research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­ethyl 3,3′-[(4-nitro­phen­yl)methyl­ene]bis­­(1H-indole-2-carboxyl­ate)

CROSSMARK_Color_square_no_text.svg

aTargeted MRI Contrast Agents Laboratory of Jiangsu Province, Nanjing Polytechnic Institute, Geguan Road No.265 Nanjing, Nanjing 210048, People's Republic of China
*Correspondence e-mail: njutshs@126.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 19 November 2017; accepted 23 November 2017; online 28 November 2017)

In the title compound, C29H25N3O6, the mean planes of the two indole ring systems (r.m.s. deviations = 0.0115 and 0.0082 Å) are approximately perpendic­ular to one another, making a dihedral angle of 89.7 (5)°; the benzene ring is twisted with respect to the two indole ring systems by 52.6 (4) and 88.2 (3)°. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into the inversion dimers, which are further linked into supra­molecular chains along the b-axis direction. Weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions are also observed in the crystal.

1. Chemical context

Bis(indol­yl)methane derivatives are abundantly present in various terrestrial and marine natural resources (Porter et al., 1977[Porter, J. K., Bacon, C. W., Robbins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88-93.]; Sundberg, 1996[Sundberg, R. J. (1996). The Chemistry of Indoles, p. 113 New York: Academic Press.]). They are important anti­biotics in the field of pharmaceuticals with diverse activities, such as anti­cancer, anti­leishmanial and anti­hyperlipidemic (Chang et al., 1999[Chang, Y.-C., Riby, J., Chang, G. H., Peng, G.-F., Firestone, G. & Bjeldanes, L. F. (1999). Biochem. Pharmacol. 58, 825-834.]; Ge et al., 1999[Ge, X., Fares, F. A. & Yannai, S. (1999). Anticancer Res. 19, 3199-3203.]). On the other hand, bis­(indoly)methane derivatives can also be used as a precursor for MRI necrosis avid contrast agents (Ni, 2008[Ni, Y.-C. (2008). Curr. Med. Imaging Rev. 4, 96-112.]). In recent years, we have reported the synthesis and crystal structures of some similar bis­(indoly)methane compounds (Sun et al., 2012[Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764.], 2015[Sun, H.-S., Li, Y., Jiang, H., Xu, N. & Xu, H. (2015). Acta Cryst. E71, 1140-1142.]; Li et al., 2014[Li, Y., Sun, H., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 259-261.]; Lu et al., 2014[Lu, X.-H., Sun, H.-S. & Hu, J. (2014). Acta Cryst. E70, 593-595.]). Now we report herein on the crystal structure of the title bis­(indoly)methane compound.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The overall conformation of the mol­ecule is affected by intra­molecular C10—H10ACg3 and C21—H21ACg1 inter­actions (Table 1[link]). The two indole ring systems are nearly perpendicular to one another [dihedral angle = 89.7 (5)°] while the benzene ring (C2–C7) is twisted to the N2/C8–C15 and N3/C19–C26 indole ring systems by dihedral angles of 52.6 (4) and 88.2 (3)°, respectively. The carboxyl groups are approximately coplanar with the attached indole ring systems, the dihedral angles between the carboxyl groups and the mean plane of the N2/C8–C15 and N3/C19–C26 indole ring systems are 12.5 (4) and 4.9 (5)°, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg3 and Cg5 are the centroids of the N2/C8/C9/C14/C15 pyrrole, C2–C7 benzene and C21–C26 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.86 2.30 3.003 (3) 139
N3—H3A⋯O5ii 0.86 2.14 2.956 (3) 158
C11—H11A⋯O5iii 0.93 2.58 3.501 (4) 171
C17—H17B⋯O1iv 0.97 2.58 3.261 (5) 128
C29—H29A⋯O1v 0.96 2.51 3.281 (4) 137
C10—H10ACg3 0.93 2.69 3.431 (3) 138
C21—H21ACg1 0.93 2.88 3.570 (3) 132
C28—H28ACg5vi 0.97 2.85 3.718 (3) 150
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) x-1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, pairs of N2—H2A⋯O3i and N3—H3A⋯O5ii hydrogen bonds link the mol­ecules into the inversion dimers, which are further shown as supra­molecular chains propagating along the b-axis direction (Table 1[link] and Fig. 2[link]). In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions are also observed, linking the chains to form a three-dimensional supramolecular structure.

[Figure 2]
Figure 2
A packing diagram of the title compound. The N—H⋯O Hydrogen bonds are shown as dashed lines.

4. Database survey

Several similar structures have been reported previously, i.e. diethyl 3,3′-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2012[Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764.]) and dimethyl 3,3′-[(4-fluoro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2015[Sun, H.-S., Li, Y., Jiang, H., Xu, N. & Xu, H. (2015). Acta Cryst. E71, 1140-1142.]) and dimethyl 3,3′-[(4-chloro­phen­yl) methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Li et al., 2014[Li, Y., Sun, H., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 259-261.]) and dimethyl 3,3′-[(3-fluoro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Lu et al., 2014[Lu, X.-H., Sun, H.-S. & Hu, J. (2014). Acta Cryst. E70, 593-595.]). In these structures, the two indole ring systems are also nearly perpendicular to one another, making dihedral angles of 82.0 (5), 84.0 (5), 79.5 (4) and 87.8 (5)°, respectively.

5. Synthesis and crystallization

Ethyl indole-2-carboxyl­ate (1.88 g, 10 mmol) was dissolved in 20 ml ethanol; commercially available 4-nitro­benzaldehyde (0.76 g, 5 mmol) was added and the mixture was heated to reflux temperature. Concentrated HCl (0.5 ml) was added and the reaction was left for 1 h. After cooling, the yellow product was filtered off and washed thoroughly with ethanol. The reaction was monitored with TLC (AcOEt:hexane = 1:3). Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a methanol solution (yield 93%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically with N—H = 0.86 Å and C—H = 0.93–0.98 Å, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H atoms and 1.2 for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C29H25N3O6
Mr 511.52
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 8.8040 (18), 15.804 (3), 18.266 (4)
β (°) 98.78 (3)
V3) 2511.7 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Nonius CAD-4
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.972, 0.991
No. of measured, independent and observed [I > 2σ(I)] reflections 4925, 4611, 2963
Rint 0.043
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.164, 1.00
No. of reflections 4611
No. of parameters 343
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.28
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]), XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Diethyl 3,3'-[(4-nitrophenyl)methylene]bis(1H-indole-2-carboxylate) top
Crystal data top
C29H25N3O6F(000) = 1072
Mr = 511.52Dx = 1.353 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 8.8040 (18) Åθ = 9–13°
b = 15.804 (3) ŵ = 0.10 mm1
c = 18.266 (4) ÅT = 293 K
β = 98.78 (3)°Block, colorless
V = 2511.7 (9) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Nonius CAD-4
diffractometer
2963 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 25.4°, θmin = 1.7°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 019
Tmin = 0.972, Tmax = 0.991l = 2222
4925 measured reflections3 standard reflections every 200 reflections
4611 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.098P)2]
where P = (Fo2 + 2Fc2)/3
4611 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3019 (3)0.33359 (18)0.86721 (14)0.0648 (7)
C10.5958 (3)0.31146 (14)0.60845 (12)0.0395 (5)
H1A0.52040.32590.56500.047*
O10.3145 (3)0.27719 (17)0.91181 (14)0.1013 (9)
N20.8861 (2)0.47555 (13)0.58612 (12)0.0517 (6)
H2A0.93920.50550.56000.062*
C20.5083 (3)0.31093 (14)0.67433 (13)0.0394 (6)
O20.2403 (4)0.39980 (19)0.87776 (15)0.1199 (11)
N30.6690 (2)0.09119 (12)0.55132 (10)0.0435 (5)
H3A0.64070.04420.52960.052*
O30.8106 (2)0.45055 (14)0.43699 (10)0.0729 (6)
C30.4078 (3)0.37605 (17)0.68231 (14)0.0546 (7)
H3B0.38640.41570.64450.065*
O40.6050 (2)0.37421 (13)0.45415 (9)0.0626 (5)
C40.3383 (3)0.38418 (18)0.74445 (15)0.0590 (7)
H4A0.27250.42910.74940.071*
O50.3605 (2)0.08873 (11)0.49279 (11)0.0597 (5)
C50.3687 (3)0.32430 (16)0.79870 (14)0.0485 (6)
O60.33771 (19)0.22355 (10)0.52526 (10)0.0544 (5)
C60.4600 (3)0.25512 (16)0.79184 (14)0.0488 (6)
H6A0.47460.21370.82840.059*
C70.5301 (3)0.24868 (15)0.72855 (13)0.0453 (6)
H7A0.59200.20230.72260.054*
C80.7142 (3)0.38043 (14)0.61580 (13)0.0413 (6)
C90.7960 (3)0.41747 (15)0.68231 (14)0.0452 (6)
C100.7929 (3)0.40819 (18)0.75905 (14)0.0569 (7)
H10A0.72640.36960.77600.068*
C110.8885 (3)0.45645 (19)0.80769 (16)0.0653 (8)
H11A0.88540.45060.85810.078*
C120.9902 (3)0.51407 (18)0.78475 (16)0.0610 (8)
H12A1.05260.54640.81980.073*
C130.9999 (3)0.52399 (16)0.71204 (16)0.0553 (7)
H13A1.06990.56160.69660.066*
C140.9023 (3)0.47627 (15)0.66117 (14)0.0479 (6)
C150.7728 (3)0.42011 (15)0.55827 (13)0.0437 (6)
C160.7342 (3)0.41604 (17)0.47798 (15)0.0518 (7)
C170.5564 (4)0.3709 (3)0.37461 (16)0.0888 (11)
H17A0.55290.42780.35450.107*
H17B0.63040.33860.35190.107*
C180.4103 (5)0.3332 (3)0.3575 (2)0.1267 (17)
H18A0.37940.33300.30480.190*
H18B0.33720.36490.38040.190*
H18C0.41470.27610.37570.190*
C190.6591 (3)0.22443 (14)0.59271 (12)0.0384 (5)
C200.8111 (3)0.19214 (15)0.61572 (13)0.0431 (6)
C210.9467 (3)0.22243 (18)0.65751 (15)0.0549 (7)
H21A0.95060.27680.67710.066*
C221.0729 (3)0.1716 (2)0.66927 (17)0.0656 (8)
H22A1.16300.19200.69680.079*
C231.0702 (3)0.0891 (2)0.64087 (18)0.0699 (9)
H23A1.15840.05600.64990.084*
C240.9407 (3)0.05644 (18)0.60030 (16)0.0593 (7)
H24A0.93870.00170.58160.071*
C250.8115 (3)0.10832 (16)0.58803 (13)0.0444 (6)
C260.5775 (3)0.16072 (15)0.55434 (12)0.0414 (6)
C270.4159 (3)0.15280 (15)0.52078 (13)0.0415 (6)
C280.1776 (3)0.22520 (18)0.49292 (16)0.0582 (7)
H28A0.12010.18370.51660.070*
H28B0.16610.21260.44040.070*
C290.1216 (4)0.3115 (2)0.5050 (2)0.0800 (10)
H29A0.01490.31560.48430.120*
H29B0.17970.35180.48130.120*
H29C0.13400.32300.55710.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0613 (15)0.0828 (19)0.0541 (15)0.0045 (14)0.0213 (12)0.0012 (14)
C10.0445 (13)0.0358 (12)0.0368 (13)0.0016 (11)0.0023 (10)0.0019 (10)
O10.131 (2)0.110 (2)0.0739 (16)0.0141 (17)0.0519 (16)0.0261 (15)
N20.0568 (13)0.0472 (12)0.0531 (14)0.0065 (11)0.0147 (11)0.0026 (10)
C20.0426 (13)0.0351 (12)0.0395 (13)0.0071 (10)0.0026 (11)0.0042 (10)
O20.168 (3)0.117 (2)0.0915 (19)0.057 (2)0.0745 (19)0.0109 (16)
N30.0516 (13)0.0353 (11)0.0438 (12)0.0017 (9)0.0073 (10)0.0073 (9)
O30.0749 (14)0.0936 (16)0.0510 (12)0.0223 (12)0.0125 (10)0.0160 (11)
C30.0665 (18)0.0512 (15)0.0460 (16)0.0097 (14)0.0085 (13)0.0022 (12)
O40.0659 (13)0.0848 (14)0.0364 (10)0.0177 (11)0.0052 (9)0.0009 (9)
C40.0647 (18)0.0619 (17)0.0528 (17)0.0138 (15)0.0168 (14)0.0025 (14)
O50.0555 (11)0.0509 (11)0.0695 (13)0.0054 (9)0.0010 (9)0.0194 (9)
C50.0477 (15)0.0562 (15)0.0428 (14)0.0033 (13)0.0108 (12)0.0044 (12)
O60.0485 (11)0.0417 (10)0.0691 (13)0.0012 (8)0.0038 (9)0.0040 (9)
C60.0537 (16)0.0494 (14)0.0436 (15)0.0069 (13)0.0080 (12)0.0046 (12)
C70.0471 (14)0.0408 (13)0.0480 (15)0.0002 (11)0.0077 (11)0.0013 (11)
C80.0485 (14)0.0363 (12)0.0395 (13)0.0006 (11)0.0078 (11)0.0013 (10)
C90.0521 (15)0.0362 (13)0.0477 (15)0.0031 (11)0.0093 (12)0.0071 (11)
C100.0652 (18)0.0632 (17)0.0424 (15)0.0160 (14)0.0089 (13)0.0068 (13)
C110.0708 (19)0.077 (2)0.0483 (16)0.0150 (17)0.0078 (14)0.0159 (15)
C120.0602 (18)0.0591 (17)0.0608 (19)0.0081 (14)0.0005 (14)0.0220 (14)
C130.0510 (16)0.0396 (14)0.075 (2)0.0094 (12)0.0088 (14)0.0102 (13)
C140.0500 (15)0.0401 (13)0.0537 (16)0.0002 (12)0.0079 (12)0.0026 (11)
C150.0494 (14)0.0417 (13)0.0406 (14)0.0012 (12)0.0084 (11)0.0007 (11)
C160.0536 (16)0.0558 (16)0.0466 (15)0.0012 (13)0.0093 (13)0.0070 (13)
C170.087 (2)0.135 (3)0.0402 (17)0.019 (2)0.0032 (16)0.0002 (19)
C180.105 (3)0.185 (5)0.088 (3)0.040 (3)0.004 (3)0.023 (3)
C190.0450 (14)0.0379 (12)0.0326 (12)0.0029 (11)0.0066 (10)0.0029 (10)
C200.0454 (14)0.0488 (14)0.0355 (13)0.0005 (12)0.0073 (11)0.0003 (11)
C210.0520 (16)0.0590 (16)0.0514 (16)0.0032 (14)0.0003 (13)0.0079 (13)
C220.0505 (17)0.075 (2)0.068 (2)0.0010 (16)0.0007 (14)0.0014 (16)
C230.0517 (18)0.076 (2)0.080 (2)0.0135 (16)0.0053 (16)0.0071 (17)
C240.0564 (17)0.0507 (16)0.0708 (19)0.0089 (14)0.0100 (15)0.0001 (14)
C250.0457 (14)0.0463 (14)0.0417 (14)0.0009 (12)0.0081 (11)0.0025 (11)
C260.0454 (14)0.0472 (14)0.0316 (12)0.0009 (11)0.0060 (10)0.0010 (10)
C270.0509 (15)0.0385 (13)0.0348 (13)0.0035 (12)0.0057 (11)0.0028 (10)
C280.0465 (16)0.0606 (17)0.0643 (18)0.0006 (13)0.0016 (13)0.0003 (14)
C290.070 (2)0.068 (2)0.099 (3)0.0182 (17)0.0043 (19)0.0002 (18)
Geometric parameters (Å, º) top
N1—O11.201 (3)C10—H10A0.9300
N1—O21.208 (3)C11—C121.386 (4)
N1—C51.469 (3)C11—H11A0.9300
C1—C81.500 (3)C12—C131.353 (4)
C1—C21.524 (3)C12—H12A0.9300
C1—C191.528 (3)C13—C141.388 (4)
C1—H1A0.9800C13—H13A0.9300
N2—C141.356 (3)C15—C161.455 (3)
N2—C151.366 (3)C17—C181.408 (5)
N2—H2A0.8600C17—H17A0.9700
C2—C31.380 (3)C17—H17B0.9700
C2—C71.388 (3)C18—H18A0.9600
N3—C251.356 (3)C18—H18B0.9600
N3—C261.369 (3)C18—H18C0.9600
N3—H3A0.8600C19—C261.367 (3)
O3—C161.210 (3)C19—C201.434 (3)
C3—C41.375 (3)C20—C211.399 (3)
C3—H3B0.9300C20—C251.418 (3)
O4—C161.330 (3)C21—C221.361 (4)
O4—C171.452 (3)C21—H21A0.9300
C4—C51.367 (4)C22—C231.402 (4)
C4—H4A0.9300C22—H22A0.9300
O5—C271.204 (3)C23—C241.363 (4)
C5—C61.374 (3)C23—H23A0.9300
O6—C271.322 (3)C24—C251.392 (4)
O6—C281.443 (3)C24—H24A0.9300
C6—C71.395 (3)C26—C271.465 (3)
C6—H6A0.9300C28—C291.478 (4)
C7—H7A0.9300C28—H28A0.9700
C8—C151.389 (3)C28—H28B0.9700
C8—C91.439 (3)C29—H29A0.9600
C9—C141.414 (3)C29—H29B0.9600
C9—C101.414 (3)C29—H29C0.9600
C10—C111.360 (4)
O1—N1—O2122.1 (3)N2—C15—C16116.7 (2)
O1—N1—C5119.7 (3)C8—C15—C16133.3 (2)
O2—N1—C5118.1 (3)O3—C16—O4123.4 (3)
C8—C1—C2111.17 (18)O3—C16—C15122.5 (3)
C8—C1—C19113.74 (19)O4—C16—C15114.1 (2)
C2—C1—C19112.73 (18)C18—C17—O4110.9 (3)
C8—C1—H1A106.2C18—C17—H17A109.5
C2—C1—H1A106.2O4—C17—H17A109.5
C19—C1—H1A106.2C18—C17—H17B109.5
C14—N2—C15109.9 (2)O4—C17—H17B109.5
C14—N2—H2A125.1H17A—C17—H17B108.0
C15—N2—H2A125.1C17—C18—H18A109.5
C3—C2—C7118.3 (2)C17—C18—H18B109.5
C3—C2—C1119.3 (2)H18A—C18—H18B109.5
C7—C2—C1122.4 (2)C17—C18—H18C109.5
C25—N3—C26109.01 (19)H18A—C18—H18C109.5
C25—N3—H3A125.5H18B—C18—H18C109.5
C26—N3—H3A125.5C26—C19—C20106.4 (2)
C4—C3—C2122.0 (2)C26—C19—C1125.5 (2)
C4—C3—H3B119.0C20—C19—C1128.0 (2)
C2—C3—H3B119.0C21—C20—C25117.8 (2)
C16—O4—C17116.9 (2)C21—C20—C19135.9 (2)
C5—C4—C3118.1 (3)C25—C20—C19106.3 (2)
C5—C4—H4A121.0C22—C21—C20119.4 (3)
C3—C4—H4A121.0C22—C21—H21A120.3
C4—C5—C6122.5 (2)C20—C21—H21A120.3
C4—C5—N1119.2 (2)C21—C22—C23121.6 (3)
C6—C5—N1118.2 (2)C21—C22—H22A119.2
C27—O6—C28118.4 (2)C23—C22—H22A119.2
C5—C6—C7118.2 (2)C24—C23—C22121.3 (3)
C5—C6—H6A120.9C24—C23—H23A119.4
C7—C6—H6A120.9C22—C23—H23A119.4
C2—C7—C6120.6 (2)C23—C24—C25117.4 (3)
C2—C7—H7A119.7C23—C24—H24A121.3
C6—C7—H7A119.7C25—C24—H24A121.3
C15—C8—C9105.0 (2)N3—C25—C24129.3 (2)
C15—C8—C1126.4 (2)N3—C25—C20108.1 (2)
C9—C8—C1128.5 (2)C24—C25—C20122.6 (2)
C14—C9—C10116.9 (2)C19—C26—N3110.2 (2)
C14—C9—C8107.7 (2)C19—C26—C27132.7 (2)
C10—C9—C8135.4 (2)N3—C26—C27117.0 (2)
C11—C10—C9119.0 (3)O5—C27—O6123.8 (2)
C11—C10—H10A120.5O5—C27—C26123.7 (2)
C9—C10—H10A120.5O6—C27—C26112.5 (2)
C10—C11—C12122.3 (3)O6—C28—C29106.4 (2)
C10—C11—H11A118.8O6—C28—H28A110.4
C12—C11—H11A118.8C29—C28—H28A110.4
C13—C12—C11120.9 (3)O6—C28—H28B110.4
C13—C12—H12A119.5C29—C28—H28B110.4
C11—C12—H12A119.5H28A—C28—H28B108.6
C12—C13—C14117.9 (3)C28—C29—H29A109.5
C12—C13—H13A121.0C28—C29—H29B109.5
C14—C13—H13A121.0H29A—C29—H29B109.5
N2—C14—C13129.8 (2)C28—C29—H29C109.5
N2—C14—C9107.4 (2)H29A—C29—H29C109.5
C13—C14—C9122.8 (2)H29B—C29—H29C109.5
N2—C15—C8110.0 (2)
C8—C1—C2—C369.9 (3)C9—C8—C15—C16175.6 (3)
C19—C1—C2—C3161.1 (2)C1—C8—C15—C166.7 (4)
C8—C1—C2—C7107.7 (2)C17—O4—C16—O30.0 (4)
C19—C1—C2—C721.4 (3)C17—O4—C16—C15177.5 (3)
C7—C2—C3—C44.9 (4)N2—C15—C16—O39.9 (4)
C1—C2—C3—C4172.8 (2)C8—C15—C16—O3172.8 (3)
C2—C3—C4—C51.4 (4)N2—C15—C16—O4167.6 (2)
C3—C4—C5—C62.9 (4)C8—C15—C16—O49.8 (4)
C3—C4—C5—N1177.1 (2)C16—O4—C17—C18173.4 (3)
O1—N1—C5—C4172.3 (3)C8—C1—C19—C26150.9 (2)
O2—N1—C5—C410.4 (4)C2—C1—C19—C2681.3 (3)
O1—N1—C5—C67.7 (4)C8—C1—C19—C2030.6 (3)
O2—N1—C5—C6169.7 (3)C2—C1—C19—C2097.1 (3)
C4—C5—C6—C73.4 (4)C26—C19—C20—C21177.8 (3)
N1—C5—C6—C7176.6 (2)C1—C19—C20—C210.9 (4)
C3—C2—C7—C64.3 (4)C26—C19—C20—C250.6 (2)
C1—C2—C7—C6173.3 (2)C1—C19—C20—C25179.3 (2)
C5—C6—C7—C20.3 (4)C25—C20—C21—C220.7 (4)
C2—C1—C8—C15154.3 (2)C19—C20—C21—C22179.0 (3)
C19—C1—C8—C1577.2 (3)C20—C21—C22—C230.4 (4)
C2—C1—C8—C928.5 (3)C21—C22—C23—C240.1 (5)
C19—C1—C8—C9100.0 (3)C22—C23—C24—C250.2 (4)
C15—C8—C9—C141.3 (3)C26—N3—C25—C24178.9 (2)
C1—C8—C9—C14176.3 (2)C26—N3—C25—C200.1 (3)
C15—C8—C9—C10178.7 (3)C23—C24—C25—N3178.5 (3)
C1—C8—C9—C103.7 (5)C23—C24—C25—C200.2 (4)
C14—C9—C10—C111.1 (4)C21—C20—C25—N3178.3 (2)
C8—C9—C10—C11178.8 (3)C19—C20—C25—N30.4 (3)
C9—C10—C11—C120.6 (4)C21—C20—C25—C240.6 (4)
C10—C11—C12—C130.8 (5)C19—C20—C25—C24179.4 (2)
C11—C12—C13—C141.6 (4)C20—C19—C26—N30.6 (3)
C15—N2—C14—C13178.3 (2)C1—C19—C26—N3179.29 (19)
C15—N2—C14—C91.0 (3)C20—C19—C26—C27176.1 (2)
C12—C13—C14—N2178.2 (3)C1—C19—C26—C272.6 (4)
C12—C13—C14—C91.0 (4)C25—N3—C26—C190.3 (3)
C10—C9—C14—N2179.8 (2)C25—N3—C26—C27176.9 (2)
C8—C9—C14—N20.2 (3)C28—O6—C27—O51.9 (4)
C10—C9—C14—C130.4 (4)C28—O6—C27—C26178.7 (2)
C8—C9—C14—C13179.6 (2)C19—C26—C27—O5174.8 (3)
C14—N2—C15—C81.9 (3)N3—C26—C27—O51.7 (3)
C14—N2—C15—C16176.1 (2)C19—C26—C27—O64.6 (4)
C9—C8—C15—N21.9 (3)N3—C26—C27—O6178.84 (19)
C1—C8—C15—N2175.8 (2)C27—O6—C28—C29179.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg3 and Cg5 are the centroids of the N2/C8/C9/C14/C15 pyrrole, C2–C7 benzene and C21–C26 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.862.303.003 (3)139
N3—H3A···O5ii0.862.142.956 (3)158
C11—H11A···O5iii0.932.583.501 (4)171
C17—H17B···O1iv0.972.583.261 (5)128
C29—H29A···O1v0.962.513.281 (4)137
C10—H10A···Cg30.932.693.431 (3)138
C21—H21A···Cg10.932.883.570 (3)132
C28—H28A···Cg5vi0.972.853.718 (3)150
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z1/2; (v) x1/2, y+1/2, z1/2; (vi) x1, y, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Funding information

Funding for this research was provided by: University of Natural Science Foundation in Jiangsu Province (grant No. 17KJB320001); Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (grant No. PPZY2015B179); Training program of Students innovation and entrepreneurship in Jiangsu Province (grant No. 201712920001Y); Qing Lan Project of Jiangsu Province .

References

First citationChang, Y.-C., Riby, J., Chang, G. H., Peng, G.-F., Firestone, G. & Bjeldanes, L. F. (1999). Biochem. Pharmacol. 58, 825–834.  Web of Science CrossRef PubMed CAS
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.
First citationGe, X., Fares, F. A. & Yannai, S. (1999). Anticancer Res. 19, 3199–3203.  Web of Science PubMed CAS
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
First citationLi, Y., Sun, H., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 259–261.  CSD CrossRef IUCr Journals
First citationLu, X.-H., Sun, H.-S. & Hu, J. (2014). Acta Cryst. E70, 593–595.  CSD CrossRef IUCr Journals
First citationNi, Y.-C. (2008). Curr. Med. Imaging Rev. 4, 96–112.  Web of Science CrossRef CAS
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science
First citationPorter, J. K., Bacon, C. W., Robbins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88–93.  CrossRef CAS Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSun, H.-S., Li, Y., Jiang, H., Xu, N. & Xu, H. (2015). Acta Cryst. E71, 1140–1142.  Web of Science CSD CrossRef IUCr Journals
First citationSun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764.  CSD CrossRef IUCr Journals
First citationSundberg, R. J. (1996). The Chemistry of Indoles, p. 113 New York: Academic Press.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds