research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­{μ2-2,2′-[(4,10-di­methyl-1,4,7,10-tetra­aza­cyclo­do­decane-1,7-di­yl)bis­(meth­yl­ene)]bis­­(4-oxo-4H-pyran-3-olato)}dicobalt­calcium bis­­(perchlorate) 1.36-hydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Industrial Engineering, University of Firenze, via Santa Marta 3, I-50139 Firenze, Italy, and bDepartment of Pure and Applied Sciences, Lab of Supramolecular Chemistry, University of Urbino, via della Stazione, 4, I-61029 Urbino, Italy
*Correspondence e-mail: eleonora.macedi@unifi.it

Edited by C. Massera, Università di Parma, Italy (Received 10 November 2017; accepted 20 November 2017; online 28 November 2017)

The title compound, [CaCo2(C22H30N4O6)2](ClO4)2·1.36H2O or {Ca[Co(H–2L1)]2}·2ClO4·1.36H2O {where L1 is 4,10-bis­[(3-hy­droxy-4-pyron-2-yl)meth­yl]-1,7-dimethyl-1,4,7,10-tetra­aza­cyclo­dodecane}, is a trinuclear complex whose asymmetric unit comprises a quarter of the {Ca[Co(H–2L1)]2}2+ trinuclear complex, half of a perchlorate ion and 0.34-water mol­ecules. In the neutral [Co(H–2L1)] moiety, the cobalt ion is hexa­coordinated in a trigonal–prismatic fashion by the surrounding N4O2 donor set. A Ca2+ cation holds together two neutral [Co(H–2L1)] moieties and is octa­coordinated in a distorted trigonal–dodeca­hedral fashion by the surrounding O atoms belonging to the deprotonated oxide and carbonyl groups of two [Co(H–2L1)] units. The coordination of the CoII cation preorganizes L1 and an electron-rich area forms, which is able to host hard metal ions. The comparison between the present structure and the previously published ones suggests a high versatility of this ligand; indeed, hard metal ions with different nature and dimensions lead to complexes having different stoichiometry (mono- and dinuclear monomers and trinuclear dimers) or even a polymeric structure. The heterotrinuclear CoII–CaII–CoII complexes are connected in three dimensions via weak C—H⋯O hydrogen bonds, which are also responsible for the inter­actions with the perchlorate anions and the lattice water mol­ecules. The perchlorate anion is disordered about a twofold rotation axis and was refined giving the two positions a fixed occupancy factor of 0.5. The crystal studied was refined as a two-component inversion twin [BASF parameter = 0.14 (4)].

1. Chemical context

Polynuclear metal complexes have long been studied due to their versatility. They find applications in many fields, ranging from mol­ecular recognition to transport and catalysis (Gokel & Barbour, 2017[Gokel, G. W. & Barbour, L. (2017). In Comprehensive Supramol­ecular Chemistry II, edited by J. L. Atwood. Amsterdam: Elsevier.]; Weber & Gokel, 2012[Weber, W. P. & Gokel, G. W. (2012). Phase Transfer Catalysis in Organic Synthesis, Vol. 4, Reactivity and Structure: Concepts in Organic Chemistry. Berlin, Heidelberg, New York: Springer Science & Business Media.]; Ambrosi et al., 2007a[Ambrosi, G., Formica, M., Fusi, V., Giorgi, L., Guerri, A., Micheloni, M., Paoli, P., Pontellini, R. & Rossi, P. (2007a). Inorg. Chem. 46, 309-320.],b[Ambrosi, G., Formica, M., Fusi, V., Giorgi, L., Guerri, A., Micheloni, M., Paoli, P., Pontellini, R. & Rossi, P. (2007b). Inorg. Chem. 46, 4737-4748.], 2008[Ambrosi, G., Formica, M., Fusi, V., Giorgi, L. & Micheloni, M. (2008). Coord. Chem. Rev. 252, 1121-1152.], 2009a[Ambrosi, G., Formica, M., Fusi, V., Giorgi, L., Guerri, A., Macedi, E., Micheloni, M., Paoli, P., Pontellini, R. & Rossi, P. (2009a). Inorg. Chem. 48, 5901-5912.],b[Ambrosi, G., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2009b). Inorg. Chem. 48, 10424-10434.]; Martell & Hancock, 1996[Martell, A. E. & Hancock, R. D. (1996). In Metal Complexes in Aqueous Solution, Modern Inorganic Chemistry. New York: Plenum Press.]; Voegtle, 1996[Voegtle, F. (1996). Comprehensive Supramolecular Chemistry, Vol. 2, Molecular Recognition: Receptors for Molecular Guests. Oxford: Pergamon.]; Zelewsky, 1996[Zelewsky, A. (1996). In Stereochemistry of Coordination Compounds. Chichester: John Wiley & Sons.]; Lehn, 1988[Lehn, J. M. (1988). Angew. Chem. Int. Ed. Engl. 27, 89-112.]), to name just a few. Moreover, they find applications in the field of bioinorganic chemistry (Fanelli et al., 2016[Fanelli, M., Formica, M., Fusi, V., Giorgi, L., Micheloni, M. & Paoli, P. (2016). Coord. Chem. Rev. 310, 41-79.]; Marchetti et al., 2015[Marchetti, F., Palmucci, J., Pettinari, C., Pettinari, R., Condello, F., Ferraro, S., Marangoni, M., Crispini, A., Scuri, S., Grappasonni, I., Cocchioni, M., Nabissi, M., Chierotti, M. R. & Gobetto, R. (2015). Chem. Eur. J. 21, 36-850.]; Patra et al., 2014[Patra, A., Saha, S. K., Sen, T. K., Carrella, L., Musie, G. T., Khuda-Bukhsh, A. R. & Bera, M. (2014). Eur. J. Inorg. Chem. pp. 5217-5232.]), for instance as anti­cancer agents (Bruijnincx & Sadler, 2008[Bruijnincx, P. C. A. & Sadler, P. J. (2008). Curr. Opin. Chem. Biol. 12, 197-206.]) and artificial metalloproteases (Suh & Chei, 2008[Suh, J. & Chei, W. S. (2008). Curr. Opin. Chem. Biol. 12, 207-213.]).

On the other hand, hard metal ions also find applications in the biological field. Both rare earth and alkaline earth metal ions are used in the biomedical field, in bioassays and bio­imaging applications (Xiao et al., 2016[Xiao, Y.-D., Paudel, R., Liu, J., Ma, C., Zhang, Z. S. & Zhou, S.-K. (2016). Int. J. Mol. Med. 38, 1319-1326.]; Yin et al., 2015[Yin, J., Hu, Y. & Yoon, J. (2015). Chem. Soc. Rev. 44, 4619-4644.]; DaCosta et al., 2014[DaCosta, M. V., Doughan, S., Han, Y. & Krull, U. J. (2014). Anal. Chim. Acta, 832, 1-33.]; Merbach et al., 2013[Merbach, A., Helm, L. & Tóth, É. (2013). Editors. Magnetic Resonance Imaging, 2nd ed. Chichester: John Wiley & Sons.]; Di Bernardo et al., 2012[Di Bernardo, P., Melchior, A., Tolazzi, M. & Zanonato, P. L. (2012). Coord. Chem. Rev. 256, 328-351.]; Price et al., 2012[Price, E. W., Cawthray, J. F., Bailey, G. A., Ferreira, C. L., Boros, E., Adam, M. J. & Orvig, C. (2012). J. Am. Chem. Soc. 134, 8670-8683.]). Furthermore, hard metal ions are quite difficult to bind in water because they need a high coordination number without usually showing specific coordination requirements, issues that could be overcome using preorg­anized receptors bearing oxygenated donor sites. It follows that systems able to bind hard metal ions, both in aqueous solution and in the solid state, are very attractive. Indeed, they have found applications in fields ranging from new materials to medicinal chemistry (Blindauer et al., 2017[Blindauer, C. A., Sigel, A., Operschall, B. P., Holý, A. & Sigel, H. (2017). Inorg. Chim. Acta. doi, 10, 1016j. ica. 2017.06.011.]; Esteves et al., 2016[Esteves, C. I. C., Batista, R. M. F., Raposo, M. M. M. & Costa, S. P. G. (2016). Dyes Pigments, 135, 134-142.]; Lomidze et al., 2016[Lomidze, L., Kelley, S., Gogichaishvili, S., Metreveli, N., Musier-Forsyth, K. & Kankia, B. (2016). Biopolymers, 105, 811-818.]; Yang et al., 2014[Yang, C., Han, J., Luo, Y., Hu, S. & Wang, X. (2014). Prog. Chem. 26, 1537-1550.]; Price et al., 2012[Price, E. W., Cawthray, J. F., Bailey, G. A., Ferreira, C. L., Boros, E., Adam, M. J. & Orvig, C. (2012). J. Am. Chem. Soc. 134, 8670-8683.]; Pasatoiu et al., 2011[Pasatoiu, T. D., Sutter, J. P., Madalan, A. M., Fellah, F. Z. C., Duhayon, C. & Andruh, M. (2011). Inorg. Chem. 50, 5890-5898.]; Pasatoiu et al., 2010[Pasatoiu, T. D., Madalan, A. M., Kumke, M. U., Tiseanu, C. & Andruh, M. (2010). Inorg. Chem. 49, 2310-2315.]; Aime et al., 2006[Aime, S., Geninatti Crich, S., Gianolio, E., Giovenzana, G. B., Tei, L. & Terreno, E. (2006). Coord. Chem. Rev. 250, 1562-1579.]; Bernot et al., 2006[Bernot, K., Bogani, L., Caneschi, A., Gatteschi, D. & Sessoli, R. (2006). J. Am. Chem. Soc. 128, 7947-7956.]; Gatteschi et al., 2006[Gatteschi, D., Sessoli, R. & Villain, J. (2006). Molecular Nanomagnets. New York: Oxford University Press.]; Malandrino & Fragalà, 2006[Malandrino, G. & Fragalà, I. L. (2006). Coord. Chem. Rev. 250, 1605-1620.]; Terai et al., 2006[Terai, T., Kikuchi, K., Iwasawa, S., Kawabe, T., Hirata, Y., Urano, Y. & Nagano, T. (2006). J. Am. Chem. Soc. 128, 6938-6946.]).

Ligand L1 {4,10-bis­[(3-hy­droxy-4-pyron-2-yl)meth­yl]-1,7-dimethyl-1,4,7,10-tetra­aza­cyclo­dodeca­ne} is a Maltol-based macrocycle (Amatori et al., 2012[Amatori, S., Ambrosi, G., Fanelli, M., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P., Pontellini, R. & Rossi, P. (2012). J. Org. Chem. 77, 2207-2218.]) capable of forming a mononuclear CoII species where both side-arms are forced by the transition metal ion to move and locate on the same part with respect to the macrocyclic plane (Borgogelli et al., 2013[Borgogelli, E., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2013). Dalton Trans. 42, 2902-2912.]). Such a cobalt-driven preorganization allows the formation of an electron-rich area formed by the four converging oxygen atoms of the two maltolate functions of L1, suitable to host hard metal ions such as LnIII (Ln = Gd, Eu; Benelli et al., 2013[Benelli, C., Borgogelli, E., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2013). Dalton Trans. 42, 5848-5859.]; Rossi et al., 2017[Rossi, P., Ciattini, S., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M. & Paoli, P. (2017). Inorg. Chim. Acta, doi: 10.1016/j.ica.2017.06.033.]), NaI (Borgogelli et al., 2013[Borgogelli, E., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2013). Dalton Trans. 42, 2902-2912.]) and BaII (Paoli et al., 2017[Paoli, P., Macedi, E., Rossi, P., Giorgi, L., Formica, M. & Fusi, V. (2017). Acta Cryst. E73, 1806-1811.]). The resulting heteropolynuclear systems differ in the number of the complexes involved in the coordination, depending on the nature of the hard cation. Indeed, the coordination of the hard ion leads to CoIILnIII–CoII heterotrinuclear dimers, a NaI–CoII heterodinuclear monomer and a BaII–CoII heterodinuclear metal coordination polymer.

[Scheme 1]

Herein we present a CoII–CaII–CoII heterotrinuclear dimer of L1 and a brief comparison with the previous L1-containing structures, highlighting the high versatility of this ligand.

2. Structural commentary

The title compound is a trinuclear complex cation of formula {Ca[Co(H–2L1)]2}·2ClO4·1.36H2O and crystallizes in the tetra­gonal system in space group I[\overline{4}]. In the {Ca[Co(H-2L1)]2}2+ trinuclear complex (Fig. 1[link]), two neutral [Co(H-2L1)] moieties are held together by the Ca2+ cation, which is coordinated by oxygen atoms provided by the maltolate groups of the two complexes. The asymmetric unit comprises a quarter of the {Ca[Co(H–2L1)]2}2+ trinuclear complex, half of a perchlorate ion and 0.34 water mol­ecules. The two halves of each cobalt complex are related by a twofold rotation axis, the cobalt ion lying on the symmetry element. The two cobalt complexes are then related by a fourfold rotoinversion axis, the calcium ion lying on the symmetry element. The disordered perchlorate ion and the water mol­ecule lie on a twofold axis, with the chlorine atom (for ClO4) and the oxygen atom (for H2O) lying on the symmetry element.

[Figure 1]
Figure 1
The mol­ecular structure of the {Ca[Co(H–2L1)]2}2+ cation, with the atom labelling and 30% probability displacement ellipsoids. H atoms have been omitted for clarity. [Symmetry codes: (i) −x, −y, z; (ii) y, −x, −z; (iii) −y, x, −z.]

In the neutral [Co(H–2L1)] moiety, the Co2+ ion is hexa­coordinated by four nitro­gen atoms of the macrocyclic base and two deprotonated hydroxyl oxygen atoms provided by both the maltolate rings of the ligand; it exhibits a distorted trigonal–prismatic geometry (Muetterties & Guggenberger, 1974[Muetterties, E. L. & Guggenberger, L. J. (1974). J. Am. Chem. Soc. 96, 1748-1756.]), with the N1,N2i,O1i/N1i,N2,O1 atoms [symmetry code: (i) −x, −y, z] defining the two triangular faces, which are parallel within 15.6 (2)° (Fig. 2[link], left). The cobalt ion is displaced 1.064 (1) Å above the mean plane defined by the four nitro­gen atoms of the tetra­aza­macrocycle [maximum deviation of 0.044 (6) Å for N1]; according to the Cambridge Structural Database (CSD, Version 5.38, May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) such distance falls, together with the Co—N(CH3) and Co—O bond distances (Table 1[link]), in the expected range for Co-[12]aneN4 complexes where the cobalt ion is hexa­coordinated with an N4O2 donor set. The Co—N(Maltol) bond distances, by contrast, are beyond this range (Table 1[link]) but are in line with those reported for other Co—L1 complexes [Co—N(Maltol): range 2.26–2.44 Å; Co—N(CH3) range: 2.13—2.22 Å; Benelli et al., 2013[Benelli, C., Borgogelli, E., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2013). Dalton Trans. 42, 5848-5859.]; Borgogelli et al., 2013[Borgogelli, E., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2013). Dalton Trans. 42, 2902-2912.]; Rossi et al., 2017[Rossi, P., Ciattini, S., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M. & Paoli, P. (2017). Inorg. Chim. Acta, doi: 10.1016/j.ica.2017.06.033.]; Paoli et al., 2017[Paoli, P., Macedi, E., Rossi, P., Giorgi, L., Formica, M. & Fusi, V. (2017). Acta Cryst. E73, 1806-1811.]].

Table 1
Selected bond lengths and angles (Å, °)

Co1—N1 2.192 (7)
Co1—N2 2.375 (7)
Co1—O1 2.060 (4)
Ca1—O1 2.429 (4)
Ca1—O2 2.469 (4)
N1⋯N1i 3.881 (9)
N2⋯N2i 4.206 (10)
Co1⋯Ca1 3.727 (1)
Co1⋯Co1ii 7.454 (2)
   
N1—Co1—N1i 124.5 (2)
N1—Co1—N2 78.0 (2)
N1—Co1—N2i 77.0 (3)
N2—Co1—N2i 124.6 (3)
O1—Co1—N1 121.2 (2)
O1—Co1—N1i 102.9 (2)
O1—Co1—N2 81.6 (2)
O1—Co1—N2i 152.4 (2)
O1—Co1—O1i 74.3 (2)
O1—Ca1—O1i 61.7 (2)
O1—Ca1—O1ii 137.5 (1)
O1—Ca1—O2 67.1 (1)
O1—Ca1—O2i 123.5 (1)
O1—Ca1—O2ii 73.9 (1)
O1—Ca1—O2iii 96.6 (1)
O2—Ca1—O2i 169.1 (2)
Co1—O1—Ca1 112.0 (2)
Symmetry codes: (i) −x, −y, z; (ii) y, −x, −z; (iii) −y, x, −z.
[Figure 2]
Figure 2
Coordination polyhedra around the cobalt (left) and calcium (right) ions. [Symmetry codes: (i) −x, −y, z; (ii) y, −x, −z; (iii) −y, x, −z.]

The conformation of the [12]aneN4 macrocycle is the usual [3333]C-corners one (Meurant, 1987[Meurant, G. (1987). Stereochemical and Stereophysical Behaviour of Macrocycles, edited by I. Bernal. Amsterdam, New York: Elsevier.]) with the trans nitro­gen distances in agreement with those reported in the CSD for this conformation type, but with the N2⋯N2i distance being longer than N1⋯N1i by 0.32 Å [Table 1[link], symmetry code: (i) −x, −y, z], as found only in 12% of cases (88%: Δ < 0.32 Å; 12%: Δ > 0.32 Å). This is probably due to the fact that the Maltol units linked to the nitro­gen atoms are involved in chelate six-membered rings, which stiffen the system and force those nitro­gen atoms to move farther apart.

The mean planes of the two maltolate rings of the neutral [Co(H–2L1)] moiety form a dihedral angle of about 55°, while the dihedral angle between the N1,N2,N1i,N2i [symmetry code: (i) −x, −y, z] and maltolate ring mean planes is about 63°. The distance between the maltolate ring centroids is 7.8463 (3) Å. The dimension of the binding area defined by the four oxygen donor atoms of the ligand is roughly estimated by the distance separating the opposite O1⋯O2i [symmetry code: (i) −x, −y, z] atoms (and the other symmetry-related oxygen atoms), which is 4.315 (6) Å. Notably, such a distance is longer than those retrieved for analogous trinuclear complexes (opposite O⋯O distances range: 3.98–4.22 Å; Benelli et al., 2013[Benelli, C., Borgogelli, E., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2013). Dalton Trans. 42, 5848-5859.]; Rossi et al., 2017[Rossi, P., Ciattini, S., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M. & Paoli, P. (2017). Inorg. Chim. Acta, doi: 10.1016/j.ica.2017.06.033.]), while it is shorter than those retrieved for the one-dimensional coordination polymer of L1 (opposite O⋯O distances: 4.5 Å; Paoli et al., 2017[Paoli, P., Macedi, E., Rossi, P., Giorgi, L., Formica, M. & Fusi, V. (2017). Acta Cryst. E73, 1806-1811.]) and the mononuclear complex of L1 (opposite O⋯O distances: 4.49 Å; Borgogelli et al., 2013[Borgogelli, E., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2013). Dalton Trans. 42, 2902-2912.]). As for the dinuclear complex of L1 (Borgogelli et al., 2013[Borgogelli, E., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2013). Dalton Trans. 42, 2902-2912.]), the opposite O⋯O distances of the binding area are quite different from each other (4.12 and 4.42 Å), and are, respectively, shorter and longer than the corresponding distance in the title compound.

The coordination polyhedron around the Ca2+ ion can be described as a distorted trigonal dodeca­hedron (Muetterties & Guggenberger, 1974[Muetterties, E. L. & Guggenberger, L. J. (1974). J. Am. Chem. Soc. 96, 1748-1756.]), with all eight deprotonated hydroxyl and carbonyl oxygen atoms of the two [Co(H–2L1)] moieties of the trinuclear complex situated at the corners of the polyhedron (Fig. 2[link], right). The maltolate unit acts as a bidentate ligand through the hydroxyl oxygen atom, which bridges the CaII and CoII cations. All the Ca—O distances are in agreement with data found in the CSD.

The Co2+ and Ca2+ cations are located 3.727 (1) Å apart from each other and, because of the symmetry of the system, the line connecting the three cations (CoII–CaII–CoII) is normal to the mean plane described by the four nitro­gen atoms of the macrocycle (Fig. 1[link]). The values for the Co⋯Ca distance and the Co—O1—Ca angle are in agreement with data ranges found in the CSD, even if they fall in non-populated regions (only ten hits – corresponding to twenty distances or angle values – are retrieved when the Co–O–Ca fragment is searched). The Co⋯Coii distance and the Co–Ca–Coii angle value [symmetry code: (ii) y, −x, −z] can only be compared with the single hit containing a cobalt-μ2-oxygen-calcium-μ2-oxygen-cobalt motif (Fig. 3[link]) deposited in the CSD (refcode: DAPNOA; Li et al., 2017[Li, L.-H., Dong, W.-K., Zhang, Y., Akogun, S. F. & Xu, L. (2017). Appl. Organomet. Chem. doi:10.1002/aoc.3818.]), which shows a shorter Co⋯Co distance (6.25 Å) and a smaller Co⋯Ca⋯Co angle value (132°) with respect to the title compound. When all alkaline-earth ions instead of calcium are considered in the fragment searched in the CSD (Fig. 3[link]), both the Co⋯Co distance and Co⋯Ca⋯Co angle values fall within the expected range.

[Figure 3]
Figure 3
Fragment searched in the CSD. [AE = alkaline-earth metal ion.]

As a result of the symmetry of the system, the two [Co(H–2L1)] complexes in the {Ca[Co(H–2L1)]2}2+ cation are rotated by 90°, as indicated by the angle between the two mean planes defined by the Co1,O1,O1i,Ca1 and Coii,O1ii,O1iii,Ca1 atoms [symmetry codes: (i) −x, −y, z; (ii) y, −x, −z; (iii) −y, x, −z; Fig. 1[link]]. Such an angle value falls in the most populated region for the cobalt-μ2-oxygen-AE-μ2-oxygen-cobalt fragment (AE = alkaline-earth ion).

Finally, the shortest Co⋯Co/Co⋯Ca/Ca⋯Ca distances between metal cations belonging to different {Ca[Co(H–2L1)]2}2+ units are 8.9799 (4)/9.7227 (5)/8.9799 (4) Å.

In the present structure and in all the Co-containing structures of L1 published up to now, the cobalt complexes are well superimposable with each other, but for that belonging to the NaI–CoII heterodinuclear complex (r.m.s. deviation values of 0.788 Å and within 0.301 Å for the superimposition of the title compound with the NaI–CoII complex and with all other structures, respectively), where the two maltolate rings show a different arrangement, both rings being tilted toward the same direction (instead of opposite directions) with respect to the cobalt-μ2-oxygen-hard metal mean plane (M = NaI, CaII, BaII, GdIII, EuIII; in the case of the mononuclear CoII species, with respect to the cobalt–μ2-oxygen mean plane; Fig. 4[link]). Moreover, when considering the heterotrinuclear complexes only, the superimposition of the CoII–CaII–CoII dimer with the whole structures of the CoIILnIII–CoII dimers (LnIII = GdIII, EuIII) shows high r.m.s. deviation values (1.7 Å), in agreement with a different mutual disposition of the two subunits in the dimers.

[Figure 4]
Figure 4
Comparison between the overall shapes of the present structure and the other Co-containing structures of L1. Top line, from left to right: CoII–CaII–CoII, CoII–EuIII–CoII (Rossi et al., 2017[Rossi, P., Ciattini, S., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M. & Paoli, P. (2017). Inorg. Chim. Acta, doi: 10.1016/j.ica.2017.06.033.]), CoII–GdIII–CoII (refcode: FEZBUJ) complexes; bottom line, from left to right: CoII species (refcode: WELGEB), BaII–CoII coordination polymer (refcode: ZELBAW), NaI–CoII complex (refcode: WELGOL).

The electron-rich area, which forms following the cobalt-driven preorganization of L1, is able to host hard metal ions with different dimensions and coordination requirements, leading to complexes having different stoichiometry (mono- and dinuclear monomers and trinuclear dimers) or even a polymeric structure (Fig. 4[link]). In the case of the NaI–CoII structure, a monomer forms, probably because of the lower ionic charge and coordination number (CN) of the NaI cation (CN: 5, Na+ ionic radius: 1.00 Å; Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) with respect to the other cations. Indeed, the low ionic charge and coord­ination number allow the stabilization of the ion with only one [Co(H–2L1)] moiety. In the case of the BaII–CoII structure, the BaII cation shows the highest coordination number (CN: 9, Ba2+ ionic radius: 1.47 Å; Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) in the series of structures, and the cationic fragment shows the largest binding area, which is necessary to accommodate such large ionic dimensions. In the case of the heterotrinuclear structures, all of the GdIII, EuIII and CaII cations have the same coordination number (CN: 8) and similar ionic radii (1.053, 1.066 and 1.12 Å for GdIII, EuIII and CaII, respectively; Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]): two [Co(H–2L1)] units are needed to stabilize the high ionic charge and fully satisfy the coordination requirements of the cations.

3. Supra­molecular features

In the crystal, the heterotrinuclear CoII–CaII–CoII complexes are connected in the three dimensions via weak C—H⋯O hydrogen bonds (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). Chemistry and Biology, IUCr Monographs on Crystallography, No. 9. New York: Oxford University Press Inc.]).

The perchlorate anion inter­acts with five complexes: four out of five (magenta in Figs. 5[link] and 6[link]) are connected to form a layer perpendicular to the c axis, the fifth complex also belongs to a layer (blue in Figs. 5[link] and 6[link]) perpendicular to the c axis, adjacent layers being staggered relative to one other (Fig. 6[link]). All inter­actions are weak C—H⋯O—Cl hydrogen bonds (Table 2[link]) involving the methyl­ene hydrogen atoms of the macrocycle. The perchlorate anions are located between the layers (Fig. 5[link]).

Table 2
Hydrogen-bond geometry (Å, °)

Note that both models of the disordered perchlorate anion form the same inter­actions; only one value for each inter­action involving oxygen atoms of the ClO4 anion is therefore reported.

D—H⋯A D—H H⋯A DA D—H⋯A
C1iv—H1Aiv⋯O3C 0.99 2.64 3.56 (2) 156
C2iii—H2Aiii⋯O4C 0.99 2.68 3.55 (2) 147
C4iv—H4Civ⋯O1C 0.98 2.50 3.47 (2) 167
C5v—H5Av⋯O2C 0.99 2.59 3.48 (2) 148
C5iii—H5Biii⋯O4C 0.99 2.35 3.29 (2) 157
C6—H6A⋯O1W 0.99 2.35 3.23 (9) 149
C6vi—H6Bvi⋯O1C 0.99 2.44 3.37 (2) 158
C6vii—H6Bvii⋯O1C 0.99 2.55 3.51 (2) 164
Symmetry codes: (iii) −y, x, −z; (iv) −x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (v) x − [{1\over 2}], y − [{1\over 2}], z + [{1\over 2}]; (vi) −x − [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (vii) x + [{1\over 2}], y − [{1\over 2}], z + [{1\over 2}].
[Figure 5]
Figure 5
Crystal packing of the title compound viewed along the a axis. Staggered layers of complexes (in magenta and blue) perpendicular to the c axis are present, which are inter­connected thanks to hydrogen bonds in the c-axis direction. The perchlorate anions are located between the layers. Inter­actions with water mol­ecules are also shown. Hydrogen bonds involving ClO4 anions are depicted as light-blue dotted lines. Hydrogen bonds involving water mol­ecules are depicted as green (along the a axis) and red (along the b axis) dotted lines. The ClO4 anions and water mol­ecules are depicted in ball-and-stick mode.
[Figure 6]
Figure 6
Crystal packing of the title compound viewed along the c axis. Staggered layers of complexes (in magenta and blue) perpendicular to the c axis are visible. The ClO4 anions and water mol­ecules are depicted in ball-and-stick mode.

Water mol­ecules also inter­act with the complexes via weak C—H⋯O hydrogen bonds (Table 2[link]) along the a and b axes (Fig. 5[link]). These inter­actions also involve the methyl­ene hydrogen atoms of the macrocycle.

4. Synthesis and crystallization

Compound L1 was obtained following the previously reported synthetic procedure (Amatori et al., 2012[Amatori, S., Ambrosi, G., Fanelli, M., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P., Pontellini, R. & Rossi, P. (2012). J. Org. Chem. 77, 2207-2218.]).

To obtain the title compound, {Ca[Co(H–2L1)]2}·2ClO4·1.36H2O, 0.1 mmol of CoCl2· 6H2O in water (10 ml) were added to an aqueous solution (20 ml) containing 0.1 mmol of L1·3HClO4·H2O. The solution was adjusted to pH 7 with 0.1 M N(CH3)4OH and then 0.05 mmol of CaCl2 were added. The solution was saturated with NaClO4. The title compound quickly precipitated as a microcrystalline pink solid. Crystals suitable for X-ray analysis were obtained by slow evaporation of a more diluted aqueous solution.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [CaCo2(C22H30N4O6)2](ClO4)2·1.36H2O
Mr 1271.92
Crystal system, space group Tetragonal, I[\overline{4}]
Temperature (K) 100
a, c (Å) 8.9799 (4), 32.555 (3)
V3) 2625.2 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.92
Crystal size (mm) 0.46 × 0.38 × 0.18
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd. Yarnton, England.])
Tmin, Tmax 0.557, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3291, 2340, 1386
Rint 0.034
(sin θ/λ)max−1) 0.681
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.081, 0.86
No. of reflections 2340
No. of parameters 200
No. of restraints 30
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.25
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.14 (4)
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd. Yarnton, England.]), CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd. Yarnton, England.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

All hydrogen atoms of the macrocycle were positioned geometrically and refined as riding with C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and = 1.2Ueq(C) for other H atoms.

The perchlorate anion is disordered about a twofold rotation axis and was refined giving the two positions a fixed occupancy factor of 0.5. The chlorine atom is located on a twofold rotation axis.

The oxygen atom of the water mol­ecule lies on a twofold rotation axis, the refined occupancy factor is 0.34 (2); the hydrogen atoms were not found in the difference-Fourier map and they were not introduced in the refinement.

All non-hydrogen atoms were refined anisotropically: as for the disordered perchlorate anion, the SIMU instruction was used to restrain the anisotropic displacement parameters of the disordered atoms, while the ISOR instruction was used to restrain the anisotropic displacement parameters of the isolated water oxygen atom.

The structure was refined as a two-component inversion twin [BASF parameter = 0.14 (4)].

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis CCD (Oxford Diffraction, 2008); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Bis{µ2-2,2'-[(4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene)]bis(4-oxo-4H-pyran-3-olato)}dicobaltcalcium bis(perchlorate) 1.36-hydrate top
Crystal data top
[CaCo2(C22H30N4O6)2](ClO4)2·1.36H2ODx = 1.609 Mg m3
Mr = 1271.92Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4Cell parameters from 1087 reflections
a = 8.9799 (4) Åθ = 3.7–28.8°
c = 32.555 (3) ŵ = 0.92 mm1
V = 2625.2 (3) Å3T = 100 K
Z = 2Prism, pink
F(000) = 13180.46 × 0.38 × 0.18 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2340 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1386 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.4547 pixels mm-1θmax = 29.0°, θmin = 3.8°
ω scansh = 1210
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 129
Tmin = 0.557, Tmax = 1.000l = 4330
3291 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0355P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081(Δ/σ)max < 0.001
S = 0.86Δρmax = 0.35 e Å3
2340 reflectionsΔρmin = 0.25 e Å3
200 parametersAbsolute structure: Refined as an inversion twin
30 restraintsAbsolute structure parameter: 0.14 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.00000.00000.11449 (3)0.0355 (3)
Ca10.00000.00000.00000.0350 (5)
O10.1168 (4)0.0747 (5)0.06406 (11)0.0431 (10)
N10.1622 (8)0.1428 (7)0.1458 (2)0.0439 (16)
C10.0890 (10)0.2753 (10)0.1643 (3)0.062 (3)
H1A0.15330.31640.18620.075*
H1B0.07610.35300.14300.075*
O20.2696 (5)0.0475 (5)0.00717 (15)0.0510 (13)
N20.1567 (7)0.1741 (8)0.14838 (19)0.0464 (16)
C20.0591 (10)0.2353 (12)0.1819 (2)0.055 (2)
H2A0.04660.15990.20380.066*
H2B0.10620.32470.19410.066*
O30.4188 (5)0.3327 (5)0.07952 (15)0.0562 (12)
C30.2837 (8)0.0927 (9)0.1656 (3)0.048 (2)
H3A0.32290.14740.18970.058*
H3B0.36390.08650.14480.058*
C40.2708 (9)0.1931 (10)0.1142 (3)0.066 (2)
H4A0.21810.24710.09240.099*
H4B0.32130.10630.10240.099*
H4C0.34460.25890.12690.099*
C50.2389 (11)0.0621 (10)0.1785 (3)0.055 (3)
H5A0.32890.11830.18660.066*
H5B0.17270.05550.20270.066*
C60.2118 (8)0.3006 (8)0.1240 (2)0.047 (2)
H6A0.12660.36480.11630.056*
H6B0.28040.36070.14110.056*
C70.2900 (7)0.2535 (7)0.0865 (2)0.0452 (16)
C80.2406 (6)0.1491 (6)0.0589 (2)0.0378 (14)
C90.3217 (7)0.1295 (7)0.0201 (2)0.0445 (17)
C100.4591 (7)0.2091 (7)0.0171 (2)0.0491 (18)
H100.52270.19260.00570.059*
C110.4987 (8)0.3054 (9)0.0458 (2)0.061 (2)
H110.58940.35820.04220.073*
Cl10.00000.00000.29295 (6)0.0614 (6)
O1C0.018 (3)0.0426 (14)0.3345 (2)0.069 (3)0.5
O2C0.0574 (17)0.1450 (14)0.2799 (4)0.090 (3)0.5
O3C0.1595 (14)0.0078 (17)0.2807 (4)0.081 (3)0.5
O4C0.079 (2)0.1014 (16)0.2716 (4)0.087 (3)0.5
O1W0.00000.50000.0653 (3)0.077 (5)0.68 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0367 (9)0.0418 (9)0.0282 (5)0.0009 (10)0.0000.000
Ca10.0388 (7)0.0388 (7)0.0274 (10)0.0000.0000.000
O10.040 (2)0.059 (3)0.030 (2)0.011 (2)0.000 (2)0.002 (2)
N10.050 (4)0.043 (4)0.039 (4)0.005 (3)0.002 (4)0.003 (4)
C10.066 (6)0.061 (6)0.059 (6)0.003 (5)0.023 (6)0.007 (6)
O20.050 (2)0.062 (3)0.041 (4)0.003 (2)0.003 (3)0.001 (3)
N20.053 (4)0.048 (4)0.039 (4)0.009 (3)0.002 (4)0.000 (4)
C20.060 (6)0.070 (7)0.036 (5)0.001 (6)0.005 (5)0.013 (5)
O30.049 (3)0.065 (3)0.054 (3)0.018 (3)0.008 (3)0.008 (3)
C30.033 (5)0.062 (6)0.050 (6)0.000 (4)0.017 (4)0.012 (5)
C40.057 (5)0.084 (6)0.057 (5)0.029 (4)0.000 (5)0.001 (6)
C50.050 (5)0.073 (7)0.041 (5)0.013 (6)0.012 (5)0.006 (5)
C60.053 (4)0.044 (4)0.043 (5)0.005 (4)0.006 (4)0.004 (4)
C70.039 (3)0.051 (4)0.046 (4)0.011 (3)0.009 (4)0.007 (4)
C80.034 (3)0.043 (3)0.037 (3)0.001 (3)0.006 (4)0.008 (4)
C90.045 (4)0.046 (4)0.043 (4)0.006 (4)0.000 (4)0.017 (4)
C100.033 (3)0.057 (4)0.058 (4)0.003 (3)0.005 (3)0.010 (4)
C110.045 (4)0.073 (5)0.064 (5)0.022 (4)0.001 (4)0.020 (5)
Cl10.072 (2)0.072 (2)0.0405 (11)0.007 (3)0.0000.000
O1C0.075 (7)0.093 (7)0.040 (3)0.021 (6)0.013 (6)0.016 (5)
O2C0.087 (6)0.085 (6)0.098 (6)0.009 (6)0.001 (6)0.005 (6)
O3C0.070 (6)0.095 (6)0.078 (6)0.003 (6)0.004 (5)0.006 (6)
O4C0.100 (7)0.092 (7)0.071 (6)0.017 (6)0.027 (6)0.018 (5)
O1W0.106 (8)0.062 (7)0.064 (7)0.012 (5)0.0000.000
Geometric parameters (Å, º) top
Co1—O12.060 (4)C3—C5i1.506 (9)
Co1—O1i2.061 (4)C3—H3A0.9900
Co1—N12.192 (6)C3—H3B0.9900
Co1—N1i2.192 (6)C4—H4A0.9800
Co1—N22.375 (6)C4—H4B0.9800
Co1—N2i2.375 (6)C4—H4C0.9800
Ca1—O1ii2.429 (4)C5—C3i1.506 (9)
Ca1—O1i2.429 (4)C5—H5A0.9900
Ca1—O1iii2.429 (4)C5—H5B0.9900
Ca1—O12.429 (4)C6—C71.471 (9)
Ca1—O2iii2.469 (4)C6—H6A0.9900
Ca1—O2ii2.469 (4)C6—H6B0.9900
Ca1—O2i2.469 (4)C7—C81.372 (8)
Ca1—O22.469 (4)C8—C91.467 (8)
Ca1—C9ii3.182 (7)C9—C101.430 (9)
Ca1—C9iii3.182 (7)C10—C111.320 (9)
Ca1—C9i3.182 (7)C10—H100.9500
Ca1—C93.182 (7)C11—H110.9500
O1—C81.309 (6)Cl1—O4C1.345 (12)
N1—C51.459 (9)Cl1—O4Ci1.345 (12)
N1—C11.486 (10)Cl1—O1Ci1.413 (7)
N1—C41.489 (9)Cl1—O1C1.413 (7)
C1—C21.492 (10)Cl1—O2Ci1.463 (14)
C1—H1A0.9900Cl1—O2C1.463 (13)
C1—H1B0.9900Cl1—O3C1.488 (13)
O2—C91.245 (7)Cl1—O3Ci1.488 (13)
N2—C31.466 (9)O1C—O1Ci0.83 (2)
N2—C61.472 (9)O2C—O4Ci1.312 (17)
N2—C21.502 (9)O2C—O3Ci1.651 (16)
C2—H2A0.9900O3C—O4Ci1.148 (17)
C2—H2B0.9900O3C—O2Ci1.651 (16)
O3—C111.334 (8)O4C—O3Ci1.148 (17)
O3—C71.376 (7)O4C—O2Ci1.312 (17)
O1—Co1—O1i74.3 (2)C3—N2—C6109.3 (6)
O1—Co1—N1121.2 (2)C3—N2—C2111.0 (6)
O1i—Co1—N1102.9 (2)C6—N2—C2107.8 (7)
O1—Co1—N1i102.9 (2)C3—N2—Co1108.1 (5)
O1i—Co1—N1i121.2 (2)C6—N2—Co1117.2 (4)
N1—Co1—N1i124.5 (3)C2—N2—Co1103.4 (5)
O1—Co1—N281.6 (2)C1—C2—N2109.3 (7)
O1i—Co1—N2152.37 (19)C1—C2—H2A109.8
N1—Co1—N278.0 (3)N2—C2—H2A109.8
N1i—Co1—N277.0 (3)C1—C2—H2B109.8
O1—Co1—N2i152.37 (19)N2—C2—H2B109.8
O1i—Co1—N2i81.6 (2)H2A—C2—H2B108.3
N1—Co1—N2i77.0 (3)C11—O3—C7119.5 (6)
N1i—Co1—N2i78.0 (3)N2—C3—C5i111.0 (7)
N2—Co1—N2i124.6 (3)N2—C3—H3A109.4
O1ii—Ca1—O1i137.50 (11)C5i—C3—H3A109.4
O1ii—Ca1—O1iii61.67 (17)N2—C3—H3B109.4
O1i—Ca1—O1iii137.50 (11)C5i—C3—H3B109.4
O1ii—Ca1—O1137.50 (11)H3A—C3—H3B108.0
O1i—Ca1—O161.67 (17)N1—C4—H4A109.5
O1iii—Ca1—O1137.50 (11)N1—C4—H4B109.5
O1ii—Ca1—O2iii123.52 (14)H4A—C4—H4B109.5
O1i—Ca1—O2iii73.89 (15)N1—C4—H4C109.5
O1iii—Ca1—O2iii67.05 (14)H4A—C4—H4C109.5
O1—Ca1—O2iii96.61 (14)H4B—C4—H4C109.5
O1ii—Ca1—O2ii67.05 (14)N1—C5—C3i112.4 (7)
O1i—Ca1—O2ii96.61 (14)N1—C5—H5A109.1
O1iii—Ca1—O2ii123.52 (14)C3i—C5—H5A109.1
O1—Ca1—O2ii73.89 (15)N1—C5—H5B109.1
O2iii—Ca1—O2ii169.1 (2)C3i—C5—H5B109.1
O1ii—Ca1—O2i73.89 (15)H5A—C5—H5B107.8
O1i—Ca1—O2i67.05 (14)C7—C6—N2112.8 (6)
O1iii—Ca1—O2i96.61 (14)C7—C6—H6A109.0
O1—Ca1—O2i123.52 (14)N2—C6—H6A109.0
O2iii—Ca1—O2i90.51 (2)C7—C6—H6B109.0
O2ii—Ca1—O2i90.51 (2)N2—C6—H6B109.0
O1ii—Ca1—O296.61 (14)H6A—C6—H6B107.8
O1i—Ca1—O2123.52 (14)C8—C7—O3121.1 (6)
O1iii—Ca1—O273.89 (15)C8—C7—C6125.9 (6)
O1—Ca1—O267.06 (14)O3—C7—C6112.9 (6)
O2iii—Ca1—O290.51 (2)O1—C8—C7122.6 (6)
O2ii—Ca1—O290.51 (2)O1—C8—C9118.1 (6)
O2i—Ca1—O2169.1 (2)C7—C8—C9119.0 (6)
O1ii—Ca1—C9ii47.97 (15)O1—C8—Ca144.4 (3)
O1i—Ca1—C9ii105.63 (15)C7—C8—Ca1154.3 (4)
O1iii—Ca1—C9ii108.44 (15)C9—C8—Ca176.6 (4)
O1—Ca1—C9ii94.80 (16)O2—C9—C10124.9 (7)
O2iii—Ca1—C9ii166.55 (15)O2—C9—C8119.9 (6)
O2ii—Ca1—C9ii20.98 (16)C10—C9—C8115.2 (6)
O2i—Ca1—C9ii77.22 (14)O2—C9—Ca145.3 (3)
O2—Ca1—C9ii100.50 (14)C10—C9—Ca1162.3 (4)
O1ii—Ca1—C9iii108.44 (15)C8—C9—Ca176.7 (3)
O1i—Ca1—C9iii94.80 (16)C11—C10—C9120.8 (7)
O1iii—Ca1—C9iii47.97 (15)C11—C10—H10119.6
O1—Ca1—C9iii105.63 (15)C9—C10—H10119.6
O2iii—Ca1—C9iii20.98 (16)C10—C11—O3123.9 (7)
O2ii—Ca1—C9iii166.55 (15)C10—C11—H11118.1
O2i—Ca1—C9iii100.50 (14)O3—C11—H11118.1
O2—Ca1—C9iii77.22 (14)O4C—Cl1—O4Ci117.9 (12)
C9ii—Ca1—C9iii156.3 (2)O4C—Cl1—O1Ci128.0 (12)
O1ii—Ca1—C9i94.80 (16)O4Ci—Cl1—O1Ci111.7 (9)
O1i—Ca1—C9i47.97 (15)O4C—Cl1—O1C111.7 (9)
O1iii—Ca1—C9i105.63 (15)O4Ci—Cl1—O1C128.0 (12)
O1—Ca1—C9i108.44 (15)O1Ci—Cl1—O1C34.2 (8)
O2iii—Ca1—C9i77.22 (14)O4C—Cl1—O2Ci55.5 (8)
O2ii—Ca1—C9i100.50 (14)O4Ci—Cl1—O2Ci105.5 (7)
O2i—Ca1—C9i20.98 (16)O1Ci—Cl1—O2Ci123.9 (7)
O2—Ca1—C9i166.55 (15)O1C—Cl1—O2Ci89.7 (7)
C9ii—Ca1—C9i92.42 (5)O4C—Cl1—O2C105.5 (7)
C9iii—Ca1—C9i92.42 (5)O4Ci—Cl1—O2C55.5 (8)
O1ii—Ca1—C9105.63 (15)O1Ci—Cl1—O2C89.7 (7)
O1i—Ca1—C9108.44 (15)O1C—Cl1—O2C123.9 (7)
O1iii—Ca1—C994.80 (16)O2Ci—Cl1—O2C146.3 (10)
O1—Ca1—C947.97 (15)O4C—Cl1—O3C113.5 (8)
O2iii—Ca1—C9100.50 (14)O4Ci—Cl1—O3C47.5 (8)
O2ii—Ca1—C977.22 (14)O1Ci—Cl1—O3C110.7 (11)
O2i—Ca1—C9166.55 (15)O1C—Cl1—O3C99.1 (10)
O2—Ca1—C920.99 (16)O2Ci—Cl1—O3C68.0 (7)
C9ii—Ca1—C992.42 (5)O2C—Cl1—O3C102.7 (7)
C9iii—Ca1—C992.42 (5)O4C—Cl1—O3Ci47.5 (8)
C9i—Ca1—C9156.3 (2)O4Ci—Cl1—O3Ci113.5 (8)
C8—O1—Co1134.6 (4)O1Ci—Cl1—O3Ci99.1 (10)
C8—O1—Ca1113.4 (4)O1C—Cl1—O3Ci110.7 (11)
Co1—O1—Ca1111.99 (16)O2Ci—Cl1—O3Ci102.7 (7)
C5—N1—C1108.2 (7)O2C—Cl1—O3Ci68.0 (7)
C5—N1—C4110.2 (7)O3C—Cl1—O3Ci148.9 (11)
C1—N1—C4109.1 (7)O1Ci—O1C—Cl172.9 (4)
C5—N1—Co1111.2 (5)O4Ci—O2C—Cl157.7 (8)
C1—N1—Co1111.3 (5)O4Ci—O2C—O3Ci105.8 (11)
C4—N1—Co1106.9 (5)Cl1—O2C—O3Ci56.7 (7)
N1—C1—C2110.9 (7)O4Ci—O3C—Cl159.7 (9)
N1—C1—H1A109.5O4Ci—O3C—O2Ci104.7 (12)
C2—C1—H1A109.5Cl1—O3C—O2Ci55.3 (7)
N1—C1—H1B109.5O3Ci—O4C—O2Ci139.0 (15)
C2—C1—H1B109.5O3Ci—O4C—Cl172.8 (10)
H1A—C1—H1B108.0O2Ci—O4C—Cl166.8 (10)
C9—O2—Ca1113.8 (4)
Symmetry codes: (i) x, y, z; (ii) y, x, z; (iii) y, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1iv—H1Aiv···O3C0.992.643.56 (2)156
C2iii—H2Aiii···O4C0.992.683.55 (2)147
C4iv—H4Civ···O1C0.982.503.47 (2)167
C5v—H5Av···O2C0.992.593.48 (2)148
C5iii—H5Biii···O4C0.992.353.29 (2)157
C6—H6A···O1W0.992.353.23 (9)149
C6vi—H6Bvi···O1C0.992.443.37 (2)158
C6vii—H6Bvii···O1C0.992.553.51 (2)164
Symmetry codes: (iii) y, x, z; (iv) x+1/2, y+1/2, z+1/2; (v) x1/2, y1/2, z+1/2; (vi) x1/2, y+1/2, z+1/2; (vii) x+1/2, y1/2, z+1/2.
Selected bond lengths and angles (Å, °) top
Co1—N12.192 (7)
Co1—N22.375 (7)
Co1—O12.060 (4)
Ca1—O12.429 (4)
Ca1—O22.469 (4)
N1···N1i3.881 (9)
N2···N2i4.206 (10)
Co1···Ca13.727 (1)
Co1···Co1ii7.454 (2)
N1—Co1—N1i124.5 (2)
N1—Co1—N278.0 (2)
N1—Co1—N2i77.0 (3)
N2—Co1—N2i124.6 (3)
O1—Co1—N1121.2 (2)
O1—Co1—N1i102.9 (2)
O1—Co1—N281.6 (2)
O1—Co1—N2i152.4 (2)
O1—Co1—O1i74.3 (2)
O1—Ca1—O1i61.7 (2)
O1—Ca1—O1ii137.5 (1)
O1—Ca1—O267.1 (1)
O1—Ca1—O2i123.5 (1)
O1—Ca1—O2ii73.9 (1)
O1—Ca1—O2iii96.6 (1)
O2—Ca1—O2i169.1 (2)
Co1—O1—Ca1112.0 (2)
Symmetry codes: (i) -x, -y, z; (ii) y, -x, -z; (iii) -y, x, -z.
Hydrogen-bond geometry (Å, °) top
Note that both models of the disordered perchlorate anion form the same interactions; only one value for each interaction involving oxygen atoms of the ClO4- anion is therefore reported.
D—H···AD—HH···AD···AD—H···A
C1iv—H1Aiv···O3C0.992.643.56 (2)156.1
C2iii—H2Aiii···O4C0.992.683.55 (2)146.8
C4iv—H4Civ···O1C0.982.503.47 (2)167.2
C5v—H5Av···O2C0.992.593.48 (2)148.4
C5iii—H5Biii···O4C0.992.353.29 (2)157.4
C6—H6A···O1W0.992.353.23 (9)148.6
C6vi—H6Bvi···O1C0.992.443.37 (2)157.7
C6vii—H6Bvii···O1C0.992.553.51 (2)164.0
Symmetry codes: (iii) -y, x, -z; (iv) -x + 1/2, -y + 1/2, z + 1/2; (v) x - 1/2, y - 1/2, z + 1/2; (vi) -x - 1/2, -y + 1/2, z + 1/2; (vii) x + 1/2, y - 1/2, z + 1/2.
 

Acknowledgements

The authors acknowledge the CRIST (Centro di Cristallografia Strutturale, University of Firenze) where the data collection was performed.

Funding information

Funding for this research was provided by: MIUR PRIN 2015.

References

First citationAime, S., Geninatti Crich, S., Gianolio, E., Giovenzana, G. B., Tei, L. & Terreno, E. (2006). Coord. Chem. Rev. 250, 1562–1579.  Web of Science CrossRef CAS
First citationAmatori, S., Ambrosi, G., Fanelli, M., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P., Pontellini, R. & Rossi, P. (2012). J. Org. Chem. 77, 2207–2218.  Web of Science CSD CrossRef CAS PubMed
First citationAmbrosi, G., Formica, M., Fusi, V., Giorgi, L., Guerri, A., Macedi, E., Micheloni, M., Paoli, P., Pontellini, R. & Rossi, P. (2009a). Inorg. Chem. 48, 5901–5912.  Web of Science CSD CrossRef PubMed CAS
First citationAmbrosi, G., Formica, M., Fusi, V., Giorgi, L., Guerri, A., Micheloni, M., Paoli, P., Pontellini, R. & Rossi, P. (2007a). Inorg. Chem. 46, 309–320.  Web of Science CSD CrossRef PubMed CAS
First citationAmbrosi, G., Formica, M., Fusi, V., Giorgi, L., Guerri, A., Micheloni, M., Paoli, P., Pontellini, R. & Rossi, P. (2007b). Inorg. Chem. 46, 4737–4748.  Web of Science CSD CrossRef PubMed CAS
First citationAmbrosi, G., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2009b). Inorg. Chem. 48, 10424–10434.  Web of Science CSD CrossRef PubMed CAS
First citationAmbrosi, G., Formica, M., Fusi, V., Giorgi, L. & Micheloni, M. (2008). Coord. Chem. Rev. 252, 1121–1152.  Web of Science CrossRef CAS
First citationBenelli, C., Borgogelli, E., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2013). Dalton Trans. 42, 5848–5859.  Web of Science CSD CrossRef CAS PubMed
First citationBernot, K., Bogani, L., Caneschi, A., Gatteschi, D. & Sessoli, R. (2006). J. Am. Chem. Soc. 128, 7947–7956.  Web of Science CrossRef PubMed CAS
First citationBlindauer, C. A., Sigel, A., Operschall, B. P., Holý, A. & Sigel, H. (2017). Inorg. Chim. Acta. doi, 10, 1016j. ica. 2017.06.011.
First citationBorgogelli, E., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2013). Dalton Trans. 42, 2902–2912.  Web of Science CSD CrossRef CAS PubMed
First citationBruijnincx, P. C. A. & Sadler, P. J. (2008). Curr. Opin. Chem. Biol. 12, 197–206.  Web of Science CrossRef PubMed CAS
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals
First citationDaCosta, M. V., Doughan, S., Han, Y. & Krull, U. J. (2014). Anal. Chim. Acta, 832, 1–33.  Web of Science CrossRef CAS PubMed
First citationDesiraju, G. R. & Steiner, T. (1999). Chemistry and Biology, IUCr Monographs on Crystallography, No. 9. New York: Oxford University Press Inc.
First citationDi Bernardo, P., Melchior, A., Tolazzi, M. & Zanonato, P. L. (2012). Coord. Chem. Rev. 256, 328–351.  Web of Science CrossRef CAS
First citationEsteves, C. I. C., Batista, R. M. F., Raposo, M. M. M. & Costa, S. P. G. (2016). Dyes Pigments, 135, 134–142.  Web of Science CrossRef CAS
First citationFanelli, M., Formica, M., Fusi, V., Giorgi, L., Micheloni, M. & Paoli, P. (2016). Coord. Chem. Rev. 310, 41–79.  Web of Science CrossRef CAS
First citationGatteschi, D., Sessoli, R. & Villain, J. (2006). Molecular Nanomagnets. New York: Oxford University Press.
First citationGokel, G. W. & Barbour, L. (2017). In Comprehensive Supramol­ecular Chemistry II, edited by J. L. Atwood. Amsterdam: Elsevier.
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationLehn, J. M. (1988). Angew. Chem. Int. Ed. Engl. 27, 89–112.  CrossRef Web of Science
First citationLi, L.-H., Dong, W.-K., Zhang, Y., Akogun, S. F. & Xu, L. (2017). Appl. Organomet. Chem. doi:10.1002/aoc.3818.
First citationLomidze, L., Kelley, S., Gogichaishvili, S., Metreveli, N., Musier-Forsyth, K. & Kankia, B. (2016). Biopolymers, 105, 811–818.  Web of Science CrossRef CAS PubMed
First citationMalandrino, G. & Fragalà, I. L. (2006). Coord. Chem. Rev. 250, 1605–1620.  Web of Science CrossRef CAS
First citationMarchetti, F., Palmucci, J., Pettinari, C., Pettinari, R., Condello, F., Ferraro, S., Marangoni, M., Crispini, A., Scuri, S., Grappasonni, I., Cocchioni, M., Nabissi, M., Chierotti, M. R. & Gobetto, R. (2015). Chem. Eur. J. 21, 36–850.  Web of Science CSD CrossRef PubMed
First citationMartell, A. E. & Hancock, R. D. (1996). In Metal Complexes in Aqueous Solution, Modern Inorganic Chemistry. New York: Plenum Press.
First citationMerbach, A., Helm, L. & Tóth, É. (2013). Editors. Magnetic Resonance Imaging, 2nd ed. Chichester: John Wiley & Sons.
First citationMeurant, G. (1987). Stereochemical and Stereophysical Behaviour of Macrocycles, edited by I. Bernal. Amsterdam, New York: Elsevier.
First citationMuetterties, E. L. & Guggenberger, L. J. (1974). J. Am. Chem. Soc. 96, 1748–1756.  CrossRef CAS Web of Science
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd. Yarnton, England.
First citationPaoli, P., Macedi, E., Rossi, P., Giorgi, L., Formica, M. & Fusi, V. (2017). Acta Cryst. E73, 1806–1811.  CSD CrossRef IUCr Journals
First citationPasatoiu, T. D., Madalan, A. M., Kumke, M. U., Tiseanu, C. & Andruh, M. (2010). Inorg. Chem. 49, 2310–2315.  Web of Science CSD CrossRef CAS PubMed
First citationPasatoiu, T. D., Sutter, J. P., Madalan, A. M., Fellah, F. Z. C., Duhayon, C. & Andruh, M. (2011). Inorg. Chem. 50, 5890–5898.  Web of Science CSD CrossRef CAS PubMed
First citationPatra, A., Saha, S. K., Sen, T. K., Carrella, L., Musie, G. T., Khuda-Bukhsh, A. R. & Bera, M. (2014). Eur. J. Inorg. Chem. pp. 5217–5232.  Web of Science CSD CrossRef
First citationPrice, E. W., Cawthray, J. F., Bailey, G. A., Ferreira, C. L., Boros, E., Adam, M. J. & Orvig, C. (2012). J. Am. Chem. Soc. 134, 8670–8683.  Web of Science CrossRef CAS PubMed
First citationRossi, P., Ciattini, S., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M. & Paoli, P. (2017). Inorg. Chim. Acta, doi: 10.1016/j.ica.2017.06.033.
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSuh, J. & Chei, W. S. (2008). Curr. Opin. Chem. Biol. 12, 207–213.  Web of Science CrossRef PubMed CAS
First citationTerai, T., Kikuchi, K., Iwasawa, S., Kawabe, T., Hirata, Y., Urano, Y. & Nagano, T. (2006). J. Am. Chem. Soc. 128, 6938–6946.  Web of Science CrossRef PubMed CAS
First citationVoegtle, F. (1996). Comprehensive Supramolecular Chemistry, Vol. 2, Molecular Recognition: Receptors for Molecular Guests. Oxford: Pergamon.
First citationWeber, W. P. & Gokel, G. W. (2012). Phase Transfer Catalysis in Organic Synthesis, Vol. 4, Reactivity and Structure: Concepts in Organic Chemistry. Berlin, Heidelberg, New York: Springer Science & Business Media.
First citationXiao, Y.-D., Paudel, R., Liu, J., Ma, C., Zhang, Z. S. & Zhou, S.-K. (2016). Int. J. Mol. Med. 38, 1319–1326.  Web of Science CrossRef PubMed
First citationYang, C., Han, J., Luo, Y., Hu, S. & Wang, X. (2014). Prog. Chem. 26, 1537–1550.  CAS
First citationYin, J., Hu, Y. & Yoon, J. (2015). Chem. Soc. Rev. 44, 4619–4644.  Web of Science CrossRef CAS PubMed
First citationZelewsky, A. (1996). In Stereochemistry of Coordination Compounds. Chichester: John Wiley & Sons.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds