research communications
μ2-2,2′-[(4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene)]bis(4-oxo-4H-pyran-3-olato)}dicobaltcalcium bis(perchlorate) 1.36-hydrate
of bis{aDepartment of Industrial Engineering, University of Firenze, via Santa Marta 3, I-50139 Firenze, Italy, and bDepartment of Pure and Applied Sciences, Lab of Supramolecular Chemistry, University of Urbino, via della Stazione, 4, I-61029 Urbino, Italy
*Correspondence e-mail: eleonora.macedi@unifi.it
The title compound, [CaCo2(C22H30N4O6)2](ClO4)2·1.36H2O or {Ca[Co(H–2L1)]2}·2ClO4·1.36H2O {where L1 is 4,10-bis[(3-hydroxy-4-pyron-2-yl)methyl]-1,7-dimethyl-1,4,7,10-tetraazacyclododecane}, is a trinuclear complex whose comprises a quarter of the {Ca[Co(H–2L1)]2}2+ trinuclear complex, half of a perchlorate ion and 0.34-water molecules. In the neutral [Co(H–2L1)] moiety, the cobalt ion is hexacoordinated in a trigonal–prismatic fashion by the surrounding N4O2 donor set. A Ca2+ cation holds together two neutral [Co(H–2L1)] moieties and is octacoordinated in a distorted trigonal–dodecahedral fashion by the surrounding O atoms belonging to the deprotonated oxide and carbonyl groups of two [Co(H–2L1)] units. The coordination of the CoII cation preorganizes L1 and an electron-rich area forms, which is able to host hard metal ions. The comparison between the present structure and the previously published ones suggests a high versatility of this ligand; indeed, hard metal ions with different nature and dimensions lead to complexes having different stoichiometry (mono- and dinuclear monomers and trinuclear dimers) or even a polymeric structure. The heterotrinuclear CoII–CaII–CoII complexes are connected in three dimensions via weak C—H⋯O hydrogen bonds, which are also responsible for the interactions with the perchlorate anions and the lattice water molecules. The perchlorate anion is disordered about a twofold rotation axis and was refined giving the two positions a fixed occupancy factor of 0.5. The crystal studied was refined as a two-component [BASF parameter = 0.14 (4)].
Keywords: crystal structure; macrocycle; polyamine ligands; heterotrinuclear complexes; alkaline-earth cations; maltol.
CCDC reference: 1586509
1. Chemical context
Polynuclear metal complexes have long been studied due to their versatility. They find applications in many fields, ranging from molecular recognition to transport and catalysis (Gokel & Barbour, 2017; Weber & Gokel, 2012; Ambrosi et al., 2007a,b, 2008, 2009a,b; Martell & Hancock, 1996; Voegtle, 1996; Zelewsky, 1996; Lehn, 1988), to name just a few. Moreover, they find applications in the field of bioinorganic chemistry (Fanelli et al., 2016; Marchetti et al., 2015; Patra et al., 2014), for instance as anticancer agents (Bruijnincx & Sadler, 2008) and artificial metalloproteases (Suh & Chei, 2008).
On the other hand, hard metal ions also find applications in the biological field. Both rare earth and alkaline earth metal ions are used in the biomedical field, in bioassays and bioimaging applications (Xiao et al., 2016; Yin et al., 2015; DaCosta et al., 2014; Merbach et al., 2013; Di Bernardo et al., 2012; Price et al., 2012). Furthermore, hard metal ions are quite difficult to bind in water because they need a high without usually showing specific coordination requirements, issues that could be overcome using preorganized receptors bearing oxygenated donor sites. It follows that systems able to bind hard metal ions, both in aqueous solution and in the solid state, are very attractive. Indeed, they have found applications in fields ranging from new materials to medicinal chemistry (Blindauer et al., 2017; Esteves et al., 2016; Lomidze et al., 2016; Yang et al., 2014; Price et al., 2012; Pasatoiu et al., 2011; Pasatoiu et al., 2010; Aime et al., 2006; Bernot et al., 2006; Gatteschi et al., 2006; Malandrino & Fragalà, 2006; Terai et al., 2006).
Ligand L1 {4,10-bis[(3-hydroxy-4-pyron-2-yl)methyl]-1,7-dimethyl-1,4,7,10-tetraazacyclododecane} is a Maltol-based macrocycle (Amatori et al., 2012) capable of forming a mononuclear CoII species where both side-arms are forced by the transition metal ion to move and locate on the same part with respect to the macrocyclic plane (Borgogelli et al., 2013). Such a cobalt-driven preorganization allows the formation of an electron-rich area formed by the four converging oxygen atoms of the two maltolate functions of L1, suitable to host hard metal ions such as LnIII (Ln = Gd, Eu; Benelli et al., 2013; Rossi et al., 2017), NaI (Borgogelli et al., 2013) and BaII (Paoli et al., 2017). The resulting heteropolynuclear systems differ in the number of the complexes involved in the coordination, depending on the nature of the hard cation. Indeed, the coordination of the hard ion leads to CoII–LnIII–CoII heterotrinuclear dimers, a NaI–CoII heterodinuclear monomer and a BaII–CoII heterodinuclear metal coordination polymer.
Herein we present a CoII–CaII–CoII heterotrinuclear dimer of L1 and a brief comparison with the previous L1-containing structures, highlighting the high versatility of this ligand.
2. Structural commentary
The title compound is a trinuclear complex cation of formula {Ca[Co(H–2L1)]2}·2ClO4·1.36H2O and crystallizes in the tetragonal system in I. In the {Ca[Co(H-2L1)]2}2+ trinuclear complex (Fig. 1), two neutral [Co(H-2L1)] moieties are held together by the Ca2+ cation, which is coordinated by oxygen atoms provided by the maltolate groups of the two complexes. The comprises a quarter of the {Ca[Co(H–2L1)]2}2+ trinuclear complex, half of a perchlorate ion and 0.34 water molecules. The two halves of each cobalt complex are related by a twofold rotation axis, the cobalt ion lying on the The two cobalt complexes are then related by a fourfold rotoinversion axis, the calcium ion lying on the The disordered perchlorate ion and the water molecule lie on a twofold axis, with the chlorine atom (for ClO4−) and the oxygen atom (for H2O) lying on the symmetry element.
In the neutral [Co(H–2L1)] moiety, the Co2+ ion is hexacoordinated by four nitrogen atoms of the macrocyclic base and two deprotonated hydroxyl oxygen atoms provided by both the maltolate rings of the ligand; it exhibits a distorted trigonal–prismatic geometry (Muetterties & Guggenberger, 1974), with the N1,N2i,O1i/N1i,N2,O1 atoms [symmetry code: (i) −x, −y, z] defining the two triangular faces, which are parallel within 15.6 (2)° (Fig. 2, left). The cobalt ion is displaced 1.064 (1) Å above the mean plane defined by the four nitrogen atoms of the tetraazamacrocycle [maximum deviation of 0.044 (6) Å for N1]; according to the Cambridge Structural Database (CSD, Version 5.38, May 2017; Groom et al., 2016) such distance falls, together with the Co—N(CH3) and Co—O bond distances (Table 1), in the expected range for Co-[12]aneN4 complexes where the cobalt ion is hexacoordinated with an N4O2 donor set. The Co—N(Maltol) bond distances, by contrast, are beyond this range (Table 1) but are in line with those reported for other Co—L1 complexes [Co—N(Maltol): range 2.26–2.44 Å; Co—N(CH3) range: 2.13—2.22 Å; Benelli et al., 2013; Borgogelli et al., 2013; Rossi et al., 2017; Paoli et al., 2017].
The conformation of the [12]aneN4 macrocycle is the usual [3333]C-corners one (Meurant, 1987) with the trans nitrogen distances in agreement with those reported in the CSD for this conformation type, but with the N2⋯N2i distance being longer than N1⋯N1i by 0.32 Å [Table 1, symmetry code: (i) −x, −y, z], as found only in 12% of cases (88%: Δ < 0.32 Å; 12%: Δ > 0.32 Å). This is probably due to the fact that the Maltol units linked to the nitrogen atoms are involved in chelate six-membered rings, which stiffen the system and force those nitrogen atoms to move farther apart.
The mean planes of the two maltolate rings of the neutral [Co(H–2L1)] moiety form a dihedral angle of about 55°, while the dihedral angle between the N1,N2,N1i,N2i [symmetry code: (i) −x, −y, z] and maltolate ring mean planes is about 63°. The distance between the maltolate ring centroids is 7.8463 (3) Å. The dimension of the binding area defined by the four oxygen donor atoms of the ligand is roughly estimated by the distance separating the opposite O1⋯O2i [symmetry code: (i) −x, −y, z] atoms (and the other symmetry-related oxygen atoms), which is 4.315 (6) Å. Notably, such a distance is longer than those retrieved for analogous trinuclear complexes (opposite O⋯O distances range: 3.98–4.22 Å; Benelli et al., 2013; Rossi et al., 2017), while it is shorter than those retrieved for the one-dimensional coordination polymer of L1 (opposite O⋯O distances: 4.5 Å; Paoli et al., 2017) and the mononuclear complex of L1 (opposite O⋯O distances: 4.49 Å; Borgogelli et al., 2013). As for the dinuclear complex of L1 (Borgogelli et al., 2013), the opposite O⋯O distances of the binding area are quite different from each other (4.12 and 4.42 Å), and are, respectively, shorter and longer than the corresponding distance in the title compound.
The 2+ ion can be described as a distorted trigonal dodecahedron (Muetterties & Guggenberger, 1974), with all eight deprotonated hydroxyl and carbonyl oxygen atoms of the two [Co(H–2L1)] moieties of the trinuclear complex situated at the corners of the polyhedron (Fig. 2, right). The maltolate unit acts as a bidentate ligand through the hydroxyl oxygen atom, which bridges the CaII and CoII cations. All the Ca—O distances are in agreement with data found in the CSD.
around the CaThe Co2+ and Ca2+ cations are located 3.727 (1) Å apart from each other and, because of the symmetry of the system, the line connecting the three cations (CoII–CaII–CoII) is normal to the mean plane described by the four nitrogen atoms of the macrocycle (Fig. 1). The values for the Co⋯Ca distance and the Co—O1—Ca angle are in agreement with data ranges found in the CSD, even if they fall in non-populated regions (only ten hits – corresponding to twenty distances or angle values – are retrieved when the Co–O–Ca fragment is searched). The Co⋯Coii distance and the Co–Ca–Coii angle value [symmetry code: (ii) y, −x, −z] can only be compared with the single hit containing a cobalt-μ2-oxygen-calcium-μ2-oxygen-cobalt motif (Fig. 3) deposited in the CSD (refcode: DAPNOA; Li et al., 2017), which shows a shorter Co⋯Co distance (6.25 Å) and a smaller Co⋯Ca⋯Co angle value (132°) with respect to the title compound. When all alkaline-earth ions instead of calcium are considered in the fragment searched in the CSD (Fig. 3), both the Co⋯Co distance and Co⋯Ca⋯Co angle values fall within the expected range.
As a result of the symmetry of the system, the two [Co(H–2L1)] complexes in the {Ca[Co(H–2L1)]2}2+ cation are rotated by 90°, as indicated by the angle between the two mean planes defined by the Co1,O1,O1i,Ca1 and Coii,O1ii,O1iii,Ca1 atoms [symmetry codes: (i) −x, −y, z; (ii) y, −x, −z; (iii) −y, x, −z; Fig. 1]. Such an angle value falls in the most populated region for the cobalt-μ2-oxygen-AE-μ2-oxygen-cobalt fragment (AE = alkaline-earth ion).
Finally, the shortest Co⋯Co/Co⋯Ca/Ca⋯Ca distances between metal cations belonging to different {Ca[Co(H–2L1)]2}2+ units are 8.9799 (4)/9.7227 (5)/8.9799 (4) Å.
In the present structure and in all the Co-containing structures of L1 published up to now, the cobalt complexes are well superimposable with each other, but for that belonging to the NaI–CoII heterodinuclear complex (r.m.s. deviation values of 0.788 Å and within 0.301 Å for the superimposition of the title compound with the NaI–CoII complex and with all other structures, respectively), where the two maltolate rings show a different arrangement, both rings being tilted toward the same direction (instead of opposite directions) with respect to the cobalt-μ2-oxygen-hard metal mean plane (M = NaI, CaII, BaII, GdIII, EuIII; in the case of the mononuclear CoII species, with respect to the cobalt–μ2-oxygen mean plane; Fig. 4). Moreover, when considering the heterotrinuclear complexes only, the superimposition of the CoII–CaII–CoII dimer with the whole structures of the CoII–LnIII–CoII dimers (LnIII = GdIII, EuIII) shows high r.m.s. deviation values (1.7 Å), in agreement with a different mutual disposition of the two subunits in the dimers.
The electron-rich area, which forms following the cobalt-driven preorganization of L1, is able to host hard metal ions with different dimensions and coordination requirements, leading to complexes having different stoichiometry (mono- and dinuclear monomers and trinuclear dimers) or even a polymeric structure (Fig. 4). In the case of the NaI–CoII structure, a monomer forms, probably because of the lower ionic charge and (CN) of the NaI cation (CN: 5, Na+ ionic radius: 1.00 Å; Shannon, 1976) with respect to the other cations. Indeed, the low ionic charge and coordination number allow the stabilization of the ion with only one [Co(H–2L1)] moiety. In the case of the BaII–CoII structure, the BaII cation shows the highest (CN: 9, Ba2+ ionic radius: 1.47 Å; Shannon, 1976) in the series of structures, and the cationic fragment shows the largest binding area, which is necessary to accommodate such large ionic dimensions. In the case of the heterotrinuclear structures, all of the GdIII, EuIII and CaII cations have the same (CN: 8) and similar ionic radii (1.053, 1.066 and 1.12 Å for GdIII, EuIII and CaII, respectively; Shannon, 1976): two [Co(H–2L1)] units are needed to stabilize the high ionic charge and fully satisfy the coordination requirements of the cations.
3. Supramolecular features
In the crystal, the heterotrinuclear CoII–CaII–CoII complexes are connected in the three dimensions via weak C—H⋯O hydrogen bonds (Desiraju & Steiner, 1999).
The perchlorate anion interacts with five complexes: four out of five (magenta in Figs. 5 and 6) are connected to form a layer perpendicular to the c axis, the fifth complex also belongs to a layer (blue in Figs. 5 and 6) perpendicular to the c axis, adjacent layers being staggered relative to one other (Fig. 6). All interactions are weak C—H⋯O—Cl hydrogen bonds (Table 2) involving the methylene hydrogen atoms of the macrocycle. The perchlorate anions are located between the layers (Fig. 5).
|
Water molecules also interact with the complexes via weak C—H⋯O hydrogen bonds (Table 2) along the a and b axes (Fig. 5). These interactions also involve the methylene hydrogen atoms of the macrocycle.
4. Synthesis and crystallization
Compound L1 was obtained following the previously reported synthetic procedure (Amatori et al., 2012).
To obtain the title compound, {Ca[Co(H–2L1)]2}·2ClO4·1.36H2O, 0.1 mmol of CoCl2· 6H2O in water (10 ml) were added to an aqueous solution (20 ml) containing 0.1 mmol of L1·3HClO4·H2O. The solution was adjusted to pH 7 with 0.1 M N(CH3)4OH and then 0.05 mmol of CaCl2 were added. The solution was saturated with NaClO4. The title compound quickly precipitated as a microcrystalline pink solid. Crystals suitable for X-ray analysis were obtained by slow evaporation of a more diluted aqueous solution.
5. Refinement
Crystal data, data collection and structure .
details are summarized in Table 3
|
All hydrogen atoms of the macrocycle were positioned geometrically and refined as riding with C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.
The perchlorate anion is disordered about a twofold rotation axis and was refined giving the two positions a fixed occupancy factor of 0.5. The chlorine atom is located on a twofold rotation axis.
The oxygen atom of the water molecule lies on a twofold rotation axis, the refined occupancy factor is 0.34 (2); the hydrogen atoms were not found in the difference-Fourier map and they were not introduced in the refinement.
All non-hydrogen atoms were refined anisotropically: as for the disordered perchlorate anion, the SIMU instruction was used to restrain the anisotropic displacement parameters of the disordered atoms, while the ISOR instruction was used to restrain the anisotropic displacement parameters of the isolated water oxygen atom.
The structure was refined as a two-component
[BASF parameter = 0.14 (4)].Supporting information
CCDC reference: 1586509
https://doi.org/10.1107/S2056989017016693/xi2003sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017016693/xi2003Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017016693/xi2003Isup3.mol
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis CCD (Oxford Diffraction, 2008); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).[CaCo2(C22H30N4O6)2](ClO4)2·1.36H2O | Dx = 1.609 Mg m−3 |
Mr = 1271.92 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I4 | Cell parameters from 1087 reflections |
a = 8.9799 (4) Å | θ = 3.7–28.8° |
c = 32.555 (3) Å | µ = 0.92 mm−1 |
V = 2625.2 (3) Å3 | T = 100 K |
Z = 2 | Prism, pink |
F(000) = 1318 | 0.46 × 0.38 × 0.18 mm |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 2340 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 1386 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
Detector resolution: 16.4547 pixels mm-1 | θmax = 29.0°, θmin = 3.8° |
ω scans | h = −12→10 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −12→9 |
Tmin = 0.557, Tmax = 1.000 | l = −43→30 |
3291 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.043 | w = 1/[σ2(Fo2) + (0.0355P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.081 | (Δ/σ)max < 0.001 |
S = 0.86 | Δρmax = 0.35 e Å−3 |
2340 reflections | Δρmin = −0.25 e Å−3 |
200 parameters | Absolute structure: Refined as an inversion twin |
30 restraints | Absolute structure parameter: 0.14 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Co1 | 0.0000 | 0.0000 | −0.11449 (3) | 0.0355 (3) | |
Ca1 | 0.0000 | 0.0000 | 0.0000 | 0.0350 (5) | |
O1 | −0.1168 (4) | 0.0747 (5) | −0.06406 (11) | 0.0431 (10) | |
N1 | 0.1622 (8) | 0.1428 (7) | −0.1458 (2) | 0.0439 (16) | |
C1 | 0.0890 (10) | 0.2753 (10) | −0.1643 (3) | 0.062 (3) | |
H1A | 0.1533 | 0.3164 | −0.1862 | 0.075* | |
H1B | 0.0761 | 0.3530 | −0.1430 | 0.075* | |
O2 | −0.2696 (5) | 0.0475 (5) | 0.00717 (15) | 0.0510 (13) | |
N2 | −0.1567 (7) | 0.1741 (8) | −0.14838 (19) | 0.0464 (16) | |
C2 | −0.0591 (10) | 0.2353 (12) | −0.1819 (2) | 0.055 (2) | |
H2A | −0.0466 | 0.1599 | −0.2038 | 0.066* | |
H2B | −0.1062 | 0.3247 | −0.1941 | 0.066* | |
O3 | −0.4188 (5) | 0.3327 (5) | −0.07952 (15) | 0.0562 (12) | |
C3 | −0.2837 (8) | 0.0927 (9) | −0.1656 (3) | 0.048 (2) | |
H3A | −0.3229 | 0.1474 | −0.1897 | 0.058* | |
H3B | −0.3639 | 0.0865 | −0.1448 | 0.058* | |
C4 | 0.2708 (9) | 0.1931 (10) | −0.1142 (3) | 0.066 (2) | |
H4A | 0.2181 | 0.2471 | −0.0924 | 0.099* | |
H4B | 0.3213 | 0.1063 | −0.1024 | 0.099* | |
H4C | 0.3446 | 0.2589 | −0.1269 | 0.099* | |
C5 | 0.2389 (11) | 0.0621 (10) | −0.1785 (3) | 0.055 (3) | |
H5A | 0.3289 | 0.1183 | −0.1866 | 0.066* | |
H5B | 0.1727 | 0.0555 | −0.2027 | 0.066* | |
C6 | −0.2118 (8) | 0.3006 (8) | −0.1240 (2) | 0.047 (2) | |
H6A | −0.1266 | 0.3648 | −0.1163 | 0.056* | |
H6B | −0.2804 | 0.3607 | −0.1411 | 0.056* | |
C7 | −0.2900 (7) | 0.2535 (7) | −0.0865 (2) | 0.0452 (16) | |
C8 | −0.2406 (6) | 0.1491 (6) | −0.0589 (2) | 0.0378 (14) | |
C9 | −0.3217 (7) | 0.1295 (7) | −0.0201 (2) | 0.0445 (17) | |
C10 | −0.4591 (7) | 0.2091 (7) | −0.0171 (2) | 0.0491 (18) | |
H10 | −0.5227 | 0.1926 | 0.0057 | 0.059* | |
C11 | −0.4987 (8) | 0.3054 (9) | −0.0458 (2) | 0.061 (2) | |
H11 | −0.5894 | 0.3582 | −0.0422 | 0.073* | |
Cl1 | 0.0000 | 0.0000 | 0.29295 (6) | 0.0614 (6) | |
O1C | 0.018 (3) | 0.0426 (14) | 0.3345 (2) | 0.069 (3) | 0.5 |
O2C | −0.0574 (17) | −0.1450 (14) | 0.2799 (4) | 0.090 (3) | 0.5 |
O3C | 0.1595 (14) | −0.0078 (17) | 0.2807 (4) | 0.081 (3) | 0.5 |
O4C | −0.079 (2) | 0.1014 (16) | 0.2716 (4) | 0.087 (3) | 0.5 |
O1W | 0.0000 | 0.5000 | −0.0653 (3) | 0.077 (5) | 0.68 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0367 (9) | 0.0418 (9) | 0.0282 (5) | −0.0009 (10) | 0.000 | 0.000 |
Ca1 | 0.0388 (7) | 0.0388 (7) | 0.0274 (10) | 0.000 | 0.000 | 0.000 |
O1 | 0.040 (2) | 0.059 (3) | 0.030 (2) | 0.011 (2) | 0.000 (2) | 0.002 (2) |
N1 | 0.050 (4) | 0.043 (4) | 0.039 (4) | 0.005 (3) | −0.002 (4) | 0.003 (4) |
C1 | 0.066 (6) | 0.061 (6) | 0.059 (6) | −0.003 (5) | 0.023 (6) | 0.007 (6) |
O2 | 0.050 (2) | 0.062 (3) | 0.041 (4) | 0.003 (2) | −0.003 (3) | 0.001 (3) |
N2 | 0.053 (4) | 0.048 (4) | 0.039 (4) | 0.009 (3) | 0.002 (4) | 0.000 (4) |
C2 | 0.060 (6) | 0.070 (7) | 0.036 (5) | 0.001 (6) | 0.005 (5) | 0.013 (5) |
O3 | 0.049 (3) | 0.065 (3) | 0.054 (3) | 0.018 (3) | −0.008 (3) | −0.008 (3) |
C3 | 0.033 (5) | 0.062 (6) | 0.050 (6) | 0.000 (4) | −0.017 (4) | −0.012 (5) |
C4 | 0.057 (5) | 0.084 (6) | 0.057 (5) | −0.029 (4) | 0.000 (5) | −0.001 (6) |
C5 | 0.050 (5) | 0.073 (7) | 0.041 (5) | −0.013 (6) | 0.012 (5) | 0.006 (5) |
C6 | 0.053 (4) | 0.044 (4) | 0.043 (5) | 0.005 (4) | −0.006 (4) | 0.004 (4) |
C7 | 0.039 (3) | 0.051 (4) | 0.046 (4) | 0.011 (3) | −0.009 (4) | −0.007 (4) |
C8 | 0.034 (3) | 0.043 (3) | 0.037 (3) | 0.001 (3) | −0.006 (4) | −0.008 (4) |
C9 | 0.045 (4) | 0.046 (4) | 0.043 (4) | −0.006 (4) | 0.000 (4) | −0.017 (4) |
C10 | 0.033 (3) | 0.057 (4) | 0.058 (4) | 0.003 (3) | 0.005 (3) | −0.010 (4) |
C11 | 0.045 (4) | 0.073 (5) | 0.064 (5) | 0.022 (4) | 0.001 (4) | −0.020 (5) |
Cl1 | 0.072 (2) | 0.072 (2) | 0.0405 (11) | 0.007 (3) | 0.000 | 0.000 |
O1C | 0.075 (7) | 0.093 (7) | 0.040 (3) | 0.021 (6) | −0.013 (6) | −0.016 (5) |
O2C | 0.087 (6) | 0.085 (6) | 0.098 (6) | −0.009 (6) | −0.001 (6) | −0.005 (6) |
O3C | 0.070 (6) | 0.095 (6) | 0.078 (6) | −0.003 (6) | 0.004 (5) | −0.006 (6) |
O4C | 0.100 (7) | 0.092 (7) | 0.071 (6) | 0.017 (6) | −0.027 (6) | 0.018 (5) |
O1W | 0.106 (8) | 0.062 (7) | 0.064 (7) | −0.012 (5) | 0.000 | 0.000 |
Co1—O1 | 2.060 (4) | C3—C5i | 1.506 (9) |
Co1—O1i | 2.061 (4) | C3—H3A | 0.9900 |
Co1—N1 | 2.192 (6) | C3—H3B | 0.9900 |
Co1—N1i | 2.192 (6) | C4—H4A | 0.9800 |
Co1—N2 | 2.375 (6) | C4—H4B | 0.9800 |
Co1—N2i | 2.375 (6) | C4—H4C | 0.9800 |
Ca1—O1ii | 2.429 (4) | C5—C3i | 1.506 (9) |
Ca1—O1i | 2.429 (4) | C5—H5A | 0.9900 |
Ca1—O1iii | 2.429 (4) | C5—H5B | 0.9900 |
Ca1—O1 | 2.429 (4) | C6—C7 | 1.471 (9) |
Ca1—O2iii | 2.469 (4) | C6—H6A | 0.9900 |
Ca1—O2ii | 2.469 (4) | C6—H6B | 0.9900 |
Ca1—O2i | 2.469 (4) | C7—C8 | 1.372 (8) |
Ca1—O2 | 2.469 (4) | C8—C9 | 1.467 (8) |
Ca1—C9ii | 3.182 (7) | C9—C10 | 1.430 (9) |
Ca1—C9iii | 3.182 (7) | C10—C11 | 1.320 (9) |
Ca1—C9i | 3.182 (7) | C10—H10 | 0.9500 |
Ca1—C9 | 3.182 (7) | C11—H11 | 0.9500 |
O1—C8 | 1.309 (6) | Cl1—O4C | 1.345 (12) |
N1—C5 | 1.459 (9) | Cl1—O4Ci | 1.345 (12) |
N1—C1 | 1.486 (10) | Cl1—O1Ci | 1.413 (7) |
N1—C4 | 1.489 (9) | Cl1—O1C | 1.413 (7) |
C1—C2 | 1.492 (10) | Cl1—O2Ci | 1.463 (14) |
C1—H1A | 0.9900 | Cl1—O2C | 1.463 (13) |
C1—H1B | 0.9900 | Cl1—O3C | 1.488 (13) |
O2—C9 | 1.245 (7) | Cl1—O3Ci | 1.488 (13) |
N2—C3 | 1.466 (9) | O1C—O1Ci | 0.83 (2) |
N2—C6 | 1.472 (9) | O2C—O4Ci | 1.312 (17) |
N2—C2 | 1.502 (9) | O2C—O3Ci | 1.651 (16) |
C2—H2A | 0.9900 | O3C—O4Ci | 1.148 (17) |
C2—H2B | 0.9900 | O3C—O2Ci | 1.651 (16) |
O3—C11 | 1.334 (8) | O4C—O3Ci | 1.148 (17) |
O3—C7 | 1.376 (7) | O4C—O2Ci | 1.312 (17) |
O1—Co1—O1i | 74.3 (2) | C3—N2—C6 | 109.3 (6) |
O1—Co1—N1 | 121.2 (2) | C3—N2—C2 | 111.0 (6) |
O1i—Co1—N1 | 102.9 (2) | C6—N2—C2 | 107.8 (7) |
O1—Co1—N1i | 102.9 (2) | C3—N2—Co1 | 108.1 (5) |
O1i—Co1—N1i | 121.2 (2) | C6—N2—Co1 | 117.2 (4) |
N1—Co1—N1i | 124.5 (3) | C2—N2—Co1 | 103.4 (5) |
O1—Co1—N2 | 81.6 (2) | C1—C2—N2 | 109.3 (7) |
O1i—Co1—N2 | 152.37 (19) | C1—C2—H2A | 109.8 |
N1—Co1—N2 | 78.0 (3) | N2—C2—H2A | 109.8 |
N1i—Co1—N2 | 77.0 (3) | C1—C2—H2B | 109.8 |
O1—Co1—N2i | 152.37 (19) | N2—C2—H2B | 109.8 |
O1i—Co1—N2i | 81.6 (2) | H2A—C2—H2B | 108.3 |
N1—Co1—N2i | 77.0 (3) | C11—O3—C7 | 119.5 (6) |
N1i—Co1—N2i | 78.0 (3) | N2—C3—C5i | 111.0 (7) |
N2—Co1—N2i | 124.6 (3) | N2—C3—H3A | 109.4 |
O1ii—Ca1—O1i | 137.50 (11) | C5i—C3—H3A | 109.4 |
O1ii—Ca1—O1iii | 61.67 (17) | N2—C3—H3B | 109.4 |
O1i—Ca1—O1iii | 137.50 (11) | C5i—C3—H3B | 109.4 |
O1ii—Ca1—O1 | 137.50 (11) | H3A—C3—H3B | 108.0 |
O1i—Ca1—O1 | 61.67 (17) | N1—C4—H4A | 109.5 |
O1iii—Ca1—O1 | 137.50 (11) | N1—C4—H4B | 109.5 |
O1ii—Ca1—O2iii | 123.52 (14) | H4A—C4—H4B | 109.5 |
O1i—Ca1—O2iii | 73.89 (15) | N1—C4—H4C | 109.5 |
O1iii—Ca1—O2iii | 67.05 (14) | H4A—C4—H4C | 109.5 |
O1—Ca1—O2iii | 96.61 (14) | H4B—C4—H4C | 109.5 |
O1ii—Ca1—O2ii | 67.05 (14) | N1—C5—C3i | 112.4 (7) |
O1i—Ca1—O2ii | 96.61 (14) | N1—C5—H5A | 109.1 |
O1iii—Ca1—O2ii | 123.52 (14) | C3i—C5—H5A | 109.1 |
O1—Ca1—O2ii | 73.89 (15) | N1—C5—H5B | 109.1 |
O2iii—Ca1—O2ii | 169.1 (2) | C3i—C5—H5B | 109.1 |
O1ii—Ca1—O2i | 73.89 (15) | H5A—C5—H5B | 107.8 |
O1i—Ca1—O2i | 67.05 (14) | C7—C6—N2 | 112.8 (6) |
O1iii—Ca1—O2i | 96.61 (14) | C7—C6—H6A | 109.0 |
O1—Ca1—O2i | 123.52 (14) | N2—C6—H6A | 109.0 |
O2iii—Ca1—O2i | 90.51 (2) | C7—C6—H6B | 109.0 |
O2ii—Ca1—O2i | 90.51 (2) | N2—C6—H6B | 109.0 |
O1ii—Ca1—O2 | 96.61 (14) | H6A—C6—H6B | 107.8 |
O1i—Ca1—O2 | 123.52 (14) | C8—C7—O3 | 121.1 (6) |
O1iii—Ca1—O2 | 73.89 (15) | C8—C7—C6 | 125.9 (6) |
O1—Ca1—O2 | 67.06 (14) | O3—C7—C6 | 112.9 (6) |
O2iii—Ca1—O2 | 90.51 (2) | O1—C8—C7 | 122.6 (6) |
O2ii—Ca1—O2 | 90.51 (2) | O1—C8—C9 | 118.1 (6) |
O2i—Ca1—O2 | 169.1 (2) | C7—C8—C9 | 119.0 (6) |
O1ii—Ca1—C9ii | 47.97 (15) | O1—C8—Ca1 | 44.4 (3) |
O1i—Ca1—C9ii | 105.63 (15) | C7—C8—Ca1 | 154.3 (4) |
O1iii—Ca1—C9ii | 108.44 (15) | C9—C8—Ca1 | 76.6 (4) |
O1—Ca1—C9ii | 94.80 (16) | O2—C9—C10 | 124.9 (7) |
O2iii—Ca1—C9ii | 166.55 (15) | O2—C9—C8 | 119.9 (6) |
O2ii—Ca1—C9ii | 20.98 (16) | C10—C9—C8 | 115.2 (6) |
O2i—Ca1—C9ii | 77.22 (14) | O2—C9—Ca1 | 45.3 (3) |
O2—Ca1—C9ii | 100.50 (14) | C10—C9—Ca1 | 162.3 (4) |
O1ii—Ca1—C9iii | 108.44 (15) | C8—C9—Ca1 | 76.7 (3) |
O1i—Ca1—C9iii | 94.80 (16) | C11—C10—C9 | 120.8 (7) |
O1iii—Ca1—C9iii | 47.97 (15) | C11—C10—H10 | 119.6 |
O1—Ca1—C9iii | 105.63 (15) | C9—C10—H10 | 119.6 |
O2iii—Ca1—C9iii | 20.98 (16) | C10—C11—O3 | 123.9 (7) |
O2ii—Ca1—C9iii | 166.55 (15) | C10—C11—H11 | 118.1 |
O2i—Ca1—C9iii | 100.50 (14) | O3—C11—H11 | 118.1 |
O2—Ca1—C9iii | 77.22 (14) | O4C—Cl1—O4Ci | 117.9 (12) |
C9ii—Ca1—C9iii | 156.3 (2) | O4C—Cl1—O1Ci | 128.0 (12) |
O1ii—Ca1—C9i | 94.80 (16) | O4Ci—Cl1—O1Ci | 111.7 (9) |
O1i—Ca1—C9i | 47.97 (15) | O4C—Cl1—O1C | 111.7 (9) |
O1iii—Ca1—C9i | 105.63 (15) | O4Ci—Cl1—O1C | 128.0 (12) |
O1—Ca1—C9i | 108.44 (15) | O1Ci—Cl1—O1C | 34.2 (8) |
O2iii—Ca1—C9i | 77.22 (14) | O4C—Cl1—O2Ci | 55.5 (8) |
O2ii—Ca1—C9i | 100.50 (14) | O4Ci—Cl1—O2Ci | 105.5 (7) |
O2i—Ca1—C9i | 20.98 (16) | O1Ci—Cl1—O2Ci | 123.9 (7) |
O2—Ca1—C9i | 166.55 (15) | O1C—Cl1—O2Ci | 89.7 (7) |
C9ii—Ca1—C9i | 92.42 (5) | O4C—Cl1—O2C | 105.5 (7) |
C9iii—Ca1—C9i | 92.42 (5) | O4Ci—Cl1—O2C | 55.5 (8) |
O1ii—Ca1—C9 | 105.63 (15) | O1Ci—Cl1—O2C | 89.7 (7) |
O1i—Ca1—C9 | 108.44 (15) | O1C—Cl1—O2C | 123.9 (7) |
O1iii—Ca1—C9 | 94.80 (16) | O2Ci—Cl1—O2C | 146.3 (10) |
O1—Ca1—C9 | 47.97 (15) | O4C—Cl1—O3C | 113.5 (8) |
O2iii—Ca1—C9 | 100.50 (14) | O4Ci—Cl1—O3C | 47.5 (8) |
O2ii—Ca1—C9 | 77.22 (14) | O1Ci—Cl1—O3C | 110.7 (11) |
O2i—Ca1—C9 | 166.55 (15) | O1C—Cl1—O3C | 99.1 (10) |
O2—Ca1—C9 | 20.99 (16) | O2Ci—Cl1—O3C | 68.0 (7) |
C9ii—Ca1—C9 | 92.42 (5) | O2C—Cl1—O3C | 102.7 (7) |
C9iii—Ca1—C9 | 92.42 (5) | O4C—Cl1—O3Ci | 47.5 (8) |
C9i—Ca1—C9 | 156.3 (2) | O4Ci—Cl1—O3Ci | 113.5 (8) |
C8—O1—Co1 | 134.6 (4) | O1Ci—Cl1—O3Ci | 99.1 (10) |
C8—O1—Ca1 | 113.4 (4) | O1C—Cl1—O3Ci | 110.7 (11) |
Co1—O1—Ca1 | 111.99 (16) | O2Ci—Cl1—O3Ci | 102.7 (7) |
C5—N1—C1 | 108.2 (7) | O2C—Cl1—O3Ci | 68.0 (7) |
C5—N1—C4 | 110.2 (7) | O3C—Cl1—O3Ci | 148.9 (11) |
C1—N1—C4 | 109.1 (7) | O1Ci—O1C—Cl1 | 72.9 (4) |
C5—N1—Co1 | 111.2 (5) | O4Ci—O2C—Cl1 | 57.7 (8) |
C1—N1—Co1 | 111.3 (5) | O4Ci—O2C—O3Ci | 105.8 (11) |
C4—N1—Co1 | 106.9 (5) | Cl1—O2C—O3Ci | 56.7 (7) |
N1—C1—C2 | 110.9 (7) | O4Ci—O3C—Cl1 | 59.7 (9) |
N1—C1—H1A | 109.5 | O4Ci—O3C—O2Ci | 104.7 (12) |
C2—C1—H1A | 109.5 | Cl1—O3C—O2Ci | 55.3 (7) |
N1—C1—H1B | 109.5 | O3Ci—O4C—O2Ci | 139.0 (15) |
C2—C1—H1B | 109.5 | O3Ci—O4C—Cl1 | 72.8 (10) |
H1A—C1—H1B | 108.0 | O2Ci—O4C—Cl1 | 66.8 (10) |
C9—O2—Ca1 | 113.8 (4) |
Symmetry codes: (i) −x, −y, z; (ii) y, −x, −z; (iii) −y, x, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1iv—H1Aiv···O3C | 0.99 | 2.64 | 3.56 (2) | 156 |
C2iii—H2Aiii···O4C | 0.99 | 2.68 | 3.55 (2) | 147 |
C4iv—H4Civ···O1C | 0.98 | 2.50 | 3.47 (2) | 167 |
C5v—H5Av···O2C | 0.99 | 2.59 | 3.48 (2) | 148 |
C5iii—H5Biii···O4C | 0.99 | 2.35 | 3.29 (2) | 157 |
C6—H6A···O1W | 0.99 | 2.35 | 3.23 (9) | 149 |
C6vi—H6Bvi···O1C | 0.99 | 2.44 | 3.37 (2) | 158 |
C6vii—H6Bvii···O1C | 0.99 | 2.55 | 3.51 (2) | 164 |
Symmetry codes: (iii) −y, x, −z; (iv) −x+1/2, −y+1/2, z+1/2; (v) x−1/2, y−1/2, z+1/2; (vi) −x−1/2, −y+1/2, z+1/2; (vii) x+1/2, y−1/2, z+1/2. |
Co1—N1 | 2.192 (7) |
Co1—N2 | 2.375 (7) |
Co1—O1 | 2.060 (4) |
Ca1—O1 | 2.429 (4) |
Ca1—O2 | 2.469 (4) |
N1···N1i | 3.881 (9) |
N2···N2i | 4.206 (10) |
Co1···Ca1 | 3.727 (1) |
Co1···Co1ii | 7.454 (2) |
N1—Co1—N1i | 124.5 (2) |
N1—Co1—N2 | 78.0 (2) |
N1—Co1—N2i | 77.0 (3) |
N2—Co1—N2i | 124.6 (3) |
O1—Co1—N1 | 121.2 (2) |
O1—Co1—N1i | 102.9 (2) |
O1—Co1—N2 | 81.6 (2) |
O1—Co1—N2i | 152.4 (2) |
O1—Co1—O1i | 74.3 (2) |
O1—Ca1—O1i | 61.7 (2) |
O1—Ca1—O1ii | 137.5 (1) |
O1—Ca1—O2 | 67.1 (1) |
O1—Ca1—O2i | 123.5 (1) |
O1—Ca1—O2ii | 73.9 (1) |
O1—Ca1—O2iii | 96.6 (1) |
O2—Ca1—O2i | 169.1 (2) |
Co1—O1—Ca1 | 112.0 (2) |
Symmetry codes: (i) -x, -y, z; (ii) y, -x, -z; (iii) -y, x, -z. |
Note that both models of the disordered perchlorate anion form the same interactions; only one value for each interaction involving oxygen atoms of the ClO4- anion is therefore reported. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1iv—H1Aiv···O3C | 0.99 | 2.64 | 3.56 (2) | 156.1 |
C2iii—H2Aiii···O4C | 0.99 | 2.68 | 3.55 (2) | 146.8 |
C4iv—H4Civ···O1C | 0.98 | 2.50 | 3.47 (2) | 167.2 |
C5v—H5Av···O2C | 0.99 | 2.59 | 3.48 (2) | 148.4 |
C5iii—H5Biii···O4C | 0.99 | 2.35 | 3.29 (2) | 157.4 |
C6—H6A···O1W | 0.99 | 2.35 | 3.23 (9) | 148.6 |
C6vi—H6Bvi···O1C | 0.99 | 2.44 | 3.37 (2) | 157.7 |
C6vii—H6Bvii···O1C | 0.99 | 2.55 | 3.51 (2) | 164.0 |
Symmetry codes: (iii) -y, x, -z; (iv) -x + 1/2, -y + 1/2, z + 1/2; (v) x - 1/2, y - 1/2, z + 1/2; (vi) -x - 1/2, -y + 1/2, z + 1/2; (vii) x + 1/2, y - 1/2, z + 1/2. |
Acknowledgements
The authors acknowledge the CRIST (Centro di Cristallografia Strutturale, University of Firenze) where the data collection was performed.
Funding information
Funding for this research was provided by: MIUR PRIN 2015.
References
Aime, S., Geninatti Crich, S., Gianolio, E., Giovenzana, G. B., Tei, L. & Terreno, E. (2006). Coord. Chem. Rev. 250, 1562–1579. Web of Science CrossRef CAS
Amatori, S., Ambrosi, G., Fanelli, M., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P., Pontellini, R. & Rossi, P. (2012). J. Org. Chem. 77, 2207–2218. Web of Science CSD CrossRef CAS PubMed
Ambrosi, G., Formica, M., Fusi, V., Giorgi, L., Guerri, A., Macedi, E., Micheloni, M., Paoli, P., Pontellini, R. & Rossi, P. (2009a). Inorg. Chem. 48, 5901–5912. Web of Science CSD CrossRef PubMed CAS
Ambrosi, G., Formica, M., Fusi, V., Giorgi, L., Guerri, A., Micheloni, M., Paoli, P., Pontellini, R. & Rossi, P. (2007a). Inorg. Chem. 46, 309–320. Web of Science CSD CrossRef PubMed CAS
Ambrosi, G., Formica, M., Fusi, V., Giorgi, L., Guerri, A., Micheloni, M., Paoli, P., Pontellini, R. & Rossi, P. (2007b). Inorg. Chem. 46, 4737–4748. Web of Science CSD CrossRef PubMed CAS
Ambrosi, G., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2009b). Inorg. Chem. 48, 10424–10434. Web of Science CSD CrossRef PubMed CAS
Ambrosi, G., Formica, M., Fusi, V., Giorgi, L. & Micheloni, M. (2008). Coord. Chem. Rev. 252, 1121–1152. Web of Science CrossRef CAS
Benelli, C., Borgogelli, E., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2013). Dalton Trans. 42, 5848–5859. Web of Science CSD CrossRef CAS PubMed
Bernot, K., Bogani, L., Caneschi, A., Gatteschi, D. & Sessoli, R. (2006). J. Am. Chem. Soc. 128, 7947–7956. Web of Science CrossRef PubMed CAS
Blindauer, C. A., Sigel, A., Operschall, B. P., Holý, A. & Sigel, H. (2017). Inorg. Chim. Acta. doi, 10, 1016j. ica. 2017.06.011.
Borgogelli, E., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2013). Dalton Trans. 42, 2902–2912. Web of Science CSD CrossRef CAS PubMed
Bruijnincx, P. C. A. & Sadler, P. J. (2008). Curr. Opin. Chem. Biol. 12, 197–206. Web of Science CrossRef PubMed CAS
Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309. Web of Science CrossRef CAS IUCr Journals
DaCosta, M. V., Doughan, S., Han, Y. & Krull, U. J. (2014). Anal. Chim. Acta, 832, 1–33. Web of Science CrossRef CAS PubMed
Desiraju, G. R. & Steiner, T. (1999). Chemistry and Biology, IUCr Monographs on Crystallography, No. 9. New York: Oxford University Press Inc.
Di Bernardo, P., Melchior, A., Tolazzi, M. & Zanonato, P. L. (2012). Coord. Chem. Rev. 256, 328–351. Web of Science CrossRef CAS
Esteves, C. I. C., Batista, R. M. F., Raposo, M. M. M. & Costa, S. P. G. (2016). Dyes Pigments, 135, 134–142. Web of Science CrossRef CAS
Fanelli, M., Formica, M., Fusi, V., Giorgi, L., Micheloni, M. & Paoli, P. (2016). Coord. Chem. Rev. 310, 41–79. Web of Science CrossRef CAS
Gatteschi, D., Sessoli, R. & Villain, J. (2006). Molecular Nanomagnets. New York: Oxford University Press.
Gokel, G. W. & Barbour, L. (2017). In Comprehensive Supramolecular Chemistry II, edited by J. L. Atwood. Amsterdam: Elsevier.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals
Lehn, J. M. (1988). Angew. Chem. Int. Ed. Engl. 27, 89–112. CrossRef Web of Science
Li, L.-H., Dong, W.-K., Zhang, Y., Akogun, S. F. & Xu, L. (2017). Appl. Organomet. Chem. doi:10.1002/aoc.3818.
Lomidze, L., Kelley, S., Gogichaishvili, S., Metreveli, N., Musier-Forsyth, K. & Kankia, B. (2016). Biopolymers, 105, 811–818. Web of Science CrossRef CAS PubMed
Malandrino, G. & Fragalà, I. L. (2006). Coord. Chem. Rev. 250, 1605–1620. Web of Science CrossRef CAS
Marchetti, F., Palmucci, J., Pettinari, C., Pettinari, R., Condello, F., Ferraro, S., Marangoni, M., Crispini, A., Scuri, S., Grappasonni, I., Cocchioni, M., Nabissi, M., Chierotti, M. R. & Gobetto, R. (2015). Chem. Eur. J. 21, 36–850. Web of Science CSD CrossRef PubMed
Martell, A. E. & Hancock, R. D. (1996). In Metal Complexes in Aqueous Solution, Modern Inorganic Chemistry. New York: Plenum Press.
Merbach, A., Helm, L. & Tóth, É. (2013). Editors. Magnetic Resonance Imaging, 2nd ed. Chichester: John Wiley & Sons.
Meurant, G. (1987). Stereochemical and Stereophysical Behaviour of Macrocycles, edited by I. Bernal. Amsterdam, New York: Elsevier.
Muetterties, E. L. & Guggenberger, L. J. (1974). J. Am. Chem. Soc. 96, 1748–1756. CrossRef CAS Web of Science
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd. Yarnton, England.
Paoli, P., Macedi, E., Rossi, P., Giorgi, L., Formica, M. & Fusi, V. (2017). Acta Cryst. E73, 1806–1811. CSD CrossRef IUCr Journals
Pasatoiu, T. D., Madalan, A. M., Kumke, M. U., Tiseanu, C. & Andruh, M. (2010). Inorg. Chem. 49, 2310–2315. Web of Science CSD CrossRef CAS PubMed
Pasatoiu, T. D., Sutter, J. P., Madalan, A. M., Fellah, F. Z. C., Duhayon, C. & Andruh, M. (2011). Inorg. Chem. 50, 5890–5898. Web of Science CSD CrossRef CAS PubMed
Patra, A., Saha, S. K., Sen, T. K., Carrella, L., Musie, G. T., Khuda-Bukhsh, A. R. & Bera, M. (2014). Eur. J. Inorg. Chem. pp. 5217–5232. Web of Science CSD CrossRef
Price, E. W., Cawthray, J. F., Bailey, G. A., Ferreira, C. L., Boros, E., Adam, M. J. & Orvig, C. (2012). J. Am. Chem. Soc. 134, 8670–8683. Web of Science CrossRef CAS PubMed
Rossi, P., Ciattini, S., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M. & Paoli, P. (2017). Inorg. Chim. Acta, doi: 10.1016/j.ica.2017.06.033.
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Suh, J. & Chei, W. S. (2008). Curr. Opin. Chem. Biol. 12, 207–213. Web of Science CrossRef PubMed CAS
Terai, T., Kikuchi, K., Iwasawa, S., Kawabe, T., Hirata, Y., Urano, Y. & Nagano, T. (2006). J. Am. Chem. Soc. 128, 6938–6946. Web of Science CrossRef PubMed CAS
Voegtle, F. (1996). Comprehensive Supramolecular Chemistry, Vol. 2, Molecular Recognition: Receptors for Molecular Guests. Oxford: Pergamon.
Weber, W. P. & Gokel, G. W. (2012). Phase Transfer Catalysis in Organic Synthesis, Vol. 4, Reactivity and Structure: Concepts in Organic Chemistry. Berlin, Heidelberg, New York: Springer Science & Business Media.
Xiao, Y.-D., Paudel, R., Liu, J., Ma, C., Zhang, Z. S. & Zhou, S.-K. (2016). Int. J. Mol. Med. 38, 1319–1326. Web of Science CrossRef PubMed
Yang, C., Han, J., Luo, Y., Hu, S. & Wang, X. (2014). Prog. Chem. 26, 1537–1550. CAS
Yin, J., Hu, Y. & Yoon, J. (2015). Chem. Soc. Rev. 44, 4619–4644. Web of Science CrossRef CAS PubMed
Zelewsky, A. (1996). In Stereochemistry of Coordination Compounds. Chichester: John Wiley & Sons.
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.