O8viii—Mn2—O5ix | 94.05 (18) |
O2i—Ba1—O6iii | 74.41 (15) | O4—Mn2—O5ix | 79.10 (17) |
O7ii—Ba1—O6iii | 90.91 (15) | O5vii—Mn2—O5ix | 81.45 (17) |
O2i—Ba1—O7 | 127.00 (15) | O3—Mn2—O5ix | 173.25 (17) |
O7ii—Ba1—O7 | 71.27 (16) | O7—Mn2—O5ix | 94.82 (16) |
O6iii—Ba1—O7 | 158.19 (14) | O6—As1—O1 | 111.1 (2) |
O2i—Ba1—O8iv | 144.78 (15) | O6—As1—O5 | 114.6 (2) |
O7ii—Ba1—O8iv | 69.26 (14) | O1—As1—O5 | 110.1 (2) |
O6iii—Ba1—O8iv | 79.72 (15) | O6—As1—O3 | 109.1 (2) |
O7—Ba1—O8iv | 82.17 (15) | O1—As1—O3 | 109.0 (2) |
O2i—Ba1—O6v | 67.93 (15) | O5—As1—O3 | 102.5 (2) |
O7ii—Ba1—O6v | 152.74 (15) | O7—As2—O2 | 111.2 (2) |
O6iii—Ba1—O6v | 78.74 (16) | O7—As2—O8 | 114.4 (3) |
O7—Ba1—O6v | 111.37 (14) | O2—As2—O8 | 109.7 (2) |
O8iv—Ba1—O6v | 84.02 (14) | O7—As2—O4 | 99.8 (2) |
O2i—Ba1—O3 | 63.79 (14) | O2—As2—O4 | 109.1 (2) |
O7ii—Ba1—O3 | 94.34 (15) | O8—As2—O4 | 112.2 (2) |
O6iii—Ba1—O3 | 126.26 (14) | As1—O1—Mn1viii | 121.9 (2) |
O7—Ba1—O3 | 69.23 (14) | As1—O1—Mn1vii | 125.5 (2) |
O8iv—Ba1—O3 | 150.59 (13) | Mn1viii—O1—Mn1vii | 93.34 (18) |
O6v—Ba1—O3 | 112.17 (13) | As1—O1—Ba1viii | 93.03 (18) |
O2i—Ba1—O1v | 58.18 (14) | Mn1viii—O1—Ba1viii | 85.45 (14) |
O7ii—Ba1—O1v | 146.18 (14) | Mn1vii—O1—Ba1viii | 133.22 (19) |
O6iii—Ba1—O1v | 121.73 (13) | As2—O2—Mn1ix | 117.6 (2) |
O7—Ba1—O1v | 78.33 (13) | As2—O2—Ba1ix | 141.9 (3) |
O8iv—Ba1—O1v | 121.31 (13) | Mn1ix—O2—Ba1ix | 100.46 (18) |
O6v—Ba1—O1v | 54.34 (13) | As1—O3—Mn2 | 127.5 (2) |
O3—Ba1—O1v | 60.47 (12) | As1—O3—Mn1 | 98.5 (2) |
O4vi—Mn1—O2i | 102.96 (19) | Mn2—O3—Mn1 | 127.0 (2) |
O4vi—Mn1—O1v | 99.75 (17) | As1—O3—Ba1 | 104.3 (2) |
O2i—Mn1—O1v | 82.98 (19) | Mn2—O3—Ba1 | 101.98 (16) |
O4vi—Mn1—O1vii | 84.93 (19) | Mn1—O3—Ba1 | 88.38 (16) |
O2i—Mn1—O1vii | 167.89 (17) | As2—O4—Mn1vi | 127.8 (3) |
O1v—Mn1—O1vii | 86.66 (18) | As2—O4—Mn2 | 99.8 (2) |
O4vi—Mn1—O3 | 166.2 (2) | Mn1vi—O4—Mn2 | 121.3 (2) |
O2i—Mn1—O3 | 88.15 (19) | As1—O5—Mn2vii | 122.2 (3) |
O1v—Mn1—O3 | 89.68 (17) | As1—O5—Mn1 | 88.39 (19) |
O1vii—Mn1—O3 | 85.54 (18) | Mn2vii—O5—Mn1 | 97.19 (19) |
O4vi—Mn1—O5 | 104.50 (16) | As1—O5—Mn2i | 129.8 (3) |
O2i—Mn1—O5 | 79.89 (17) | Mn2vii—O5—Mn2i | 98.55 (17) |
O1v—Mn1—O5 | 152.85 (16) | Mn1—O5—Mn2i | 116.29 (18) |
O1vii—Mn1—O5 | 107.30 (17) | As1—O6—Ba1iii | 137.3 (3) |
O3—Mn1—O5 | 68.96 (16) | As1—O6—Ba1viii | 101.6 (2) |
O8viii—Mn2—O4 | 150.46 (18) | Ba1iii—O6—Ba1viii | 101.26 (16) |
O8viii—Mn2—O5vii | 116.23 (18) | As2—O7—Mn2 | 87.0 (2) |
O4—Mn2—O5vii | 91.36 (18) | As2—O7—Ba1ii | 132.7 (2) |
O8viii—Mn2—O3 | 92.31 (19) | Mn2—O7—Ba1ii | 96.77 (16) |
O4—Mn2—O3 | 96.40 (18) | As2—O7—Ba1 | 116.9 (2) |
O5vii—Mn2—O3 | 93.72 (19) | Mn2—O7—Ba1 | 100.85 (16) |
O8viii—Mn2—O7 | 85.61 (17) | Ba1ii—O7—Ba1 | 108.73 (16) |
O4—Mn2—O7 | 66.64 (17) | As2—O8—Mn2v | 127.9 (3) |
O5vii—Mn2—O7 | 157.97 (16) | As2—O8—Ba1iv | 116.1 (2) |
O3—Mn2—O7 | 87.90 (17) | Mn2v—O8—Ba1iv | 102.60 (17) |
Symmetry codes: (i) x, y+1, z; (ii) −x, −y+1, −z; (iii) −x, −y+2, −z; (iv) −x+1, −y+1, −z; (v) x+1, y, z; (vi) −x+1, −y+2, −z+1; (vii) −x, −y+2, −z+1; (viii) x−1, y, z; (ix) x, y−1, z. |
Acknowledgements
The Division of Science, Mathematics and Technology at Governors State University and the University Research Grant (URG) are gratefully acknowledged for their continuous support. Special thanks are due to Dr Liurukara D. Sanjeewa at Clemson University for X-ray crystallography expertise.
References
Adams, R., Layland, R. & Payen, C. (1996). Polyhedron, 15, 1235–1239. CrossRef CAS Web of Science
Belik, A. A., Azuma, M., Matsuo, A., Kaji, T., Okubo, S., Ohta, H., Kindo, K. & Takano, M. (2006). Phys. Rev. B, 73, 024429-1–024429-7.
Belik, A. A., Azuma, M., Matsuo, A., Whangbo, M., Koo, H. J., Kikuchi, J., Kaji, T., Okubo, S., Ohta, H., Kindo, K. & Takano, M. (2005). Inorg. Chem. 44, 6632–6640. Web of Science CrossRef PubMed CAS
Belik, A. A., Lazoryak, B. I., Pokholok, K. V., Terekhina, T. P., Leonidov, I. A., Mitberg, E. B., Karelina, V. V. & Kellerman, D. G. (2001). J. Solid State Chem. 162, 113–121. Web of Science CrossRef CAS
Bera, A. K., Lake, B., Islam, A. T. M. N., Klemke, B., Faulhaber, E. & Law, J. M. (2013). Phys. Rev. B, 87, 224423-1–224423-10.
Bircsak, Z. & Harrison, W. T. A. (1998). Acta Cryst. C54, 1554–1556. Web of Science CrossRef CAS IUCr Journals
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals
Čabrić, B., Žižić, B. & Napijalo, M. L. (1982). J. Cryst. Growth, 60, 169–171.
David, R., Kabbour, H., Pautrat, A. & Mentré, O. (2013). Inorg. Chem. 52, 8732–8737. Web of Science CrossRef CAS PubMed
El Bali, B., Boukhari, A., Aride, J. & Abraham, F. (1993b). J. Solid State Chem. 104, 453–459. CAS
El Bali, B., Boukhari, A., Glaum, R., Gerk, M. & Maass, K. (2000). Z. Anorg. Allg. Chem. 626, 2557–2562. CAS
El Bali, B., Boukhari, A., Holt, E. M. & Aride, J. (1993a). J. Crystallogr. Spectrosc. Res. 23, 1001–1004. CAS
El Bali, B., Lachkar, M., Allouchi, H. & Narymbetov, B. (2004). Phosphorus Res. Bull. 15, 125–130. CAS
Eymond, S., Martin, M. & Durif, A. (1969a). C. R. Acad. Sci. Ser. C, 286, 1694–1696.
Eymond, S., Martin, M. & Durif, A. (1969b). Mater. Res. Bull. 4, 595–599. CrossRef CAS Web of Science
He, Z. Z., Chen, S. C., Lue, C. S., Cheng, W. D. & Ueda, Y. (2008). Phys. Rev. B, 78, 212410-1–212410-4.
He, Z., Ueda, Y. & Itoh, M. (2007). J. Solid State Chem. 180, 1770–1774. Web of Science CrossRef CAS
Hemon, A. & Courbion, G. (1990). J. Solid State Chem. 85, 164–168. CrossRef CAS Web of Science
Kabbour, H., David, R., Pautrat, A., Koo, H. J., Whangbo, M. H., André, G. & Mentré, O. (2012). Angew. Chem. Int. Ed. 51, 11745–11749. Web of Science CrossRef CAS
Martin, N., Regnault, L. P. & Klimko, S. (2012). J. Phys. Conf. Ser. 340, 012012-1–012012-9.
Moqine, A., Boukhari, A. & Darriet, J. (1993). J. Solid State Chem. 107, 362–367. CrossRef CAS Web of Science
Niesen, S. K., Heyer, O., Lorenz, T. & Valldor, M. (2011). J. Magn. Magn. Mater. 323, 2575–2578. Web of Science CrossRef CAS
Osterloh, D. & Müller-Buschbaum, H. (1994a). Z. Naturforsch. Teil B, 49, 923–926. CAS
Osterloh, D. & Müller-Buschbaum, H. (1994b). Z. Anorg. Allg. Chem. 620, 651–654. CrossRef CAS Web of Science
Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
Rigaku (2006). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Rogado, N., Huang, Q., Lynn, J., Ramirez, A. P., Huse, D. & Cava, R. J. (2002). Phys. Rev. B, 65, 144443-1–144443-7.
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Uchiyama, Y., Sasago, Y., Tsukada, I., Uchinokura, K., Zheludev, A., Hayashi, T., Miura, N. & Böni, P. (1999). Phys. Rev. Lett. 83, 632–635. Web of Science CrossRef CAS
Ulutagay-Kartin, M., Hwu, S.-J. & Clayhold, J. A. (2003). Inorg. Chem. 42, 2405–2409. Web of Science PubMed CAS
Velikodnyi, Y. A., Trunov, V. K., Zhuravlev, V. D. & Makarevich, L. G. (1982). Sov. Phys. Crystallogr. 27, 226–229. CAS
Vogt, R. & Müller-Buschbaum, H. (1990). Z. Anorg. Allg. Chem. 591, 167–173. CrossRef CAS Web of Science
Von Postel, M. & Müller-Buschbaum, H. (1992). Z. Anorg. Allg. Chem. 615, 97–100. CrossRef CAS Web of Science
Weil, M. (2016). Cryst. Growth Des. 16, 908–921. Web of Science CSD CrossRef CAS
Weil, M. & Kremer, R. K. (2017). J. Solid State Chem. 245, 115–126. Web of Science CrossRef CAS
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals
Wichmann, R. & Müller-Buschbaum, H. (1986a). Z. Anorg. Allg. Chem. 534, 153–158. CrossRef CAS Web of Science
Wichmann, R. & Müller-Buschbaum, Hk. (1986b). Rev. Chim. Miner. 23, 1–7. CAS
Yang, M., Zhang, S. Y., Guo, W. B. & He, Z. Z. (2016). Solid State Sci. 52, 72–77. Web of Science CrossRef CAS
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.