research communications
Formation and structural characterization of a europium(II) mono(scorpionate) complex and a sterically crowded pyrazabole
aETH Zürich, Laboratorium für Anorganische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland, bChemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany, and cDepartment of Chemistry, University of Alberta, Edmonton, Alberta, AB, Canada, T6G 2G2
*Correspondence e-mail: frank.edelmann@ovgu.de
The reaction of EuI2(THF)2 with potassium hydrotris(3,5-diisopropylpyrazolyl)borate (K[HB(3,5-iPr2pz)3] (= KTpiPr2, pz = pyrazolyl) in a molar ratio of 1:1.5 resulted in extensive ligand fragmentation and formation of the europium(II) mono(scorpionate) complex bis(3,5-diisopropyl-1H-pyrazole)[hydrotris(3,5-diisopropylpyrazolyl)borato]iodidoeuropium(II), [Eu(C27H46BN6)I(C9H16N2)2] or (TpiPr2)(3,5-iPr2pzH)2EuIII, 1, in high yield (78%). As a typical by-product, small amounts of the sterically crowded pyrazabole derivative trans-4,8-bis(3,5-diisopropylpyrazol-1-yl)-1,3,5,7-tetraisopropylpyrazabole, C36H62B2H8 or trans-{(3,5-iPr2pz)HB(μ-3,5-iPr2pz)}2, 2, were formed. Both title compounds have been structurally characterized through single-crystal X-ray diffraction. In 1, two isopropyl groups are each disordered over two orientations with occupancy ratios of 0.574 (10):0.426 (10) and 0.719 (16):0.281 (16). In 2, one isopropyl group is similarly disordered, occupancy ratio 0.649 (9):0.351 (9).
Keywords: crystal structure; europium; pyrazolylborate; scorpionate; pyrazabole.
1. Chemical context
The organometallic chemistry of divalent lanthanides provides fascinating structures such as the sandwich complexes Ln(C5Me5)2 (Ln = Sm, Eu, Yb; C5Me5 = η5-pentamethylcyclopentadienyl). An unusual structural feature of the unsolvated lanthanide sandwich complexes Ln(C5Me5)2 (Fig. 1a, Ln = Sm, Eu, Yb) is their bent metallocene structure in the solid state. This opens up the coordination sphere around the central divalent lanthanide ions and accounts for the very high reactivity of these compounds (Evans et al., 1983, 1988; Evans, 2007). It has been demonstrated in the past that Trofimenko's famous hydrotris(pyrazolyl)borate ligands (`scorpionates') represent useful alternatives to the ubiquitous cyclopentadienyl ligands (Pettinari, 2008; Trofimenko, 1966, 1993, 1999). Like the cyclopentadienyl ligands, these tridentate, monoanionic ligands can also be largely varied in their steric demand by introducing different substituents in the 3- and 5-positions of the pyrazolyl rings. According to Trofimenko's nomenclature, the abbreviation Tp stands for the ring-unsubstituted hydrotris(pyrazolyl)borate, whereas e.g. TpMe2 denotes the sterically more demanding hydrotris(3,5-dimethylpyrazolyl)borate. The homoleptic divalent lanthanide complexes Ln(TpMe2)2 (Ln = Sm, Eu, Yb) have been found to adopt a highly symmetrical, trigonal–antiprismatic coordination comprising an almost linear B⋯Ln⋯B arrangement (Marques et al., 2002). Apparently, the sandwich-like structure of Ln(TpMe2)2 is the result of the much larger cone angle of TpMe2 (239°) as compared to that of the C5Me5 ligand (142°) (Davies et al., 1985). More recently, these investigations have been successfully extended to the even larger hydrotris(3,5-diisopropylpyrazolyl)borate ligand (TpiPr2) (Kitajima et al., 1992). Homoleptic complexes of this ligand could be isolated with the `classical' divalent lanthanides samarium, europium, thulium and ytterbium (Momin et al., 2014; Kühling et al., 2015). Rather surprisingly, determinations revealed a `bent sandwich'-like molecular structure like Ln(C5Me5)2 (Fig. 1b). Computational studies indicated that steric repulsion between the isopropyl groups forces the TpiPr2 ligands apart and permits the formation of unusual interligand C—H⋯N hydrogen-bonding interactions that help to stabilize the structure (Momin et al., 2014). The recently reported neon-yellow divalent europium complex Eu(TpiPr2)2 also stands out due to its bright-yellow which has been investigated in great detail (Kühling et al., 2015; Suta et al., 2017). Eu(TpiPr2)2 was easily prepared in 83% yield by treatment of the bis-THF adduct of europium(II) diiodide, EuI2(THF)2, with 2 equiv. of KTpiPr2 in THF solution (Kühling et al. 2015). We now report that the use of a significantly smaller amount of KTpiPr2 led to extensive ligand fragmentation and formation of the first europium(II) mono(scorpionate) complex, [HB(3,5-iPr2pz)](3,5-iPr2pzH)2EuIII (1), in addition to a frequently observed by-product, the sterically crowded 4,8-bis(pyrazolyl)pyrazabole derivative trans-{(3,5-iPr2pz)HB(μ-3,5-iPr2pz)}2 (2). Both products have been structurally characterized through single-crystal X-ray diffraction.
The starting material EuI2(THF)2 was prepared from Eu metal and 1,2-diiodoethane using an established literature procedure (Girard et al., 1980). The reaction of EuI2(THF)2 with 1.5 equiv. of KTpiPr2 in THF produced a fluorescent, neon-yellow solution and a white precipitate of potassium iodide. Crystallization from n-pentane solvent afforded bright-yellow, air-sensitive crystals, which turned out to be the unexpected europium(II) mono(scorpionate) complex (TpiPr2)(3,5-iPr2pzH)2EuIII (1). The 78% isolated yield of 1 was surprisingly high. The coordinated neutral 3,5-diisopropylyrazole ligands clearly resulted from fragmentation of the TpiPr2 ligand. Ln-induced fragmentation of substituted Tp ligands is well documented (Domingos et al., 2002, and references cited therein), but it seems to be even more prevalent in the sterically highly demanding TpiPr2 system, as seen in some recently reported Ln(TpiPr2)-derived polysulfide complexes (Kühling et al., 2016). Despite its paramagnetic nature, interpretable NMR spectra could be obtained for 1. A single resonance at δ −5.3 ppm in the 11B NMR spectrum proved the presence of a single boron-containing species. A high-intensity peak at m/z 769 in the of 1 could be assigned to the [Eu(TpiPr2)(iPr2pz)]+, while a peak at m/z 616 corresponds to the ion [Eu(TpiPr2)]+.
Further work-up of the supernatant solution remaining after isolation of 1 by addition of a large volume of non-polar hexamethyldisiloxane (HMDSO) resulted in the formation of well-formed, colorless, cube-like crystals in low yield. These turned out to be another ligand fragmentation product typical for lanthanide Tp chemistry, namely the 4,8-bis(pyrazolyl)pyrazabole derivative trans-{(3,5-iPr2pz)HB(μ-3,5-iPr2pz)}2 (2). The parent pyrazabole, {H2B(μ-pz)}2 has been known since 1966 when it was reported by Trofimenko contemporaneously with the discovery of Tp ligands (Trofimenko, 1966). Since then, numerous substituted pyrazaboles have been prepared and structurally investigated (Alcock & Sawyer, 1974; Cavero et al., 2008; Niedenzu & Niedenzu, 1984; Niedenzu & Nöth, 1983; Trofimenko, 1966). In a number of recent studies, it has been demonstrated that certain substituted pyrazaboles possess unique photophysical and electrochemical properties and could thus find promising applications in organic photovoltaics (OPVs) and non-linear optics (Jadhav et al., 2013, 2015; Misra et al., 2013, 2014; Patil et al., 2017). Compound 2 belongs to the rather special class of 4,8-bis(pyrazolyl)pyrazaboles in which two hydrogen atoms at boron are replaced by pyrazolyl moieties (Niedenzu & Niedenzu, 1984). Deliberate formation of the parent 4,8-bis(pyrazolyl)pyrazabole, 4,8-trans-{(pz)HB(μ-pz)}2, has been achieved by thermolysis of the free acid of the hydrotris(pyrazolyl)borate anion (Kresínski, 1999). In lanthanide Tp chemistry, such 4,8-(pyrazolyl)pyrazaboles normally represent unwanted side-products as they frequently result from ligand fragmentation and are often the first crystalline products to come out of reaction mixtures (Kühling et al., 2015, 2016; Lobbia et al., 1992). Spectroscopic characterization of 2 was in good agreement with the results of the X-ray diffraction study. For instance, the of 2 showed the molecular ion at m/z 627, and the 11B NMR spectrum displayed a single resonance at δ −4.3 ppm.
2. Structural commentary
Both title compounds 1 and 2 exist as well-separated molecules in the crystal. In the EuII complex 1, one molecule is present in the (Fig. 2). The TpiPr2 ligand is attached to Eu in a symmetric tridentate mode with an H—B⋯Eu angle of 179.0 (2)°. The three Eu—N bonds cover the range 2.581 (2)–2.633 (2) Å, which resembles that observed in the corresponding homoleptic EuII complex Eu(TpiPr2)2 [2.563 (5)–2.670 (5) Å; Suta et al., 2017]. The same applies to the B—N bonds, which are in the narrow range 1.547 (4)–1.555 (4) Å [Eu(TpiPr2)2: B—N = 1.531 (8)–1.559 (7) Å]. In 1, the coordination of the iodido ligand relative to the (TpiPr2)− ligand is slightly tilted [I—Eu⋯B = 151.49 (5)°], and an almost linear arrangement of the iodido ligand and one of the TpiPr2 N-donor atoms is realized [I—Eu—N2 = 165.92 (5)°]. A strongly distorted octahedral coordination is completed by the two neutral (3,5-iPr2pzH) ligands, with coordination angles of 138.80 (7)° (N4—Eu—N8) and 137.43 (7)° (N6—Eu—N10). The corresponding Eu—N bond lengths [Eu—N8 = 2.699 (3), Eu—N10 = 2.660 (2) Å] are slightly longer than those to the (TpiPr2)− ligand, which may be due to the absence of negative ligand charge. The NH⋯N distances between the two pyrazole NH moieties and potential hydrogen-acceptor atoms (N2, N4, N6) are in the range 2.512 (2)–2.610 (2) Å, but the groups are not in a proper orientation for efficient hydrogen bonding [N—H⋯N 115.0 (2)–122.0 (2)°]. Consequently, stabilization of the molecular structure by intramolecular hydrogen bonding is presumably of less importance.
The pyrazabol 2 exists as a centrosymmetric dimer in the crystal, which formally results from two HB(3,5-iPr2pz)2 monomers (Fig. 3). The two B atoms are interconnected by two μ-bridging (3,5-iPr2pz) moieties, resulting in a planar, six-membered B2N4 ring. The B—N bonds within this ring are virtually equal at 1.554 (2) Å (B—N1) and 1.557 (2) Å (B—N2′), and therefore similar to that within the (TpiPr2)− ligand in 1. In contrast, the B—N bond to the terminal (3,5-iPr2pz) moiety (B—N3) is slightly shortened to 1.532 (2) Å. The B atoms in 2 exhibit a virtually ideal tetrahedral coordination with bonding angles in the narrow range 108.3 (1)–110.7 (1)°. The molecular structure of 2 is very similar to that of the 3,5-dimethylpyrazolyl analog, trans-{(3,5-Me2pz)HB(μ-3,5-Me2pz)}2 [B—N = 1.5419 (2) and 1.5486 (1) Å for μ-(3,5-Me2pz) and 1.5257 (2) Å for terminal 3,5-Me2pz, N—B—N = 108.532 (6)–109.091 (6)°; Alcock & Sawyer, 1974]. In contrast, the unsubstituted pyrazabol trans-{(pz)HB(μ-pz)}2 is non-centrosymmetric and features a remarkably puckered B2N4 ring [B—N = 1.546 (3)–1.559 (3) Å for μ-pz and 1.501 (3)–1.533 (3) Å for terminal pz, N—B—N = 105.2 (2)–111.0 (2)°; Kresiński, 1999].
3. Supramolecular features
In both compounds 1 and 2, no unusually short intermolecular contacts have been observed. In 1, the bulky iPr groups at the molecule's surface does not allow for intermolecular N—H⋯N hydrogen bonding.
4. Database survey
For selected references on the reactivity of the sandwich complexes Ln(C5Me5)2 (Ln = Sm, Eu, Yb), see: Evans et al. (1983, 1988), Evans (2007).
For general information on scorpionate ligands, see: Kitajima et al. (1992), Pettinari (2008),Trofimenko (1966, 1999).
For the chemistry of divalent lanthanide scorpionate complexes, see: Davies et al. (1985), Domingos et al. (2002), Hillier et al. (2001), Kühling et al. (2015, 2016), Marques et al. (2002), Momin et al. (2014), Suta et al. (2017).
For general information on the chemistry and structures of pyrazaboles, see: Cavero et al. (2008), Niedenzu & Niedenzu (1984), Niedenzu & Nöth (1983), Trofimenko (1966).
For information on practical applications of pyrazaboles, see: Jadhav et al. (2013, 2015), Misra et al. (2013, 2014), Patil et al. (2017).
5. Synthesis and crystallization
All operations were performed under an argon atmosphere using standard Schlenk techniques. THF, hexamethyldisiloxane (HMDSO), and n-pentane were distilled from sodium/benzophenone under argon prior to use. NMR spectra were recorded on a Bruker DPX400 (1H: 400 MHz) spectrometer in THF-D8 at 295 (2) K. The 11B NMR spectra were obtained by using inverse gated decoupling on a Bruker Avance 400 NMR spectrometer, operating at 128.4 MHz. The was 15 wt-% BF3·OEt2 in CDCl3 (δB = 0 ppm). IR spectra were measured on a Bruker Vertex V70 spectrometer equipped with a diamond ATR unit, electron impact mass spectra on a MAT95 spectrometer with an ionization energy of 70 eV. Elemental analyses (C, H and N) were performed using a VARIO EL cube apparatus. The starting materials EuI2(THF)2 (Girard et al. 1980) and KTpiPr2 (Kitajima et al. 1992) were prepared according to published procedures.
Preparation of (TpiPr2)(3,5-iPr2Hpz)2EuIII (1) and trans-{(3,5-iPr2pz)HB(μ-3,5-iPr2pz)}2 (2): In a 250 mL Schlenk flask, THF (150 mL) was added to a mixture of EuI2(THF)2 (2.36 g, 4.29 mmol) and KTpiPr2 (3.20 g, 6.33 mmol), and the resulting suspension was stirred for 12 h at r.t. A white precipitate (KI) was removed by filtration and the neon-yellow, fluorescent filtrate was evaporated to dryness. The residue was extracted with n-pentane (3 × 50 mL), the combined extracts filtered again and concentrated in vacuo to a total volume of ca 30 mL. Cooling to 277 K afforded bright-yellow, air-sensitive crystals of 1 (3.64 g, 78%), which were suitable for X-ray diffraction. The mother liquid was taken to dryness, and the slightly sticky residue was redissolved in ca 5 mL of THF. Addition of dry hexamethyldisiloxane (ca 50 mL) followed by cooling to 277 K for several days afforded ca 0.5 g of 2 as colorless, cube-like single-crystals.
1: Analysis calculated for C45H78BEuIN10, M = 1049.86 g mol−1: C 51.48, H 7.58, N 13.34%. Found: C 50.88, H 7.77, N 12.59%. M.p. ca 353 K (dec.). IR: ν 3173 w, 3096 w (ν C—H pyrazolyl), 2961 s, 2929 m, 2869 m (ν CH3), 2550 w (νB—H), 1565 w, 1534 m, 1460 s, 1426 m, 1379 s, 1361 s, 1295 m, 1170 vs, 1104 m, 1046 s, 1012 s, 958 w, 923 w, 878 w, 787 vs, 767 s, 716 m, 659 s, 587 w, 511 w, 462 w, 389 w, 362 w, 306 w, 258 w, 219 w, 109 s, 75 m cm−1. 1H NMR (400.1 MHz, THF-D8, 300 K): δ 11.6 (s br, B—H), 5.70 (s br, 5H, C-H pyrazolyl), 2.88 δ 153.8 (br, q-C pyrazolyl), 98.7, 99.3 (C—H pyrazolyl), 27.9, 32.1 (C—H iPr), 23.2 (CH3 iPr). 11B NMR (300 K, THF-D8, 128.4 MHz): δ −5.3 (s, br) ppm. MS: m/z (%) 769 (98) [Eu(TpiPr2)(iPr2pz)]+, 616 (92) [Eu(TpiPr2)]+, 477 (85), 321 (100), 302 (55) [EuBH(iPr2pz-CH3)]+, 152 (21) [iPr2pz]+, 137 (63).
2: Analysis calculated for C36H62B2N8, M = 628.56 g mol−1: C 68.79, H 9.94, N 17.83%. Found: C 68.50, H 10.10, N 17.53%. M.p. 553 K. IR: ν 3176 w, 3094 w (ν C—H pyrazolyl), 2966 s, 2928 m, 2869 m, 2825 w (ν CH3), 2467 w (ν B—H), 1576 w, 1541 m, 1497 m, 1461 m, 1369 m, 1301 s, 1233 vs, 1169 vs, 1134 vs, 1090 s, 1063 s, 1041 m, 1015 m, 982 s, 919 w, 879 w, 832 s, 788 s, 751 m, 723 m, 675 m, 566 m, 508 m, 473 w, 365 m, 302 m, 246 m, 137 m, 106 m, 75 m cm−1. 1H NMR (400.1 MHz, THF-D8, 300 K): δ 11.0 (s br, 2H, B—H), 5.75 (s br, 4H, C-H pyrazolyl), 2.87–2.91 (m, 4H, C—H iPr), 1.15–1.27 (m, 48H, CH3 iPr) ppm. 13C NMR (300 K, THF-D8, 100 MHz): δ 160.7 (br, q-C pyrazolyl), 97.5 (C—H pyrazolyl), 28.5 (C—H iPr), 23.5 (CH3 iPr). 11B NMR (300 K, THF-D8, 128.4 MHz): δ −4.3 (s, br) ppm. MS: m/z (%) 627 (62) [M]+, 476 (100) [C27H46B2N6]+, 461 (75) [C26H43B2N6]+, 325 (66) [C18H31B2N4]+, 152 (74) [C6H2B2N4]+, 137 (89) [pz2].
6. Refinement
Crystal data, data collection and structure . All H atoms were refined as riding atoms with B—H = 1.00 Å and C—H = 0.98–1.00 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(B,C) for all others. In 1, two isopropyl groups are each disordered over two orientations with occupancy ratios of 0.574 (10):0.426 (10) and 0.719 (16):0.281 (16). In 2, one isopropyl group is similarly disordered, occupancy ratio 0.649 (9):0.351 (9).
details are summarized in Table 1Supporting information
https://doi.org/10.1107/S2056989017016498/zl2718sup1.cif
contains datablocks 1, 2. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989017016498/zl27181sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989017016498/zl27182sup3.hkl
For both structures, data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-AREA and X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).[Eu(C27H46BN6)I(C9H16N2)2] | Dx = 1.347 Mg m−3 |
Mr = 1048.84 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 44511 reflections |
a = 19.5319 (4) Å | θ = 2.2–26.2° |
b = 26.6614 (4) Å | µ = 1.85 mm−1 |
c = 19.8681 (3) Å | T = 153 K |
V = 10346.3 (3) Å3 | Block, yellow |
Z = 8 | 0.49 × 0.27 × 0.21 mm |
F(000) = 4312 |
Stoe IPDS 2T diffractometer | 10158 independent reflections |
Radiation source: fine-focus sealed tube | 8229 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.045 |
area detector scans | θmax = 26.0°, θmin = 2.2° |
Absorption correction: numerical (X-AREA and X-RED; Stoe & Cie, 2002) | h = −23→24 |
Tmin = 0.535, Tmax = 0.716 | k = −32→32 |
43898 measured reflections | l = −21→24 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.063 | w = 1/[σ2(Fo2) + (0.0226P)2 + 10.682P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.002 |
10158 reflections | Δρmax = 1.24 e Å−3 |
576 parameters | Δρmin = −1.27 e Å−3 |
24 restraints | Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: heavy-atom method | Extinction coefficient: 0.00019 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.23921 (15) | 0.19065 (10) | 0.45330 (14) | 0.0232 (6) | |
C2 | 0.21068 (16) | 0.19034 (11) | 0.38902 (14) | 0.0273 (6) | |
H4 | 0.183276 | 0.215746 | 0.369057 | 0.033* | |
C3 | 0.23046 (15) | 0.14552 (10) | 0.36038 (14) | 0.0238 (6) | |
C4 | 0.23355 (17) | 0.23068 (11) | 0.50638 (15) | 0.0283 (6) | |
H5 | 0.263908 | 0.221037 | 0.544789 | 0.034* | |
C5 | 0.25808 (19) | 0.28129 (12) | 0.47934 (18) | 0.0384 (8) | |
H8 | 0.255417 | 0.306493 | 0.515143 | 0.058* | |
H6 | 0.228981 | 0.291544 | 0.441589 | 0.058* | |
H7 | 0.305575 | 0.278252 | 0.463953 | 0.058* | |
C6 | 0.16048 (18) | 0.23508 (12) | 0.53306 (17) | 0.0381 (8) | |
H10 | 0.158795 | 0.260725 | 0.568352 | 0.057* | |
H9 | 0.146011 | 0.202746 | 0.551724 | 0.057* | |
H11 | 0.129735 | 0.244581 | 0.496224 | 0.057* | |
C7 | 0.21582 (15) | 0.12724 (11) | 0.29037 (14) | 0.0291 (6) | |
H12 | 0.218647 | 0.089789 | 0.290276 | 0.035* | |
C8 | 0.14350 (19) | 0.14246 (15) | 0.26872 (18) | 0.0492 (9) | |
H14 | 0.133731 | 0.128534 | 0.224096 | 0.074* | |
H13 | 0.140294 | 0.179121 | 0.266970 | 0.074* | |
H15 | 0.110206 | 0.129474 | 0.301242 | 0.074* | |
C9 | 0.2686 (2) | 0.14745 (12) | 0.24108 (16) | 0.0392 (8) | |
H17 | 0.259015 | 0.134409 | 0.195949 | 0.059* | |
H18 | 0.314471 | 0.136803 | 0.255155 | 0.059* | |
H16 | 0.266440 | 0.184172 | 0.240395 | 0.059* | |
C10 | 0.48118 (14) | 0.09139 (11) | 0.45682 (14) | 0.0244 (6) | |
C11 | 0.49553 (15) | 0.07902 (11) | 0.39050 (14) | 0.0274 (6) | |
H19 | 0.539399 | 0.077925 | 0.369911 | 0.033* | |
C12 | 0.43383 (15) | 0.06867 (10) | 0.36050 (14) | 0.0238 (6) | |
C13 | 0.52990 (15) | 0.10295 (12) | 0.51323 (15) | 0.0309 (7) | |
H20 | 0.502309 | 0.114062 | 0.552928 | 0.037* | |
C14 | 0.56970 (19) | 0.05623 (13) | 0.53359 (17) | 0.0432 (8) | |
H21 | 0.600301 | 0.064330 | 0.571137 | 0.065* | |
H22 | 0.596805 | 0.044372 | 0.495250 | 0.065* | |
H23 | 0.537614 | 0.029938 | 0.547469 | 0.065* | |
C15 | 0.57849 (19) | 0.14513 (14) | 0.4948 (2) | 0.0483 (9) | |
H24 | 0.607370 | 0.153213 | 0.533668 | 0.073* | |
H25 | 0.552076 | 0.174828 | 0.481785 | 0.073* | |
H26 | 0.607449 | 0.134594 | 0.457093 | 0.073* | |
C16 | 0.42087 (16) | 0.04955 (11) | 0.29062 (14) | 0.0287 (6) | |
H27 | 0.374654 | 0.061415 | 0.275938 | 0.034* | |
C17 | 0.4208 (2) | −0.00760 (12) | 0.29044 (17) | 0.0436 (9) | |
H30 | 0.412317 | −0.019769 | 0.244642 | 0.065* | |
H28 | 0.384677 | −0.019880 | 0.320468 | 0.065* | |
H29 | 0.465295 | −0.019921 | 0.306087 | 0.065* | |
C18 | 0.4739 (2) | 0.06968 (17) | 0.24131 (17) | 0.0512 (10) | |
H32 | 0.460857 | 0.060380 | 0.195346 | 0.077* | |
H33 | 0.518819 | 0.055308 | 0.251868 | 0.077* | |
H31 | 0.476153 | 0.106295 | 0.245001 | 0.077* | |
C19 | 0.26615 (17) | 0.00515 (11) | 0.55876 (15) | 0.0290 (6) | |
C20 | 0.23614 (18) | −0.02982 (12) | 0.51569 (17) | 0.0341 (7) | |
H34 | 0.213786 | −0.060076 | 0.528125 | 0.041* | |
C21 | 0.24547 (15) | −0.01156 (11) | 0.45133 (16) | 0.0268 (7) | |
C22 | 0.27416 (19) | 0.00427 (12) | 0.63403 (15) | 0.0362 (7) | |
H35 | 0.283022 | 0.039493 | 0.648967 | 0.043* | |
C23 | 0.3355 (2) | −0.02675 (15) | 0.65418 (18) | 0.0469 (9) | |
H37 | 0.340200 | −0.026421 | 0.703283 | 0.070* | |
H38 | 0.376857 | −0.012635 | 0.633662 | 0.070* | |
H36 | 0.329249 | −0.061345 | 0.638663 | 0.070* | |
C24 | 0.2098 (2) | −0.01320 (16) | 0.66876 (19) | 0.0524 (10) | |
H39 | 0.217036 | −0.013151 | 0.717576 | 0.079* | |
H41 | 0.198657 | −0.047253 | 0.653800 | 0.079* | |
H40 | 0.172026 | 0.009446 | 0.657489 | 0.079* | |
C25 | 0.22093 (18) | −0.03350 (12) | 0.38605 (16) | 0.0346 (7) | |
H42 | 0.258186 | −0.029403 | 0.351965 | 0.041* | |
C26 | 0.2065 (2) | −0.08964 (13) | 0.3940 (2) | 0.0525 (10) | |
H45 | 0.194344 | −0.103937 | 0.350169 | 0.079* | |
H44 | 0.168549 | −0.094462 | 0.425556 | 0.079* | |
H43 | 0.247523 | −0.106445 | 0.411353 | 0.079* | |
C27 | 0.1578 (2) | −0.00645 (14) | 0.36021 (19) | 0.0471 (9) | |
H47 | 0.143055 | −0.021654 | 0.317693 | 0.071* | |
H46 | 0.168614 | 0.029013 | 0.352819 | 0.071* | |
H48 | 0.120884 | −0.009254 | 0.393429 | 0.071* | |
C28 | 0.17695 (16) | 0.13410 (11) | 0.67075 (15) | 0.0291 (6) | |
C29 | 0.10972 (16) | 0.11984 (13) | 0.65687 (15) | 0.0353 (7) | |
H49 | 0.071667 | 0.121593 | 0.686550 | 0.042* | |
C30 | 0.10960 (17) | 0.10284 (13) | 0.59193 (16) | 0.0353 (7) | |
C31 | 0.20606 (18) | 0.15603 (13) | 0.73387 (16) | 0.0373 (8) | |
H50 | 0.247595 | 0.136106 | 0.746193 | 0.045* | |
C32 | 0.2284 (3) | 0.20987 (16) | 0.7225 (2) | 0.0698 (13) | |
H53 | 0.247710 | 0.223405 | 0.764241 | 0.105* | |
H51 | 0.188727 | 0.230049 | 0.709049 | 0.105* | |
H52 | 0.263059 | 0.210933 | 0.686909 | 0.105* | |
C33 | 0.1558 (2) | 0.15271 (18) | 0.79216 (19) | 0.0608 (11) | |
H55 | 0.176796 | 0.167016 | 0.832654 | 0.091* | |
H54 | 0.144132 | 0.117499 | 0.800382 | 0.091* | |
H56 | 0.114222 | 0.171483 | 0.781002 | 0.091* | |
C34A | 0.0541 (2) | 0.08120 (17) | 0.54784 (19) | 0.0532 (10) | 0.574 (10) |
H57A | 0.013350 | 0.102080 | 0.559735 | 0.064* | 0.574 (10) |
C34B | 0.0541 (2) | 0.08120 (17) | 0.54784 (19) | 0.0532 (10) | 0.426 (10) |
H57B | 0.066428 | 0.044801 | 0.548716 | 0.064* | 0.426 (10) |
C35 | 0.0648 (2) | 0.09304 (16) | 0.47511 (18) | 0.0532 (10) | |
H58 | 0.071183 | 0.129268 | 0.469644 | 0.080* | |
H59 | 0.024658 | 0.082248 | 0.449277 | 0.080* | |
H60 | 0.105487 | 0.075371 | 0.458703 | 0.080* | |
C36A | 0.0340 (5) | 0.0322 (3) | 0.5685 (5) | 0.076 (3) | 0.574 (10) |
H61A | 0.020303 | 0.033042 | 0.615986 | 0.114* | 0.574 (10) |
H62A | 0.072501 | 0.009055 | 0.562895 | 0.114* | 0.574 (10) |
H63A | −0.004663 | 0.020941 | 0.541006 | 0.114* | 0.574 (10) |
C36B | −0.0104 (5) | 0.0799 (5) | 0.5750 (5) | 0.063 (4) | 0.426 (10) |
H61B | −0.009018 | 0.062495 | 0.618433 | 0.095* | 0.426 (10) |
H62B | −0.041222 | 0.061930 | 0.544371 | 0.095* | 0.426 (10) |
H63B | −0.027094 | 0.114175 | 0.581517 | 0.095* | 0.426 (10) |
C37 | 0.43817 (16) | 0.24760 (12) | 0.54152 (15) | 0.0315 (7) | |
C38 | 0.46062 (18) | 0.27479 (13) | 0.48529 (16) | 0.0387 (8) | |
H64 | 0.484238 | 0.305937 | 0.485591 | 0.046* | |
C39 | 0.44185 (17) | 0.24765 (12) | 0.43003 (15) | 0.0341 (7) | |
C40 | 0.4448 (2) | 0.26136 (14) | 0.61417 (16) | 0.0458 (9) | |
H65 | 0.422813 | 0.234499 | 0.641828 | 0.055* | |
C41 | 0.5196 (3) | 0.2646 (2) | 0.6334 (2) | 0.0818 (17) | |
H67 | 0.523519 | 0.275708 | 0.680245 | 0.123* | |
H68 | 0.542805 | 0.288635 | 0.603906 | 0.123* | |
H66 | 0.540852 | 0.231495 | 0.628500 | 0.123* | |
C42 | 0.4073 (3) | 0.3109 (2) | 0.6274 (2) | 0.0861 (18) | |
H69 | 0.412874 | 0.320390 | 0.674707 | 0.129* | |
H71 | 0.358544 | 0.306816 | 0.617231 | 0.129* | |
H70 | 0.426594 | 0.337220 | 0.598575 | 0.129* | |
C43A | 0.4504 (2) | 0.25747 (16) | 0.35604 (17) | 0.0512 (10) | 0.719 (16) |
H72A | 0.437857 | 0.293647 | 0.351016 | 0.061* | 0.719 (16) |
C43B | 0.4504 (2) | 0.25747 (16) | 0.35604 (17) | 0.0512 (10) | 0.281 (16) |
H72B | 0.470887 | 0.291775 | 0.353444 | 0.061* | 0.281 (16) |
C44A | 0.5189 (4) | 0.2553 (5) | 0.3336 (3) | 0.072 (3) | 0.719 (16) |
H73A | 0.521137 | 0.266047 | 0.286454 | 0.108* | 0.719 (16) |
H74A | 0.535842 | 0.220884 | 0.337503 | 0.108* | 0.719 (16) |
H75A | 0.547159 | 0.277643 | 0.361229 | 0.108* | 0.719 (16) |
C44B | 0.5127 (12) | 0.2193 (12) | 0.3331 (8) | 0.071 (6) | 0.281 (16) |
H73B | 0.551346 | 0.222943 | 0.364141 | 0.106* | 0.281 (16) |
H74B | 0.527507 | 0.227687 | 0.287342 | 0.106* | 0.281 (16) |
H75B | 0.496165 | 0.184595 | 0.334190 | 0.106* | 0.281 (16) |
C45A | 0.3975 (4) | 0.2304 (5) | 0.3138 (3) | 0.057 (2) | 0.719 (16) |
H76A | 0.351629 | 0.237583 | 0.331277 | 0.085* | 0.719 (16) |
H77A | 0.405947 | 0.194154 | 0.315773 | 0.085* | 0.719 (16) |
H78A | 0.400717 | 0.241788 | 0.267033 | 0.085* | 0.719 (16) |
C45B | 0.3905 (11) | 0.2610 (10) | 0.3212 (9) | 0.058 (5) | 0.281 (16) |
H76B | 0.400386 | 0.264898 | 0.273114 | 0.087* | 0.281 (16) |
H77B | 0.364638 | 0.290208 | 0.337140 | 0.087* | 0.281 (16) |
H78B | 0.363373 | 0.230557 | 0.328252 | 0.087* | 0.281 (16) |
B | 0.30572 (17) | 0.06863 (11) | 0.40118 (16) | 0.0217 (6) | |
H1 | 0.295416 | 0.053563 | 0.356212 | 0.026* | |
N1 | 0.26882 (12) | 0.12017 (8) | 0.40630 (10) | 0.0207 (4) | |
N2 | 0.27389 (12) | 0.14851 (8) | 0.46446 (11) | 0.0224 (5) | |
N3 | 0.38405 (12) | 0.07583 (8) | 0.40739 (11) | 0.0217 (5) | |
N4 | 0.41373 (12) | 0.09024 (9) | 0.46732 (11) | 0.0234 (5) | |
N5 | 0.27948 (12) | 0.03263 (8) | 0.45666 (11) | 0.0223 (5) | |
N6 | 0.29237 (12) | 0.04292 (9) | 0.52350 (11) | 0.0250 (5) | |
N7 | 0.17398 (13) | 0.10721 (9) | 0.57009 (13) | 0.0310 (5) | |
H2 | 0.187129 | 0.098662 | 0.529310 | 0.037* | |
N8 | 0.21714 (13) | 0.12622 (9) | 0.61732 (12) | 0.0298 (5) | |
N9 | 0.41090 (14) | 0.20651 (10) | 0.45416 (12) | 0.0306 (6) | |
H3 | 0.394258 | 0.182617 | 0.428346 | 0.037* | |
N10 | 0.40781 (13) | 0.20540 (10) | 0.52242 (12) | 0.0289 (5) | |
I | 0.42224 (2) | 0.11967 (2) | 0.71250 (2) | 0.04898 (7) | |
EU | 0.34693 (2) | 0.12375 (2) | 0.57077 (2) | 0.02286 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0221 (14) | 0.0230 (14) | 0.0245 (14) | 0.0014 (12) | 0.0007 (11) | −0.0010 (11) |
C2 | 0.0259 (16) | 0.0254 (14) | 0.0305 (15) | 0.0057 (12) | −0.0045 (12) | 0.0012 (11) |
C3 | 0.0214 (14) | 0.0251 (13) | 0.0248 (14) | 0.0008 (12) | −0.0002 (11) | 0.0017 (11) |
C4 | 0.0319 (16) | 0.0263 (14) | 0.0268 (15) | 0.0066 (13) | −0.0006 (13) | −0.0028 (12) |
C5 | 0.044 (2) | 0.0286 (16) | 0.043 (2) | −0.0008 (15) | 0.0017 (15) | −0.0063 (14) |
C6 | 0.041 (2) | 0.0350 (17) | 0.0383 (18) | 0.0086 (15) | 0.0065 (15) | −0.0033 (13) |
C7 | 0.0332 (16) | 0.0271 (14) | 0.0269 (14) | 0.0015 (13) | −0.0069 (12) | −0.0031 (12) |
C8 | 0.042 (2) | 0.063 (2) | 0.043 (2) | 0.0119 (19) | −0.0176 (16) | −0.0166 (17) |
C9 | 0.055 (2) | 0.0339 (17) | 0.0287 (16) | 0.0040 (17) | 0.0029 (16) | −0.0004 (13) |
C10 | 0.0183 (14) | 0.0261 (14) | 0.0288 (14) | −0.0018 (12) | 0.0004 (11) | 0.0004 (11) |
C11 | 0.0165 (14) | 0.0387 (17) | 0.0270 (15) | 0.0004 (13) | 0.0028 (11) | −0.0005 (12) |
C12 | 0.0208 (15) | 0.0276 (14) | 0.0229 (13) | 0.0021 (12) | 0.0041 (11) | 0.0026 (11) |
C13 | 0.0218 (15) | 0.0392 (16) | 0.0316 (16) | −0.0052 (13) | −0.0003 (12) | −0.0060 (13) |
C14 | 0.042 (2) | 0.050 (2) | 0.0380 (19) | −0.0024 (17) | −0.0161 (15) | 0.0061 (15) |
C15 | 0.037 (2) | 0.049 (2) | 0.059 (2) | −0.0175 (17) | −0.0167 (17) | 0.0002 (17) |
C16 | 0.0233 (15) | 0.0394 (16) | 0.0235 (14) | 0.0020 (13) | 0.0004 (12) | 0.0018 (12) |
C17 | 0.056 (2) | 0.0411 (18) | 0.0332 (17) | 0.0113 (17) | −0.0097 (16) | −0.0104 (14) |
C18 | 0.042 (2) | 0.085 (3) | 0.0259 (17) | −0.007 (2) | 0.0069 (15) | 0.0005 (17) |
C19 | 0.0272 (15) | 0.0295 (15) | 0.0304 (16) | 0.0003 (13) | 0.0055 (13) | 0.0063 (12) |
C20 | 0.0340 (17) | 0.0284 (16) | 0.0398 (18) | −0.0063 (14) | 0.0072 (15) | 0.0070 (13) |
C21 | 0.0226 (16) | 0.0230 (15) | 0.0348 (17) | −0.0024 (12) | 0.0034 (11) | 0.0012 (12) |
C22 | 0.043 (2) | 0.0365 (17) | 0.0291 (16) | 0.0030 (16) | 0.0084 (14) | 0.0101 (13) |
C23 | 0.045 (2) | 0.059 (2) | 0.0371 (19) | 0.0125 (19) | 0.0034 (16) | 0.0110 (16) |
C24 | 0.045 (2) | 0.072 (3) | 0.041 (2) | 0.005 (2) | 0.0151 (17) | 0.0221 (18) |
C25 | 0.0351 (19) | 0.0308 (16) | 0.0378 (17) | −0.0121 (14) | 0.0035 (14) | −0.0043 (13) |
C26 | 0.068 (3) | 0.0303 (18) | 0.060 (2) | −0.0145 (19) | 0.000 (2) | −0.0075 (16) |
C27 | 0.044 (2) | 0.048 (2) | 0.050 (2) | −0.0111 (18) | −0.0107 (17) | −0.0014 (16) |
C28 | 0.0284 (15) | 0.0262 (15) | 0.0328 (15) | 0.0022 (12) | 0.0073 (12) | 0.0018 (12) |
C29 | 0.0278 (16) | 0.0426 (18) | 0.0355 (16) | −0.0032 (15) | 0.0066 (13) | 0.0021 (14) |
C30 | 0.0268 (17) | 0.0393 (17) | 0.0398 (17) | −0.0073 (14) | 0.0024 (13) | 0.0068 (14) |
C31 | 0.0373 (19) | 0.0404 (18) | 0.0342 (17) | 0.0038 (15) | 0.0001 (14) | −0.0040 (14) |
C32 | 0.098 (4) | 0.056 (3) | 0.055 (3) | −0.024 (3) | −0.013 (3) | −0.012 (2) |
C33 | 0.060 (3) | 0.086 (3) | 0.037 (2) | −0.006 (2) | 0.0109 (19) | −0.018 (2) |
C34A | 0.039 (2) | 0.073 (3) | 0.047 (2) | −0.025 (2) | −0.0084 (17) | 0.0071 (19) |
C34B | 0.039 (2) | 0.073 (3) | 0.047 (2) | −0.025 (2) | −0.0084 (17) | 0.0071 (19) |
C35 | 0.048 (2) | 0.067 (3) | 0.045 (2) | −0.006 (2) | −0.0090 (17) | −0.0075 (18) |
C36A | 0.070 (6) | 0.064 (5) | 0.095 (6) | −0.041 (5) | −0.037 (5) | 0.019 (5) |
C36B | 0.025 (5) | 0.103 (9) | 0.061 (6) | −0.020 (5) | 0.011 (4) | −0.009 (6) |
C37 | 0.0315 (17) | 0.0348 (16) | 0.0281 (15) | −0.0101 (14) | 0.0032 (13) | −0.0003 (12) |
C38 | 0.045 (2) | 0.0397 (18) | 0.0311 (16) | −0.0199 (16) | 0.0014 (15) | 0.0022 (13) |
C39 | 0.0349 (17) | 0.0413 (17) | 0.0261 (15) | −0.0099 (15) | 0.0018 (14) | 0.0075 (14) |
C40 | 0.055 (2) | 0.057 (2) | 0.0251 (16) | −0.0231 (19) | 0.0060 (15) | −0.0063 (15) |
C41 | 0.072 (3) | 0.141 (5) | 0.033 (2) | −0.041 (3) | −0.014 (2) | 0.003 (3) |
C42 | 0.125 (5) | 0.085 (4) | 0.048 (3) | −0.001 (3) | 0.022 (3) | −0.027 (2) |
C43A | 0.064 (3) | 0.065 (2) | 0.0245 (16) | −0.022 (2) | 0.0027 (17) | 0.0075 (16) |
C43B | 0.064 (3) | 0.065 (2) | 0.0245 (16) | −0.022 (2) | 0.0027 (17) | 0.0075 (16) |
C44A | 0.058 (4) | 0.128 (8) | 0.031 (3) | −0.041 (5) | 0.004 (3) | 0.004 (4) |
C44B | 0.074 (11) | 0.118 (14) | 0.021 (6) | 0.022 (11) | 0.018 (7) | −0.003 (9) |
C45A | 0.054 (4) | 0.093 (6) | 0.023 (3) | −0.027 (4) | −0.005 (2) | 0.007 (3) |
C45B | 0.081 (11) | 0.062 (11) | 0.031 (7) | −0.019 (10) | −0.007 (7) | 0.017 (8) |
B | 0.0184 (16) | 0.0228 (15) | 0.0239 (15) | −0.0031 (13) | −0.0004 (12) | −0.0019 (12) |
N1 | 0.0199 (11) | 0.0201 (11) | 0.0222 (10) | 0.0001 (10) | 0.0009 (9) | −0.0001 (9) |
N2 | 0.0226 (12) | 0.0242 (12) | 0.0204 (11) | −0.0020 (10) | 0.0010 (9) | −0.0024 (9) |
N3 | 0.0205 (12) | 0.0241 (11) | 0.0204 (11) | −0.0007 (10) | 0.0002 (9) | 0.0006 (9) |
N4 | 0.0180 (12) | 0.0269 (12) | 0.0252 (12) | −0.0016 (10) | −0.0020 (9) | −0.0040 (9) |
N5 | 0.0189 (12) | 0.0236 (11) | 0.0245 (11) | −0.0014 (10) | 0.0008 (9) | 0.0005 (9) |
N6 | 0.0231 (13) | 0.0297 (12) | 0.0222 (11) | −0.0009 (10) | 0.0028 (9) | 0.0022 (9) |
N7 | 0.0296 (14) | 0.0359 (13) | 0.0274 (12) | −0.0050 (11) | 0.0033 (11) | −0.0035 (11) |
N8 | 0.0286 (13) | 0.0304 (13) | 0.0303 (12) | −0.0030 (12) | 0.0006 (10) | −0.0002 (11) |
N9 | 0.0353 (15) | 0.0348 (14) | 0.0216 (11) | −0.0072 (12) | −0.0006 (11) | −0.0016 (10) |
N10 | 0.0300 (14) | 0.0361 (14) | 0.0206 (11) | −0.0020 (11) | −0.0001 (10) | 0.0026 (10) |
I | 0.04194 (13) | 0.07629 (18) | 0.02871 (11) | 0.00290 (13) | −0.00875 (9) | 0.00910 (11) |
EU | 0.02157 (7) | 0.02746 (7) | 0.01955 (7) | −0.00247 (6) | 0.00070 (5) | 0.00068 (6) |
C1—N2 | 1.331 (4) | C30—N7 | 1.336 (4) |
C1—C2 | 1.393 (4) | C30—C34A | 1.508 (5) |
C1—C4 | 1.504 (4) | C30—C34B | 1.508 (5) |
C2—C3 | 1.379 (4) | C31—C32 | 1.517 (5) |
C2—H4 | 0.9500 | C31—C33 | 1.520 (5) |
C3—N1 | 1.360 (3) | C31—H50 | 1.0000 |
C3—C7 | 1.501 (4) | C32—H53 | 0.9800 |
C4—C6 | 1.527 (4) | C32—H51 | 0.9800 |
C4—C5 | 1.529 (4) | C32—H52 | 0.9800 |
C4—H5 | 1.0000 | C33—H55 | 0.9800 |
C5—H8 | 0.9800 | C33—H54 | 0.9800 |
C5—H6 | 0.9800 | C33—H56 | 0.9800 |
C5—H7 | 0.9800 | C34a—C36A | 1.424 (8) |
C6—H10 | 0.9800 | C34a—C35 | 1.494 (5) |
C6—H9 | 0.9800 | C34a—H57A | 1.0000 |
C6—H11 | 0.9800 | C34b—C36B | 1.371 (9) |
C7—C9 | 1.521 (4) | C34b—C35 | 1.494 (5) |
C7—C8 | 1.531 (4) | C34b—H57B | 1.0000 |
C7—H12 | 1.0000 | C35—H58 | 0.9800 |
C8—H14 | 0.9800 | C35—H59 | 0.9800 |
C8—H13 | 0.9800 | C35—H60 | 0.9800 |
C8—H15 | 0.9800 | C36a—H61A | 0.9800 |
C9—H17 | 0.9800 | C36a—H62A | 0.9800 |
C9—H18 | 0.9800 | C36a—H63A | 0.9800 |
C9—H16 | 0.9800 | C36b—H61B | 0.9800 |
C10—N4 | 1.334 (4) | C36b—H62B | 0.9800 |
C10—C11 | 1.387 (4) | C36b—H63B | 0.9800 |
C10—C13 | 1.502 (4) | C37—N10 | 1.327 (4) |
C11—C12 | 1.372 (4) | C37—C38 | 1.402 (4) |
C11—H19 | 0.9500 | C37—C40 | 1.495 (4) |
C12—N3 | 1.360 (4) | C38—C39 | 1.365 (4) |
C12—C16 | 1.501 (4) | C38—H64 | 0.9500 |
C13—C15 | 1.516 (5) | C39—N9 | 1.341 (4) |
C13—C14 | 1.523 (5) | C39—C43A | 1.502 (4) |
C13—H20 | 1.0000 | C39—C43B | 1.502 (4) |
C14—H21 | 0.9800 | C40—C41 | 1.511 (6) |
C14—H22 | 0.9800 | C40—C42 | 1.534 (6) |
C14—H23 | 0.9800 | C40—H65 | 1.0000 |
C15—H24 | 0.9800 | C41—H67 | 0.9800 |
C15—H25 | 0.9800 | C41—H68 | 0.9800 |
C15—H26 | 0.9800 | C41—H66 | 0.9800 |
C16—C18 | 1.523 (4) | C42—H69 | 0.9800 |
C16—C17 | 1.524 (4) | C42—H71 | 0.9800 |
C16—H27 | 1.0000 | C42—H70 | 0.9800 |
C17—H30 | 0.9800 | C43a—C44A | 1.411 (8) |
C17—H28 | 0.9800 | C43a—C45A | 1.514 (8) |
C17—H29 | 0.9800 | C43a—H72A | 1.0000 |
C18—H32 | 0.9800 | C43b—C45B | 1.36 (2) |
C18—H33 | 0.9800 | C43b—C44B | 1.651 (19) |
C18—H31 | 0.9800 | C43b—H72B | 1.0000 |
C19—N6 | 1.329 (4) | C44a—H73A | 0.9800 |
C19—C20 | 1.395 (5) | C44a—H74A | 0.9800 |
C19—C22 | 1.504 (4) | C44a—H75A | 0.9800 |
C20—C21 | 1.380 (4) | C44b—H73B | 0.9800 |
C20—H34 | 0.9500 | C44b—H74B | 0.9800 |
C21—N5 | 1.357 (4) | C44b—H75B | 0.9800 |
C21—C25 | 1.501 (4) | C45a—H76A | 0.9800 |
C22—C24 | 1.507 (5) | C45a—H77A | 0.9800 |
C22—C23 | 1.510 (5) | C45a—H78A | 0.9800 |
C22—H35 | 1.0000 | C45b—H76B | 0.9800 |
C23—H37 | 0.9800 | C45b—H77B | 0.9800 |
C23—H38 | 0.9800 | C45b—H78B | 0.9800 |
C23—H36 | 0.9800 | B—N3 | 1.547 (4) |
C24—H39 | 0.9800 | B—N5 | 1.549 (4) |
C24—H41 | 0.9800 | B—N1 | 1.555 (4) |
C24—H40 | 0.9800 | B—H1 | 1.0000 |
C25—C27 | 1.518 (5) | N1—N2 | 1.384 (3) |
C25—C26 | 1.531 (4) | N2—EU | 2.633 (2) |
C25—H42 | 1.0000 | N3—N4 | 1.379 (3) |
C26—H45 | 0.9800 | N4—EU | 2.593 (2) |
C26—H44 | 0.9800 | N5—N6 | 1.379 (3) |
C26—H43 | 0.9800 | N6—EU | 2.581 (2) |
C27—H47 | 0.9800 | N7—N8 | 1.359 (3) |
C27—H46 | 0.9800 | N7—H2 | 0.8800 |
C27—H48 | 0.9800 | N8—EU | 2.699 (2) |
C28—N8 | 1.337 (4) | N9—N10 | 1.358 (3) |
C28—C29 | 1.395 (4) | N9—H3 | 0.8800 |
C28—C31 | 1.496 (4) | N10—EU | 2.660 (2) |
C29—C30 | 1.367 (4) | I—EU | 3.1788 (2) |
C29—H49 | 0.9500 | ||
N2—C1—C2 | 110.6 (2) | C31—C32—H52 | 109.5 |
N2—C1—C4 | 121.3 (3) | H53—C32—H52 | 109.5 |
C2—C1—C4 | 128.1 (3) | H51—C32—H52 | 109.5 |
C3—C2—C1 | 105.7 (3) | C31—C33—H55 | 109.5 |
C3—C2—H4 | 127.1 | C31—C33—H54 | 109.5 |
C1—C2—H4 | 127.1 | H55—C33—H54 | 109.5 |
N1—C3—C2 | 108.0 (2) | C31—C33—H56 | 109.5 |
N1—C3—C7 | 124.4 (2) | H55—C33—H56 | 109.5 |
C2—C3—C7 | 127.6 (3) | H54—C33—H56 | 109.5 |
C1—C4—C6 | 111.5 (3) | C36a—C34a—C35 | 120.8 (5) |
C1—C4—C5 | 110.9 (3) | C36a—C34a—C30 | 112.4 (4) |
C6—C4—C5 | 110.3 (3) | C35—C34a—C30 | 112.4 (3) |
C1—C4—H5 | 108.0 | C36a—C34a—H57A | 102.8 |
C6—C4—H5 | 108.0 | C35—C34a—H57A | 102.8 |
C5—C4—H5 | 108.0 | C30—C34a—H57A | 102.8 |
C4—C5—H8 | 109.5 | C36b—C34b—C35 | 120.9 (6) |
C4—C5—H6 | 109.5 | C36b—C34b—C30 | 116.2 (5) |
H8—C5—H6 | 109.5 | C35—C34b—C30 | 112.4 (3) |
C4—C5—H7 | 109.5 | C36b—C34b—H57B | 100.9 |
H8—C5—H7 | 109.5 | C35—C34b—H57B | 100.9 |
H6—C5—H7 | 109.5 | C30—C34b—H57B | 100.9 |
C4—C6—H10 | 109.5 | C34a—C35—H58 | 109.5 |
C4—C6—H9 | 109.5 | C34a—C35—H59 | 109.5 |
H10—C6—H9 | 109.5 | H58—C35—H59 | 109.5 |
C4—C6—H11 | 109.5 | C34a—C35—H60 | 109.5 |
H10—C6—H11 | 109.5 | H58—C35—H60 | 109.5 |
H9—C6—H11 | 109.5 | H59—C35—H60 | 109.5 |
C3—C7—C9 | 110.6 (2) | C34a—C36a—H61A | 109.5 |
C3—C7—C8 | 110.5 (3) | C34a—C36a—H62A | 109.5 |
C9—C7—C8 | 110.5 (3) | H61a—C36a—H62A | 109.5 |
C3—C7—H12 | 108.4 | C34a—C36a—H63A | 109.5 |
C9—C7—H12 | 108.4 | H61a—C36a—H63A | 109.5 |
C8—C7—H12 | 108.4 | H62a—C36a—H63A | 109.5 |
C7—C8—H14 | 109.5 | C34b—C36b—H61B | 109.5 |
C7—C8—H13 | 109.5 | C34b—C36b—H62B | 109.5 |
H14—C8—H13 | 109.5 | H61b—C36b—H62B | 109.5 |
C7—C8—H15 | 109.5 | C34b—C36b—H63B | 109.5 |
H14—C8—H15 | 109.5 | H61b—C36b—H63B | 109.5 |
H13—C8—H15 | 109.5 | H62b—C36b—H63B | 109.5 |
C7—C9—H17 | 109.5 | N10—C37—C38 | 110.5 (3) |
C7—C9—H18 | 109.5 | N10—C37—C40 | 121.5 (3) |
H17—C9—H18 | 109.5 | C38—C37—C40 | 128.0 (3) |
C7—C9—H16 | 109.5 | C39—C38—C37 | 106.4 (3) |
H17—C9—H16 | 109.5 | C39—C38—H64 | 126.8 |
H18—C9—H16 | 109.5 | C37—C38—H64 | 126.8 |
N4—C10—C11 | 110.0 (2) | N9—C39—C38 | 105.5 (3) |
N4—C10—C13 | 120.9 (3) | N9—C39—C43A | 122.8 (3) |
C11—C10—C13 | 129.0 (3) | C38—C39—C43A | 131.7 (3) |
C12—C11—C10 | 106.4 (3) | N9—C39—C43B | 122.8 (3) |
C12—C11—H19 | 126.8 | C38—C39—C43B | 131.7 (3) |
C10—C11—H19 | 126.8 | C37—C40—C41 | 110.0 (3) |
N3—C12—C11 | 107.6 (2) | C37—C40—C42 | 109.6 (3) |
N3—C12—C16 | 124.1 (3) | C41—C40—C42 | 111.7 (4) |
C11—C12—C16 | 128.2 (3) | C37—C40—H65 | 108.5 |
C10—C13—C15 | 111.6 (3) | C41—C40—H65 | 108.5 |
C10—C13—C14 | 110.7 (3) | C42—C40—H65 | 108.5 |
C15—C13—C14 | 110.5 (3) | C40—C41—H67 | 109.5 |
C10—C13—H20 | 107.9 | C40—C41—H68 | 109.5 |
C15—C13—H20 | 107.9 | H67—C41—H68 | 109.5 |
C14—C13—H20 | 107.9 | C40—C41—H66 | 109.5 |
C13—C14—H21 | 109.5 | H67—C41—H66 | 109.5 |
C13—C14—H22 | 109.5 | H68—C41—H66 | 109.5 |
H21—C14—H22 | 109.5 | C40—C42—H69 | 109.5 |
C13—C14—H23 | 109.5 | C40—C42—H71 | 109.5 |
H21—C14—H23 | 109.5 | H69—C42—H71 | 109.5 |
H22—C14—H23 | 109.5 | C40—C42—H70 | 109.5 |
C13—C15—H24 | 109.5 | H69—C42—H70 | 109.5 |
C13—C15—H25 | 109.5 | H71—C42—H70 | 109.5 |
H24—C15—H25 | 109.5 | C44a—C43a—C39 | 114.0 (4) |
C13—C15—H26 | 109.5 | C44a—C43a—C45A | 116.9 (5) |
H24—C15—H26 | 109.5 | C39—C43a—C45A | 112.6 (4) |
H25—C15—H26 | 109.5 | C44a—C43a—H72A | 103.8 |
C12—C16—C18 | 111.1 (3) | C39—C43a—H72A | 103.8 |
C12—C16—C17 | 110.0 (2) | C45a—C43a—H72A | 103.8 |
C18—C16—C17 | 110.6 (3) | C45b—C43b—C39 | 114.5 (8) |
C12—C16—H27 | 108.3 | C45b—C43b—C44B | 122.4 (12) |
C18—C16—H27 | 108.3 | C39—C43b—C44B | 104.1 (7) |
C17—C16—H27 | 108.3 | C45b—C43b—H72B | 104.7 |
C16—C17—H30 | 109.5 | C39—C43b—H72B | 104.7 |
C16—C17—H28 | 109.5 | C44b—C43b—H72B | 104.7 |
H30—C17—H28 | 109.5 | C43a—C44a—H73A | 109.5 |
C16—C17—H29 | 109.5 | C43a—C44a—H74A | 109.5 |
H30—C17—H29 | 109.5 | H73a—C44a—H74A | 109.5 |
H28—C17—H29 | 109.5 | C43a—C44a—H75A | 109.5 |
C16—C18—H32 | 109.5 | H73a—C44a—H75A | 109.5 |
C16—C18—H33 | 109.5 | H74a—C44a—H75A | 109.5 |
H32—C18—H33 | 109.5 | C43b—C44b—H73B | 109.5 |
C16—C18—H31 | 109.5 | C43b—C44b—H74B | 109.5 |
H32—C18—H31 | 109.5 | H73b—C44b—H74B | 109.5 |
H33—C18—H31 | 109.5 | C43b—C44b—H75B | 109.5 |
N6—C19—C20 | 110.2 (3) | H73b—C44b—H75B | 109.5 |
N6—C19—C22 | 119.7 (3) | H74b—C44b—H75B | 109.5 |
C20—C19—C22 | 130.1 (3) | C43a—C45a—H76A | 109.5 |
C21—C20—C19 | 106.1 (3) | C43a—C45a—H77A | 109.5 |
C21—C20—H34 | 127.0 | H76a—C45a—H77A | 109.5 |
C19—C20—H34 | 127.0 | C43a—C45a—H78A | 109.5 |
N5—C21—C20 | 107.4 (3) | H76a—C45a—H78A | 109.5 |
N5—C21—C25 | 124.2 (3) | H77a—C45a—H78A | 109.5 |
C20—C21—C25 | 128.4 (3) | C43b—C45b—H76B | 109.5 |
C19—C22—C24 | 111.9 (3) | C43b—C45b—H77B | 109.5 |
C19—C22—C23 | 110.8 (3) | H76b—C45b—H77B | 109.5 |
C24—C22—C23 | 111.8 (3) | C43b—C45b—H78B | 109.5 |
C19—C22—H35 | 107.4 | H76b—C45b—H78B | 109.5 |
C24—C22—H35 | 107.4 | H77b—C45b—H78B | 109.5 |
C23—C22—H35 | 107.4 | N3—B—N5 | 110.3 (2) |
C22—C23—H37 | 109.5 | N3—B—N1 | 110.1 (2) |
C22—C23—H38 | 109.5 | N5—B—N1 | 110.3 (2) |
H37—C23—H38 | 109.5 | N3—B—H1 | 108.7 |
C22—C23—H36 | 109.5 | N5—B—H1 | 108.7 |
H37—C23—H36 | 109.5 | N1—B—H1 | 108.7 |
H38—C23—H36 | 109.5 | C3—N1—N2 | 109.2 (2) |
C22—C24—H39 | 109.5 | C3—N1—B | 130.6 (2) |
C22—C24—H41 | 109.5 | N2—N1—B | 120.2 (2) |
H39—C24—H41 | 109.5 | C1—N2—N1 | 106.6 (2) |
C22—C24—H40 | 109.5 | C1—N2—EU | 128.40 (18) |
H39—C24—H40 | 109.5 | N1—N2—EU | 124.87 (16) |
H41—C24—H40 | 109.5 | C12—N3—N4 | 109.3 (2) |
C21—C25—C27 | 111.5 (3) | C12—N3—B | 129.4 (2) |
C21—C25—C26 | 110.5 (3) | N4—N3—B | 121.3 (2) |
C27—C25—C26 | 110.5 (3) | C10—N4—N3 | 106.6 (2) |
C21—C25—H42 | 108.1 | C10—N4—EU | 127.79 (18) |
C27—C25—H42 | 108.1 | N3—N4—EU | 124.67 (17) |
C26—C25—H42 | 108.1 | C21—N5—N6 | 109.7 (2) |
C25—C26—H45 | 109.5 | C21—N5—B | 130.1 (2) |
C25—C26—H44 | 109.5 | N6—N5—B | 120.1 (2) |
H45—C26—H44 | 109.5 | C19—N6—N5 | 106.6 (2) |
C25—C26—H43 | 109.5 | C19—N6—EU | 126.86 (19) |
H45—C26—H43 | 109.5 | N5—N6—EU | 126.29 (16) |
H44—C26—H43 | 109.5 | C30—N7—N8 | 113.1 (3) |
C25—C27—H47 | 109.5 | C30—N7—H2 | 123.5 |
C25—C27—H46 | 109.5 | N8—N7—H2 | 123.5 |
H47—C27—H46 | 109.5 | C28—N8—N7 | 104.0 (2) |
C25—C27—H48 | 109.5 | C28—N8—EU | 145.8 (2) |
H47—C27—H48 | 109.5 | N7—N8—EU | 109.68 (17) |
H46—C27—H48 | 109.5 | C39—N9—N10 | 113.3 (2) |
N8—C28—C29 | 110.7 (3) | C39—N9—H3 | 123.4 |
N8—C28—C31 | 120.3 (3) | N10—N9—H3 | 123.4 |
C29—C28—C31 | 129.1 (3) | C37—N10—N9 | 104.3 (2) |
C30—C29—C28 | 106.2 (3) | C37—N10—EU | 142.21 (19) |
C30—C29—H49 | 126.9 | N9—N10—EU | 113.47 (18) |
C28—C29—H49 | 126.9 | N6—EU—N4 | 68.39 (7) |
N7—C30—C29 | 106.0 (3) | N6—EU—N2 | 72.16 (7) |
N7—C30—C34A | 121.4 (3) | N4—EU—N2 | 73.92 (7) |
C29—C30—C34A | 132.6 (3) | N6—EU—N10 | 137.43 (7) |
N7—C30—C34B | 121.4 (3) | N4—EU—N10 | 76.75 (7) |
C29—C30—C34B | 132.6 (3) | N2—EU—N10 | 75.37 (7) |
C28—C31—C32 | 110.7 (3) | N6—EU—N8 | 75.95 (7) |
C28—C31—C33 | 111.8 (3) | N4—EU—N8 | 138.80 (7) |
C32—C31—C33 | 110.7 (3) | N2—EU—N8 | 76.11 (7) |
C28—C31—H50 | 107.8 | N10—EU—N8 | 121.58 (8) |
C32—C31—H50 | 107.8 | N6—EU—I | 119.00 (5) |
C33—C31—H50 | 107.8 | N4—EU—I | 117.23 (5) |
C31—C32—H53 | 109.5 | N2—EU—I | 165.92 (5) |
C31—C32—H51 | 109.5 | N10—EU—I | 98.11 (5) |
H53—C32—H51 | 109.5 | N8—EU—I | 97.58 (5) |
N2—C1—C2—C3 | −0.7 (3) | N9—C39—C43b—C44b | −75.4 (13) |
C4—C1—C2—C3 | −179.8 (3) | C38—C39—C43b—C44b | 105.1 (13) |
C1—C2—C3—N1 | 0.4 (3) | C2—C3—N1—N2 | 0.0 (3) |
C1—C2—C3—C7 | −177.4 (3) | C7—C3—N1—N2 | 177.9 (3) |
N2—C1—C4—C6 | −111.6 (3) | C2—C3—N1—B | −178.4 (3) |
C2—C1—C4—C6 | 67.4 (4) | C7—C3—N1—B | −0.5 (5) |
N2—C1—C4—C5 | 125.1 (3) | N3—B—N1—C3 | 116.0 (3) |
C2—C1—C4—C5 | −55.9 (4) | N5—B—N1—C3 | −121.9 (3) |
N1—C3—C7—C9 | −92.6 (3) | N3—B—N1—N2 | −62.2 (3) |
C2—C3—C7—C9 | 84.9 (4) | N5—B—N1—N2 | 59.8 (3) |
N1—C3—C7—C8 | 144.6 (3) | C2—C1—N2—N1 | 0.7 (3) |
C2—C3—C7—C8 | −37.9 (4) | C4—C1—N2—N1 | 179.8 (3) |
N4—C10—C11—C12 | −1.7 (3) | C2—C1—N2—EU | 176.38 (19) |
C13—C10—C11—C12 | 175.9 (3) | C4—C1—N2—EU | −4.5 (4) |
C10—C11—C12—N3 | 1.3 (3) | C3—N1—N2—C1 | −0.4 (3) |
C10—C11—C12—C16 | −174.9 (3) | B—N1—N2—C1 | 178.2 (2) |
N4—C10—C13—C15 | −127.3 (3) | C3—N1—N2—EU | −176.29 (17) |
C11—C10—C13—C15 | 55.3 (4) | B—N1—N2—EU | 2.3 (3) |
N4—C10—C13—C14 | 109.1 (3) | C11—C12—N3—N4 | −0.6 (3) |
C11—C10—C13—C14 | −68.3 (4) | C16—C12—N3—N4 | 175.8 (2) |
N3—C12—C16—C18 | 150.9 (3) | C11—C12—N3—B | −178.8 (3) |
C11—C12—C16—C18 | −33.5 (4) | C16—C12—N3—B | −2.4 (4) |
N3—C12—C16—C17 | −86.3 (4) | N5—B—N3—C12 | 125.1 (3) |
C11—C12—C16—C17 | 89.4 (4) | N1—B—N3—C12 | −112.9 (3) |
N6—C19—C20—C21 | 0.2 (4) | N5—B—N3—N4 | −52.9 (3) |
C22—C19—C20—C21 | −177.3 (3) | N1—B—N3—N4 | 69.1 (3) |
C19—C20—C21—N5 | −0.3 (4) | C11—C10—N4—N3 | 1.3 (3) |
C19—C20—C21—C25 | −177.6 (3) | C13—C10—N4—N3 | −176.5 (2) |
N6—C19—C22—C24 | 139.4 (3) | C11—C10—N4—EU | −168.18 (19) |
C20—C19—C22—C24 | −43.4 (5) | C13—C10—N4—EU | 14.0 (4) |
N6—C19—C22—C23 | −95.2 (4) | C12—N3—N4—C10 | −0.5 (3) |
C20—C19—C22—C23 | 82.1 (5) | B—N3—N4—C10 | 177.9 (2) |
N5—C21—C25—C27 | −75.4 (4) | C12—N3—N4—EU | 169.45 (17) |
C20—C21—C25—C27 | 101.5 (4) | B—N3—N4—EU | −12.2 (3) |
N5—C21—C25—C26 | 161.3 (3) | C20—C21—N5—N6 | 0.2 (3) |
C20—C21—C25—C26 | −21.8 (5) | C25—C21—N5—N6 | 177.7 (3) |
N8—C28—C29—C30 | −0.3 (4) | C20—C21—N5—B | 177.7 (3) |
C31—C28—C29—C30 | 179.0 (3) | C25—C21—N5—B | −4.8 (5) |
C28—C29—C30—N7 | 0.1 (4) | N3—B—N5—C21 | −121.5 (3) |
C28—C29—C30—C34a | 178.3 (4) | N1—B—N5—C21 | 116.6 (3) |
C28—C29—C30—C34b | 178.3 (4) | N3—B—N5—N6 | 55.8 (3) |
N8—C28—C31—C32 | 66.9 (4) | N1—B—N5—N6 | −66.1 (3) |
C29—C28—C31—C32 | −112.3 (4) | C20—C19—N6—N5 | 0.0 (3) |
N8—C28—C31—C33 | −169.1 (3) | C22—C19—N6—N5 | 177.7 (3) |
C29—C28—C31—C33 | 11.6 (5) | C20—C19—N6—EU | 174.9 (2) |
N7—C30—C34a—C36a | 107.3 (6) | C22—C19—N6—EU | −7.3 (4) |
C29—C30—C34a—C36a | −70.6 (7) | C21—N5—N6—C19 | −0.1 (3) |
N7—C30—C34a—C35 | −32.9 (5) | B—N5—N6—C19 | −177.9 (2) |
C29—C30—C34a—C35 | 149.1 (4) | C21—N5—N6—EU | −175.07 (18) |
N7—C30—C34b—C36b | −178.2 (7) | B—N5—N6—EU | 7.1 (3) |
C29—C30—C34b—C36b | 3.8 (9) | C29—C30—N7—N8 | 0.1 (4) |
N7—C30—C34b—C35 | −32.9 (5) | C34a—C30—N7—N8 | −178.3 (3) |
C29—C30—C34b—C35 | 149.1 (4) | C34b—C30—N7—N8 | −178.3 (3) |
N10—C37—C38—C39 | 0.8 (4) | C29—C28—N8—N7 | 0.4 (3) |
C40—C37—C38—C39 | −178.8 (4) | C31—C28—N8—N7 | −179.0 (3) |
C37—C38—C39—N9 | −0.8 (4) | C29—C28—N8—EU | −170.2 (3) |
C37—C38—C39—C43a | 178.8 (4) | C31—C28—N8—EU | 10.4 (5) |
C37—C38—C39—C43b | 178.8 (4) | C30—N7—N8—C28 | −0.3 (3) |
N10—C37—C40—C41 | 117.8 (4) | C30—N7—N8—EU | 174.1 (2) |
C38—C37—C40—C41 | −62.6 (5) | C38—C39—N9—N10 | 0.6 (4) |
N10—C37—C40—C42 | −119.1 (4) | C43a—C39—N9—N10 | −179.1 (3) |
C38—C37—C40—C42 | 60.5 (5) | C43b—C39—N9—N10 | −179.1 (3) |
N9—C39—C43a—C44a | −111.9 (7) | C38—C37—N10—N9 | −0.5 (4) |
C38—C39—C43a—C44a | 68.5 (8) | C40—C37—N10—N9 | 179.2 (3) |
N9—C39—C43a—C45a | 24.2 (7) | C38—C37—N10—EU | 179.1 (2) |
C38—C39—C43a—C45a | −155.3 (6) | C40—C37—N10—EU | −1.2 (6) |
N9—C39—C43b—C45b | 60.8 (14) | C39—N9—N10—C37 | −0.1 (4) |
C38—C39—C43b—C45b | −118.7 (13) | C39—N9—N10—EU | −179.8 (2) |
C36H62B2N8 | F(000) = 1376 |
Mr = 628.55 | Dx = 1.092 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 25.7646 (11) Å | Cell parameters from 11890 reflections |
b = 11.2134 (3) Å | θ = 2.0–26.2° |
c = 15.0968 (7) Å | µ = 0.07 mm−1 |
β = 118.792 (3)° | T = 153 K |
V = 3822.4 (3) Å3 | Plate, colorless |
Z = 4 | 0.33 × 0.29 × 0.13 mm |
Stoe IPDS 2T diffractometer | 2594 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.046 |
Detector resolution: 6.67 pixels mm-1 | θmax = 25.0°, θmin = 2.0° |
area detector scans | h = −30→29 |
10509 measured reflections | k = −12→13 |
3367 independent reflections | l = −17→17 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.104 | w = 1/[σ2(Fo2) + (0.050P)2 + 1.3932P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
3367 reflections | Δρmax = 0.25 e Å−3 |
238 parameters | Δρmin = −0.20 e Å−3 |
0 restraints | Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0022 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.32091 (7) | 0.43231 (14) | 0.12232 (11) | 0.0228 (3) | |
C2 | 0.31092 (7) | 0.42821 (15) | 0.20414 (12) | 0.0275 (4) | |
H2 | 0.328176 | 0.478383 | 0.261967 | 0.033* | |
C3 | 0.27098 (7) | 0.33708 (14) | 0.18577 (11) | 0.0239 (3) | |
C4 | 0.36140 (7) | 0.51263 (14) | 0.10426 (12) | 0.0255 (4) | |
H3 | 0.350866 | 0.506956 | 0.031400 | 0.031* | |
C5 | 0.42566 (7) | 0.47407 (17) | 0.16846 (13) | 0.0361 (4) | |
H5 | 0.451450 | 0.527573 | 0.155810 | 0.054* | |
H6 | 0.430455 | 0.392253 | 0.150739 | 0.054* | |
H4 | 0.436389 | 0.477573 | 0.240128 | 0.054* | |
C6 | 0.35282 (9) | 0.64149 (16) | 0.12723 (15) | 0.0390 (4) | |
H9 | 0.378721 | 0.693891 | 0.113901 | 0.059* | |
H8 | 0.362781 | 0.648366 | 0.198397 | 0.059* | |
H7 | 0.311453 | 0.664942 | 0.084152 | 0.059* | |
C7 | 0.24394 (7) | 0.29648 (16) | 0.24900 (12) | 0.0302 (4) | |
H10 | 0.223957 | 0.218098 | 0.222317 | 0.036* | |
C8 | 0.29206 (10) | 0.2793 (2) | 0.35783 (14) | 0.0543 (6) | |
H11 | 0.274068 | 0.253611 | 0.398945 | 0.081* | |
H12 | 0.313065 | 0.354794 | 0.384237 | 0.081* | |
H13 | 0.320074 | 0.218456 | 0.360467 | 0.081* | |
C9 | 0.19746 (9) | 0.38648 (18) | 0.24156 (16) | 0.0451 (5) | |
H15 | 0.179127 | 0.358161 | 0.281449 | 0.068* | |
H14 | 0.167006 | 0.395218 | 0.170735 | 0.068* | |
H16 | 0.216435 | 0.463780 | 0.267740 | 0.068* | |
C10 | 0.06813 (7) | 0.23099 (14) | 0.02850 (12) | 0.0257 (4) | |
C11 | 0.06359 (7) | 0.32593 (15) | −0.03555 (13) | 0.0290 (4) | |
H17 | 0.031464 | 0.379970 | −0.068315 | 0.035* | |
C12 | 0.11522 (7) | 0.32426 (14) | −0.04087 (11) | 0.0242 (3) | |
C13 | 0.02374 (7) | 0.19290 (17) | 0.06011 (13) | 0.0322 (4) | |
H18 | 0.039684 | 0.120355 | 0.103467 | 0.039* | |
C14 | 0.01516 (10) | 0.2889 (2) | 0.12299 (18) | 0.0527 (6) | |
H20 | −0.011435 | 0.259168 | 0.147452 | 0.079* | |
H19 | −0.002167 | 0.359966 | 0.081317 | 0.079* | |
H21 | 0.053547 | 0.309303 | 0.180752 | 0.079* | |
C15 | −0.03477 (8) | 0.1591 (2) | −0.03071 (16) | 0.0520 (6) | |
H24 | −0.061559 | 0.126983 | −0.007583 | 0.078* | |
H23 | −0.027873 | 0.098683 | −0.070761 | 0.078* | |
H22 | −0.052662 | 0.229990 | −0.072424 | 0.078* | |
C16A | 0.13485 (7) | 0.40591 (15) | −0.09797 (13) | 0.0292 (4) | 0.649 (9) |
H25A | 0.168807 | 0.367438 | −0.101562 | 0.035* | 0.649 (9) |
C17A | 0.1569 (3) | 0.5251 (3) | −0.0392 (4) | 0.0435 (11) | 0.649 (9) |
H26A | 0.171675 | 0.577049 | −0.074376 | 0.065* | 0.649 (9) |
H27A | 0.188876 | 0.508864 | 0.029262 | 0.065* | 0.649 (9) |
H28A | 0.124079 | 0.564576 | −0.035502 | 0.065* | 0.649 (9) |
C18A | 0.0865 (2) | 0.4274 (6) | −0.2035 (3) | 0.0535 (14) | 0.649 (9) |
H29A | 0.101968 | 0.474541 | −0.240313 | 0.080* | 0.649 (9) |
H30A | 0.054076 | 0.470950 | −0.201581 | 0.080* | 0.649 (9) |
H31A | 0.071760 | 0.350805 | −0.237778 | 0.080* | 0.649 (9) |
C16B | 0.13485 (7) | 0.40591 (15) | −0.09797 (13) | 0.0292 (4) | 0.351 (9) |
H25B | 0.178789 | 0.399759 | −0.068850 | 0.035* | 0.351 (9) |
C17B | 0.1037 (4) | 0.3646 (8) | −0.2133 (5) | 0.045 (2) | 0.351 (9) |
H26B | 0.115240 | 0.418278 | −0.251917 | 0.067* | 0.351 (9) |
H27B | 0.060562 | 0.366928 | −0.241231 | 0.067* | 0.351 (9) |
H28B | 0.116013 | 0.283030 | −0.217459 | 0.067* | 0.351 (9) |
C18B | 0.1187 (6) | 0.5326 (6) | −0.0920 (9) | 0.053 (3) | 0.351 (9) |
H29B | 0.132204 | 0.583712 | −0.129447 | 0.079* | 0.351 (9) |
H30B | 0.137625 | 0.557807 | −0.021063 | 0.079* | 0.351 (9) |
H31B | 0.075580 | 0.539310 | −0.121428 | 0.079* | 0.351 (9) |
B | 0.21039 (7) | 0.18853 (16) | 0.04185 (12) | 0.0209 (4) | |
H1 | 0.220947 | 0.117181 | 0.086985 | 0.025* | |
N1 | 0.25728 (5) | 0.28776 (11) | 0.09607 (9) | 0.0205 (3) | |
N2 | 0.28824 (5) | 0.34639 (11) | 0.05681 (9) | 0.0198 (3) | |
N3 | 0.14859 (5) | 0.23196 (11) | 0.01778 (9) | 0.0207 (3) | |
N4 | 0.11934 (6) | 0.17386 (12) | 0.06116 (9) | 0.0235 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0190 (8) | 0.0221 (8) | 0.0248 (8) | −0.0002 (6) | 0.0085 (6) | −0.0021 (6) |
C2 | 0.0270 (9) | 0.0295 (9) | 0.0254 (8) | −0.0041 (7) | 0.0121 (7) | −0.0077 (7) |
C3 | 0.0220 (8) | 0.0275 (8) | 0.0210 (7) | −0.0009 (7) | 0.0095 (6) | −0.0027 (6) |
C4 | 0.0244 (8) | 0.0246 (8) | 0.0256 (8) | −0.0043 (7) | 0.0105 (7) | −0.0019 (7) |
C5 | 0.0250 (9) | 0.0431 (10) | 0.0374 (10) | −0.0067 (8) | 0.0128 (8) | −0.0010 (8) |
C6 | 0.0451 (11) | 0.0273 (9) | 0.0485 (11) | −0.0060 (8) | 0.0255 (10) | −0.0046 (8) |
C7 | 0.0306 (9) | 0.0372 (10) | 0.0262 (8) | −0.0092 (8) | 0.0165 (7) | −0.0063 (7) |
C8 | 0.0474 (12) | 0.0863 (17) | 0.0293 (10) | −0.0183 (12) | 0.0185 (9) | 0.0022 (10) |
C9 | 0.0496 (12) | 0.0469 (12) | 0.0550 (12) | −0.0104 (10) | 0.0382 (10) | −0.0136 (10) |
C10 | 0.0213 (8) | 0.0295 (9) | 0.0277 (8) | −0.0015 (7) | 0.0130 (7) | −0.0006 (7) |
C11 | 0.0234 (8) | 0.0294 (9) | 0.0350 (9) | 0.0046 (7) | 0.0147 (7) | 0.0040 (7) |
C12 | 0.0234 (8) | 0.0229 (8) | 0.0265 (8) | 0.0023 (7) | 0.0122 (7) | 0.0009 (6) |
C13 | 0.0262 (9) | 0.0385 (10) | 0.0368 (9) | −0.0005 (8) | 0.0190 (8) | 0.0045 (8) |
C14 | 0.0529 (13) | 0.0612 (14) | 0.0649 (14) | −0.0020 (11) | 0.0450 (12) | −0.0062 (11) |
C15 | 0.0312 (10) | 0.0748 (15) | 0.0488 (12) | −0.0145 (10) | 0.0184 (9) | 0.0055 (11) |
C16A | 0.0271 (9) | 0.0287 (9) | 0.0360 (9) | 0.0053 (7) | 0.0183 (8) | 0.0086 (7) |
C17A | 0.054 (3) | 0.0287 (17) | 0.056 (2) | −0.0048 (18) | 0.033 (2) | 0.0051 (16) |
C18A | 0.045 (2) | 0.067 (3) | 0.0401 (19) | −0.010 (2) | 0.0142 (17) | 0.020 (2) |
C16B | 0.0271 (9) | 0.0287 (9) | 0.0360 (9) | 0.0053 (7) | 0.0183 (8) | 0.0086 (7) |
C17B | 0.048 (4) | 0.053 (5) | 0.036 (3) | 0.001 (3) | 0.022 (3) | 0.012 (3) |
C18B | 0.079 (7) | 0.030 (3) | 0.075 (6) | 0.009 (4) | 0.058 (6) | 0.013 (3) |
B | 0.0200 (9) | 0.0204 (9) | 0.0215 (8) | −0.0001 (7) | 0.0093 (7) | 0.0012 (7) |
N1 | 0.0186 (6) | 0.0228 (7) | 0.0205 (6) | −0.0007 (5) | 0.0098 (5) | −0.0005 (5) |
N2 | 0.0167 (6) | 0.0214 (7) | 0.0215 (6) | −0.0011 (5) | 0.0095 (5) | 0.0001 (5) |
N3 | 0.0199 (7) | 0.0215 (7) | 0.0226 (6) | −0.0008 (5) | 0.0117 (5) | 0.0009 (5) |
N4 | 0.0224 (7) | 0.0261 (7) | 0.0250 (7) | −0.0028 (6) | 0.0138 (6) | −0.0002 (5) |
C1—N2 | 1.3464 (19) | C13—C14 | 1.520 (3) |
C1—C2 | 1.379 (2) | C13—H18 | 1.0000 |
C1—C4 | 1.499 (2) | C14—H20 | 0.9800 |
C2—C3 | 1.380 (2) | C14—H19 | 0.9800 |
C2—H2 | 0.9500 | C14—H21 | 0.9800 |
C3—N1 | 1.3431 (19) | C15—H24 | 0.9800 |
C3—C7 | 1.498 (2) | C15—H23 | 0.9800 |
C4—C5 | 1.524 (2) | C15—H22 | 0.9800 |
C4—C6 | 1.527 (2) | C16a—C18A | 1.496 (4) |
C4—H3 | 1.0000 | C16a—C17A | 1.552 (4) |
C5—H5 | 0.9800 | C16a—H25A | 1.0000 |
C5—H6 | 0.9800 | C17a—H26A | 0.9800 |
C5—H4 | 0.9800 | C17a—H27A | 0.9800 |
C6—H9 | 0.9800 | C17a—H28A | 0.9800 |
C6—H8 | 0.9800 | C18a—H29A | 0.9800 |
C6—H7 | 0.9800 | C18a—H30A | 0.9800 |
C7—C8 | 1.520 (3) | C18a—H31A | 0.9800 |
C7—C9 | 1.528 (3) | C16b—C18B | 1.496 (7) |
C7—H10 | 1.0000 | C16b—C17B | 1.595 (7) |
C8—H11 | 0.9800 | C16b—H25B | 1.0000 |
C8—H12 | 0.9800 | C17b—H26B | 0.9800 |
C8—H13 | 0.9800 | C17b—H27B | 0.9800 |
C9—H15 | 0.9800 | C17b—H28B | 0.9800 |
C9—H14 | 0.9800 | C18b—H29B | 0.9800 |
C9—H16 | 0.9800 | C18b—H30B | 0.9800 |
C10—N4 | 1.330 (2) | C18b—H31B | 0.9800 |
C10—C11 | 1.405 (2) | B—N3 | 1.532 (2) |
C10—C13 | 1.498 (2) | B—N1 | 1.554 (2) |
C11—C12 | 1.371 (2) | B—N2i | 1.557 (2) |
C11—H17 | 0.9500 | B—H1 | 1.0000 |
C12—N3 | 1.364 (2) | N1—N2 | 1.3693 (16) |
C12—C16A | 1.502 (2) | N2—Bi | 1.557 (2) |
C12—C16B | 1.502 (2) | N3—N4 | 1.3772 (17) |
C13—C15 | 1.518 (3) | ||
N2—C1—C2 | 108.29 (13) | C13—C14—H19 | 109.5 |
N2—C1—C4 | 122.67 (13) | H20—C14—H19 | 109.5 |
C2—C1—C4 | 129.02 (14) | C13—C14—H21 | 109.5 |
C1—C2—C3 | 106.71 (14) | H20—C14—H21 | 109.5 |
C1—C2—H2 | 126.6 | H19—C14—H21 | 109.5 |
C3—C2—H2 | 126.6 | C13—C15—H24 | 109.5 |
N1—C3—C2 | 108.41 (13) | C13—C15—H23 | 109.5 |
N1—C3—C7 | 122.71 (14) | H24—C15—H23 | 109.5 |
C2—C3—C7 | 128.86 (14) | C13—C15—H22 | 109.5 |
C1—C4—C5 | 110.60 (13) | H24—C15—H22 | 109.5 |
C1—C4—C6 | 109.73 (13) | H23—C15—H22 | 109.5 |
C5—C4—C6 | 110.85 (14) | C18a—C16a—C12 | 111.80 (19) |
C1—C4—H3 | 108.5 | C18a—C16a—C17A | 111.0 (3) |
C5—C4—H3 | 108.5 | C12—C16a—C17A | 109.18 (17) |
C6—C4—H3 | 108.5 | C18a—C16a—H25A | 108.3 |
C4—C5—H5 | 109.5 | C12—C16a—H25A | 108.3 |
C4—C5—H6 | 109.5 | C17a—C16a—H25A | 108.3 |
H5—C5—H6 | 109.5 | C16a—C17a—H26A | 109.5 |
C4—C5—H4 | 109.5 | C16a—C17a—H27A | 109.5 |
H5—C5—H4 | 109.5 | H26a—C17a—H27A | 109.5 |
H6—C5—H4 | 109.5 | C16a—C17a—H28A | 109.5 |
C4—C6—H9 | 109.5 | H26a—C17a—H28A | 109.5 |
C4—C6—H8 | 109.5 | H27a—C17a—H28A | 109.5 |
H9—C6—H8 | 109.5 | C16a—C18a—H29A | 109.5 |
C4—C6—H7 | 109.5 | C16a—C18a—H30A | 109.5 |
H9—C6—H7 | 109.5 | H29a—C18a—H30A | 109.5 |
H8—C6—H7 | 109.5 | C16a—C18a—H31A | 109.5 |
C3—C7—C8 | 109.85 (14) | H29a—C18a—H31A | 109.5 |
C3—C7—C9 | 109.93 (14) | H30a—C18a—H31A | 109.5 |
C8—C7—C9 | 111.42 (16) | C18b—C16b—C12 | 111.3 (3) |
C3—C7—H10 | 108.5 | C18b—C16b—C17B | 109.5 (5) |
C8—C7—H10 | 108.5 | C12—C16b—C17B | 108.5 (3) |
C9—C7—H10 | 108.5 | C18b—C16b—H25B | 109.2 |
C7—C8—H11 | 109.5 | C12—C16b—H25B | 109.2 |
C7—C8—H12 | 109.5 | C17b—C16b—H25B | 109.2 |
H11—C8—H12 | 109.5 | C16b—C17b—H26B | 109.5 |
C7—C8—H13 | 109.5 | C16b—C17b—H27B | 109.5 |
H11—C8—H13 | 109.5 | H26b—C17b—H27B | 109.5 |
H12—C8—H13 | 109.5 | C16b—C17b—H28B | 109.5 |
C7—C9—H15 | 109.5 | H26b—C17b—H28B | 109.5 |
C7—C9—H14 | 109.5 | H27b—C17b—H28B | 109.5 |
H15—C9—H14 | 109.5 | C16b—C18b—H29B | 109.5 |
C7—C9—H16 | 109.5 | C16b—C18b—H30B | 109.5 |
H15—C9—H16 | 109.5 | H29b—C18b—H30B | 109.5 |
H14—C9—H16 | 109.5 | C16b—C18b—H31B | 109.5 |
N4—C10—C11 | 111.05 (13) | H29b—C18b—H31B | 109.5 |
N4—C10—C13 | 121.20 (14) | H30b—C18b—H31B | 109.5 |
C11—C10—C13 | 127.74 (15) | N3—B—N1 | 110.66 (12) |
C12—C11—C10 | 105.58 (14) | N3—B—N2i | 110.67 (12) |
C12—C11—H17 | 127.2 | N1—B—N2i | 108.29 (12) |
C10—C11—H17 | 127.2 | N3—B—H1 | 109.1 |
N3—C12—C11 | 107.36 (13) | N1—B—H1 | 109.1 |
N3—C12—C16A | 123.61 (13) | N2i—B—H1 | 109.1 |
C11—C12—C16A | 129.03 (15) | C3—N1—N2 | 108.29 (12) |
N3—C12—C16B | 123.61 (13) | C3—N1—B | 125.87 (12) |
C11—C12—C16B | 129.03 (15) | N2—N1—B | 125.66 (11) |
C10—C13—C15 | 111.21 (14) | C1—N2—N1 | 108.30 (11) |
C10—C13—C14 | 111.11 (15) | C1—N2—Bi | 126.05 (12) |
C15—C13—C14 | 111.14 (17) | N1—N2—Bi | 125.43 (12) |
C10—C13—H18 | 107.7 | C12—N3—N4 | 110.45 (12) |
C15—C13—H18 | 107.7 | C12—N3—B | 130.79 (12) |
C14—C13—H18 | 107.7 | N4—N3—B | 118.75 (12) |
C13—C14—H20 | 109.5 | C10—N4—N3 | 105.56 (12) |
N2—C1—C2—C3 | −0.15 (18) | C7—C3—N1—N2 | 178.58 (14) |
C4—C1—C2—C3 | −178.52 (15) | C2—C3—N1—B | −175.10 (14) |
C1—C2—C3—N1 | 0.01 (18) | C7—C3—N1—B | 3.3 (2) |
C1—C2—C3—C7 | −178.32 (16) | N3—B—N1—C3 | 61.64 (19) |
N2—C1—C4—C5 | −103.02 (17) | N2i—B—N1—C3 | −176.89 (13) |
C2—C1—C4—C5 | 75.1 (2) | N3—B—N1—N2 | −112.79 (14) |
N2—C1—C4—C6 | 134.38 (16) | N2i—B—N1—N2 | 8.7 (2) |
C2—C1—C4—C6 | −47.5 (2) | C2—C1—N2—N1 | 0.23 (16) |
N1—C3—C7—C8 | 132.58 (18) | C4—C1—N2—N1 | 178.73 (13) |
C2—C3—C7—C8 | −49.3 (2) | C2—C1—N2—Bi | −174.58 (14) |
N1—C3—C7—C9 | −104.46 (18) | C4—C1—N2—Bi | 3.9 (2) |
C2—C3—C7—C9 | 73.6 (2) | C3—N1—N2—C1 | −0.23 (16) |
N4—C10—C11—C12 | 0.08 (19) | B—N1—N2—C1 | 175.02 (13) |
C13—C10—C11—C12 | 179.94 (16) | C3—N1—N2—Bi | 174.62 (13) |
C10—C11—C12—N3 | 0.00 (18) | B—N1—N2—Bi | −10.1 (2) |
C10—C11—C12—C16a | −179.54 (16) | C11—C12—N3—N4 | −0.08 (17) |
C10—C11—C12—C16b | −179.54 (16) | C16a—C12—N3—N4 | 179.49 (14) |
N4—C10—C13—C15 | −120.42 (18) | C16b—C12—N3—N4 | 179.49 (14) |
C11—C10—C13—C15 | 59.7 (2) | C11—C12—N3—B | −178.88 (14) |
N4—C10—C13—C14 | 115.21 (18) | C16a—C12—N3—B | 0.7 (2) |
C11—C10—C13—C14 | −64.6 (2) | C16b—C12—N3—B | 0.7 (2) |
N3—C12—C16a—C18a | 135.3 (3) | N1—B—N3—C12 | 60.88 (19) |
C11—C12—C16a—C18a | −45.3 (4) | N2i—B—N3—C12 | −59.2 (2) |
N3—C12—C16a—C17a | −101.6 (3) | N1—B—N3—N4 | −117.84 (14) |
C11—C12—C16a—C17a | 77.9 (3) | N2i—B—N3—N4 | 122.10 (13) |
N3—C12—C16b—C18b | −139.2 (6) | C11—C10—N4—N3 | −0.13 (17) |
C11—C12—C16b—C18b | 40.3 (6) | C13—C10—N4—N3 | −179.99 (14) |
N3—C12—C16b—C17b | 100.3 (4) | C12—N3—N4—C10 | 0.13 (16) |
C11—C12—C16b—C17b | −80.2 (5) | B—N3—N4—C10 | 179.09 (13) |
C2—C3—N1—N2 | 0.14 (17) |
Symmetry code: (i) −x+1/2, −y+1/2, −z. |
Funding information
General financial support of this work by the Otto-von-Guericke-Universität is gratefully acknowledged.
References
Alcock, N. W. & Sawyer, J. F. (1974). Acta Cryst. B30, 2899–2901. CSD CrossRef CAS IUCr Journals
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Cavero, E., Giménez, R., Uriel, S., Beltrán, E., Serrano, J. L., Alkorta, I. & Elguero, J. (2008). Cryst. Growth Des. 8, 838–847. CSD CrossRef CAS
Davies, C. E., Gardiner, I. M., Green, J. C., Green, M. L. H., Hazel, N. J., Grebenik, P. D., Mtetwa, V. S. B. & Prout, H. (1985). J. Chem. Soc. Dalton Trans. pp. 669–683. CSD CrossRef
Domingos, Â., Elsegood, M. R. J., Hillier, A. C., Lin, G., Liu, S. Y., Lopes, I., Marques, N., Maunder, G. H., McDonald, R., Sella, A., Steed, J. W. & Takats, J. (2002). Inorg. Chem. 41, 6761–6768. CSD CrossRef PubMed CAS
Evans, W. J. (2007). Inorg. Chem. 46, 3435–3449. Web of Science CrossRef PubMed CAS
Evans, W. J., Bloom, I., Hunter, W. E. & Atwood, J. L. (1983). J. Am. Chem. Soc. 105, 1401–1403. CSD CrossRef CAS
Evans, W. J., Ulibarri, T. A. & Ziller, J. W. (1988). J. Am. Chem. Soc. 110, 6877–6879. CSD CrossRef CAS Web of Science
Girard, P., Namy, J. L. & Kagan, H. B. (1980). J. Am. Chem. Soc. 102, 2693–2698. CrossRef CAS Web of Science
Hillier, A. C., Zhang, X. W., Maunder, G. H., Liu, S. Y., Eberspacher, T. A., Metz, M. V., McDonald, R., Domingos, Â., Marques, N., Day, V. W., Sella, A. & Takats, J. (2001). Inorg. Chem. 40, 5106–5116. Web of Science CSD CrossRef PubMed CAS
Jadhav, T., Dhokale, B., Patil, Y. & Misra, R. (2015). RSC Adv. 5, 68187–68191. CrossRef CAS
Jadhav, T., Maragani, R., Misra, R., Sreeramulu, Y., Rao, D. N. & Mobin, S. M. (2013). Dalton Trans. 42, 4340–4342. CrossRef CAS PubMed
Kitajima, N., Fujisawa, K., Fujimoto, C., Morooka, Y., Hashimoto, S., Kitagawa, T., Toriumi, K., Tatsumi, K. & Nakamura, A. (1992). J. Am. Chem. Soc. 114, 1277–1291. CSD CrossRef CAS Web of Science
Kresiński, R. A. (1999). J. Chem. Soc. Dalton Trans. pp. 401–406.
Kühling, M., McDonald, R., Liebing, P., Hilfert, L., Ferguson, M. J., Takats, J. & Edelmann, F. T. (2016). Dalton Trans. 45, 10118–10121. PubMed
Kühling, M., Wickleder, C., Ferguson, M. J., Hrib, C. G., McDonald, R., Suta, M., Hilfert, L., Takats, J. & Edelmann, F. T. (2015). New J. Chem. 39, 7617–7625.
Lobbia, G. G., Bonati, F., Cecchi, P. & Pettinari, C. (1992). Gazz. Chim. Ital. 121, 355–358.
Marques, N., Sella, A. & Takats, J. (2002). Chem. Rev. 102, 2137–2160. Web of Science CrossRef PubMed CAS
Misra, R., Jadhav, T. & Mobin, S. M. (2013). Dalton Trans. 42, 16614–16620. CSD CrossRef CAS PubMed
Misra, R., Jadhav, T. & Mobin, S. M. (2014). Dalton Trans. 43, 2013–2022. CSD CrossRef CAS PubMed
Momin, A., Carter, L., Yang, Y., McDonald, R., Essafi (née Labouille), S., Nief, F., Del Rosal, I., Sella, A., Maron, L. & Takats, J. (2014). Inorg. Chem. 53, 12066–12075.
Niedenzu, K. & Niedenzu, P. M. (1984). Inorg. Chem. 23, 3713–3716. CrossRef CAS
Niedenzu, K. & Nöth, H. (1983). Chem. Ber. 116, 1132–1153. CSD CrossRef CAS
Patil, Y., Jadhav, T., Dhokale, B., Butenschön, H. & Misra, R. (2017). ChemistrySelect 2, 415–420. CrossRef CAS
Pettinari, C. (2008). Scorpionates II: Chelating Borate Ligands. Imperial College Press, London.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.
Suta, M., Kühling, M., Liebing, P., Edelmann, F. T. & Wickleder, C. (2017). J. Lumin. 187, 62–68. CSD CrossRef CAS
Trofimenko, S. (1966). J. Am. Chem. Soc. 88, 1842–1844. CrossRef CAS Web of Science
Trofimenko, S. (1993). Chem. Rev. 93, 943–980. CrossRef CAS Web of Science
Trofimenko, S. (1999). The Coordination Chemistry of Scorpionates – Pyrazolylborate Ligands. Imperial College Press, London.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.