research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Formation and structural characterization of a europium(II) mono(scorpionate) complex and a sterically crowded pyraza­bole

CROSSMARK_Color_square_no_text.svg

aETH Zürich, Laboratorium für Anorganische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland, bChemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany, and cDepartment of Chemistry, University of Alberta, Edmonton, Alberta, AB, Canada, T6G 2G2
*Correspondence e-mail: frank.edelmann@ovgu.de

Edited by M. Zeller, Purdue University, USA (Received 15 November 2017; accepted 15 November 2017; online 21 November 2017)

The reaction of EuI2(THF)2 with potassium hydro­tris­(3,5-diiso­propyl­pyrazol­yl)borate (K[HB(3,5-iPr2pz)3] (= KTpiPr2, pz = pyrazol­yl) in a molar ratio of 1:1.5 resulted in extensive ligand fragmentation and formation of the europium(II) mono(scorpionate) complex bis­(3,5-diisopropyl-1H-pyrazole)[hydro­tris­(3,5-diiso­propyl­pyrazol­yl)borato]iodido­europium(II), [Eu(C27H46BN6)I(C9H16N2)2] or (TpiPr2)(3,5-iPr2pzH)2EuIII, 1, in high yield (78%). As a typical by-product, small amounts of the sterically crowded pyraza­bole derivative trans-4,8-bis­(3,5-diiso­propyl­pyrazol-1-yl)-1,3,5,7-tetra­iso­propyl­pyraza­bole, C36H62B2H8 or trans-{(3,5-iPr2pz)HB(μ-3,5-iPr2pz)}2, 2, were formed. Both title compounds have been structurally characterized through single-crystal X-ray diffraction. In 1, two isopropyl groups are each disordered over two orientations with occupancy ratios of 0.574 (10):0.426 (10) and 0.719 (16):0.281 (16). In 2, one isopropyl group is similarly disordered, occupancy ratio 0.649 (9):0.351 (9).

1. Chemical context

The organometallic chemistry of divalent lanthanides provides fascinating structures such as the sandwich complexes Ln(C5Me5)2 (Ln = Sm, Eu, Yb; C5Me5 = η5-penta­methyl­cyclo­penta­dien­yl). An unusual structural feature of the unsolvated lanthanide sandwich complexes Ln(C5Me5)2 (Fig. 1[link]a, Ln = Sm, Eu, Yb) is their bent metallocene structure in the solid state. This opens up the coordination sphere around the central divalent lanthanide ions and accounts for the very high reactivity of these compounds (Evans et al., 1983[Evans, W. J., Bloom, I., Hunter, W. E. & Atwood, J. L. (1983). J. Am. Chem. Soc. 105, 1401-1403.], 1988[Evans, W. J., Ulibarri, T. A. & Ziller, J. W. (1988). J. Am. Chem. Soc. 110, 6877-6879.]; Evans, 2007[Evans, W. J. (2007). Inorg. Chem. 46, 3435-3449.]). It has been demonstrated in the past that Trofimenko's famous hydro­tris­(pyrazol­yl)borate ligands (`scorpionates') represent useful alternatives to the ubiquitous cyclo­penta­dienyl ligands (Pettinari, 2008[Pettinari, C. (2008). Scorpionates II: Chelating Borate Ligands. Imperial College Press, London.]; Trofimenko, 1966[Trofimenko, S. (1966). J. Am. Chem. Soc. 88, 1842-1844.], 1993[Trofimenko, S. (1993). Chem. Rev. 93, 943-980.], 1999[Trofimenko, S. (1999). The Coordination Chemistry of Scorpionates - Pyrazolylborate Ligands. Imperial College Press, London.]). Like the cyclo­penta­dienyl ligands, these trident­ate, monoanionic ligands can also be largely varied in their steric demand by introducing different substituents in the 3- and 5-positions of the pyrazolyl rings. According to Trofimenko's nomenclature, the abbreviation Tp stands for the ring-unsubstituted hydro­tris­(pyrazol­yl)borate, whereas e.g. TpMe2 denotes the sterically more demanding hydro­tris­(3,5-di­methyl­pyrazol­yl)borate. The homoleptic divalent lanthanide complexes Ln(TpMe2)2 (Ln = Sm, Eu, Yb) have been found to adopt a highly symmetrical, trigonal–anti­prismatic coordination comprising an almost linear B⋯Ln⋯B arrangement (Marques et al., 2002[Marques, N., Sella, A. & Takats, J. (2002). Chem. Rev. 102, 2137-2160.]). Apparently, the sandwich-like structure of Ln(TpMe2)2 is the result of the much larger cone angle of TpMe2 (239°) as compared to that of the C5Me5 ligand (142°) (Davies et al., 1985[Davies, C. E., Gardiner, I. M., Green, J. C., Green, M. L. H., Hazel, N. J., Grebenik, P. D., Mtetwa, V. S. B. & Prout, H. (1985). J. Chem. Soc. Dalton Trans. pp. 669-683.]). More recently, these investigations have been successfully extended to the even larger hydro­tris­(3,5-diiso­propyl­pyrazol­yl)borate ligand (TpiPr2) (Kitajima et al., 1992[Kitajima, N., Fujisawa, K., Fujimoto, C., Morooka, Y., Hashimoto, S., Kitagawa, T., Toriumi, K., Tatsumi, K. & Nakamura, A. (1992). J. Am. Chem. Soc. 114, 1277-1291.]). Homoleptic complexes of this ligand could be isolated with the `classical' divalent lanthanides samarium, europium, thulium and ytterbium (Momin et al., 2014[Momin, A., Carter, L., Yang, Y., McDonald, R., Essafi (née Labouille), S., Nief, F., Del Rosal, I., Sella, A., Maron, L. & Takats, J. (2014). Inorg. Chem. 53, 12066-12075.]; Kühling et al., 2015[Kühling, M., Wickleder, C., Ferguson, M. J., Hrib, C. G., McDonald, R., Suta, M., Hilfert, L., Takats, J. & Edelmann, F. T. (2015). New J. Chem. 39, 7617-7625.]). Rather surprisingly, crystal structure determinations revealed a `bent sandwich'-like mol­ecular structure like Ln(C5Me5)2 (Fig. 1[link]b). Computational studies indicated that steric repulsion between the isopropyl groups forces the TpiPr2 ligands apart and permits the formation of unusual inter­ligand C—H⋯N hydrogen-bonding inter­actions that help to stabil­ize the structure (Momin et al., 2014[Momin, A., Carter, L., Yang, Y., McDonald, R., Essafi (née Labouille), S., Nief, F., Del Rosal, I., Sella, A., Maron, L. & Takats, J. (2014). Inorg. Chem. 53, 12066-12075.]). The recently reported neon-yellow divalent europium complex Eu(TpiPr2)2 also stands out due to its bright-yellow photoluminescence, which has been investigated in great detail (Kühling et al., 2015[Kühling, M., Wickleder, C., Ferguson, M. J., Hrib, C. G., McDonald, R., Suta, M., Hilfert, L., Takats, J. & Edelmann, F. T. (2015). New J. Chem. 39, 7617-7625.]; Suta et al., 2017[Suta, M., Kühling, M., Liebing, P., Edelmann, F. T. & Wickleder, C. (2017). J. Lumin. 187, 62-68.]). Eu(TpiPr2)2 was easily prepared in 83% yield by treatment of the bis-THF adduct of europium(II) diiodide, EuI2(THF)2, with 2 equiv. of KTpiPr2 in THF solution (Kühling et al. 2015[Kühling, M., Wickleder, C., Ferguson, M. J., Hrib, C. G., McDonald, R., Suta, M., Hilfert, L., Takats, J. & Edelmann, F. T. (2015). New J. Chem. 39, 7617-7625.]). We now report that the use of a significantly smaller amount of KTpiPr2 led to extensive ligand fragmentation and formation of the first europium(II) mono(scorp­ion­ate) complex, [HB(3,5-iPr2pz)](3,5-iPr2pzH)2EuIII (1), in addition to a frequently observed by-product, the sterically crowded 4,8-bis­(pyrazol­yl)pyraza­bole derivative trans-{(3,5-iPr2pz)HB(μ-3,5-iPr2pz)}2 (2). Both products have been structurally characterized through single-crystal X-ray diffraction.

[Figure 1]
Figure 1
Comparison of the mol­ecular structures of `bent sandwich'-like lanthanide(II) cyclo­penta­dienides (a) and tris­(3,5-diiso­propyl­pyrazol­yl)borates (b).

The starting material EuI2(THF)2 was prepared from Eu metal and 1,2-di­iodo­ethane using an established literature procedure (Girard et al., 1980[Girard, P., Namy, J. L. & Kagan, H. B. (1980). J. Am. Chem. Soc. 102, 2693-2698.]). The reaction of EuI2(THF)2 with 1.5 equiv. of KTpiPr2 in THF produced a fluorescent, neon-yellow solution and a white precipitate of potassium iodide. Crystallization from n-pentane solvent afforded bright-yellow, air-sensitive crystals, which turned out to be the unexpected europium(II) mono(scorpionate) complex (TpiPr2)(3,5-iPr2pzH)2EuIII (1). The 78% isolated yield of 1 was surprisingly high. The coordinated neutral 3,5-diiso­propyl­yrazole ligands clearly resulted from fragmentation of the TpiPr2 ligand. Ln-induced fragmentation of substituted Tp ligands is well documented (Domingos et al., 2002[Domingos, Â., Elsegood, M. R. J., Hillier, A. C., Lin, G., Liu, S. Y., Lopes, I., Marques, N., Maunder, G. H., McDonald, R., Sella, A., Steed, J. W. & Takats, J. (2002). Inorg. Chem. 41, 6761-6768.], and references cited therein), but it seems to be even more prevalent in the sterically highly demanding TpiPr2 system, as seen in some recently reported Ln(TpiPr2)-derived polysulfide complexes (Kühling et al., 2016[Kühling, M., McDonald, R., Liebing, P., Hilfert, L., Ferguson, M. J., Takats, J. & Edelmann, F. T. (2016). Dalton Trans. 45, 10118-10121.]). Despite its paramagnetic nature, inter­pretable NMR spectra could be obtained for 1. A single resonance at δ −5.3 ppm in the 11B NMR spectrum proved the presence of a single boron-containing species. A high-intensity peak at m/z 769 in the mass spectrum of 1 could be assigned to the fragment ion [Eu(TpiPr2)(iPr2pz)]+, while a peak at m/z 616 corresponds to the ion [Eu(TpiPr2)]+.

[Scheme 1]

Further work-up of the supernatant solution remaining after isolation of 1 by addition of a large volume of non-polar hexa­methyl­disiloxane (HMDSO) resulted in the formation of well-formed, colorless, cube-like crystals in low yield. These turned out to be another ligand fragmentation product typical for lanthanide Tp chemistry, namely the 4,8-bis­(pyrazol­yl)pyraza­bole derivative trans-{(3,5-iPr2pz)HB(μ-3,5-iPr2pz)}2 (2). The parent pyraza­bole, {H2B(μ-pz)}2 has been known since 1966 when it was reported by Trofimenko contemporaneously with the discovery of Tp ligands (Trofimenko, 1966[Trofimenko, S. (1966). J. Am. Chem. Soc. 88, 1842-1844.]). Since then, numerous substituted pyraza­boles have been prepared and structurally investigated (Alcock & Sawyer, 1974[Alcock, N. W. & Sawyer, J. F. (1974). Acta Cryst. B30, 2899-2901.]; Cavero et al., 2008[Cavero, E., Giménez, R., Uriel, S., Beltrán, E., Serrano, J. L., Alkorta, I. & Elguero, J. (2008). Cryst. Growth Des. 8, 838-847.]; Niedenzu & Niedenzu, 1984[Niedenzu, K. & Niedenzu, P. M. (1984). Inorg. Chem. 23, 3713-3716.]; Niedenzu & Nöth, 1983[Niedenzu, K. & Nöth, H. (1983). Chem. Ber. 116, 1132-1153.]; Trofimenko, 1966[Trofimenko, S. (1966). J. Am. Chem. Soc. 88, 1842-1844.]). In a number of recent studies, it has been demonstrated that certain substituted pyraza­boles possess unique photophysical and electrochemical properties and could thus find promising applications in organic photovoltaics (OPVs) and non-linear optics (Jadhav et al., 2013[Jadhav, T., Maragani, R., Misra, R., Sreeramulu, Y., Rao, D. N. & Mobin, S. M. (2013). Dalton Trans. 42, 4340-4342.], 2015[Jadhav, T., Dhokale, B., Patil, Y. & Misra, R. (2015). RSC Adv. 5, 68187-68191.]; Misra et al., 2013[Misra, R., Jadhav, T. & Mobin, S. M. (2013). Dalton Trans. 42, 16614-16620.], 2014[Misra, R., Jadhav, T. & Mobin, S. M. (2014). Dalton Trans. 43, 2013-2022.]; Patil et al., 2017[Patil, Y., Jadhav, T., Dhokale, B., Butenschön, H. & Misra, R. (2017). ChemistrySelect 2, 415-420.]). Compound 2 belongs to the rather special class of 4,8-bis­(pyrazol­yl)pyraza­boles in which two hydrogen atoms at boron are replaced by pyrazolyl moieties (Niedenzu & Niedenzu, 1984[Niedenzu, K. & Niedenzu, P. M. (1984). Inorg. Chem. 23, 3713-3716.]). Deliberate formation of the parent 4,8-bis­(pyrazol­yl)pyraza­bole, 4,8-trans-{(pz)HB(μ-pz)}2, has been achieved by thermolysis of the free acid of the hydro­tris­(pyrazol­yl)borate anion (Kresínski, 1999[Kresiński, R. A. (1999). J. Chem. Soc. Dalton Trans. pp. 401-406.]). In lanthanide Tp chemistry, such 4,8-(pyrazol­yl)pyraza­boles normally represent unwanted side-products as they frequently result from ligand fragmentation and are often the first crystalline products to come out of reaction mixtures (Kühling et al., 2015[Kühling, M., Wickleder, C., Ferguson, M. J., Hrib, C. G., McDonald, R., Suta, M., Hilfert, L., Takats, J. & Edelmann, F. T. (2015). New J. Chem. 39, 7617-7625.], 2016[Kühling, M., McDonald, R., Liebing, P., Hilfert, L., Ferguson, M. J., Takats, J. & Edelmann, F. T. (2016). Dalton Trans. 45, 10118-10121.]; Lobbia et al., 1992[Lobbia, G. G., Bonati, F., Cecchi, P. & Pettinari, C. (1992). Gazz. Chim. Ital. 121, 355-358.]). Spectroscopic characterization of 2 was in good agreement with the results of the X-ray diffraction study. For instance, the mass spectrum of 2 showed the mol­ecular ion at m/z 627, and the 11B NMR spectrum displayed a single resonance at δ −4.3 ppm.

2. Structural commentary

Both title compounds 1 and 2 exist as well-separated mol­ecules in the crystal. In the EuII complex 1, one mol­ecule is present in the asymmetric unit (Fig. 2[link]). The TpiPr2 ligand is attached to Eu in a symmetric tridentate mode with an H—B⋯Eu angle of 179.0 (2)°. The three Eu—N bonds cover the range 2.581 (2)–2.633 (2) Å, which resembles that observed in the corresponding homoleptic EuII complex Eu(TpiPr2)2 [2.563 (5)–2.670 (5) Å; Suta et al., 2017[Suta, M., Kühling, M., Liebing, P., Edelmann, F. T. & Wickleder, C. (2017). J. Lumin. 187, 62-68.]]. The same applies to the B—N bonds, which are in the narrow range 1.547 (4)–1.555 (4) Å [Eu(TpiPr2)2: B—N = 1.531 (8)–1.559 (7) Å]. In 1, the coordination of the iodido ligand relative to the (TpiPr2) ligand is slightly tilted [I—Eu⋯B = 151.49 (5)°], and an almost linear arrangement of the iodido ligand and one of the TpiPr2 N-donor atoms is realized [I—Eu—N2 = 165.92 (5)°]. A strongly distorted octa­hedral coordination is completed by the two neutral (3,5-iPr2pzH) ligands, with coordination angles of 138.80 (7)° (N4—Eu—N8) and 137.43 (7)° (N6—Eu—N10). The corresponding Eu—N bond lengths [Eu—N8 = 2.699 (3), Eu—N10 = 2.660 (2) Å] are slightly longer than those to the (TpiPr2) ligand, which may be due to the absence of negative ligand charge. The NH⋯N distances between the two pyrazole NH moieties and potential hydrogen-acceptor atoms (N2, N4, N6) are in the range 2.512 (2)–2.610 (2) Å, but the groups are not in a proper orientation for efficient hydrogen bonding [N—H⋯N 115.0 (2)–122.0 (2)°]. Consequently, stabilization of the mol­ecular structure by intra­molecular hydrogen bonding is presumably of less importance.

[Figure 2]
Figure 2
The mol­ecular structure of compound 1 in the crystal, showing orientational disorder of two isopropyl groups. Displacement ellipsoids are drawn at the 40% probability level, H atoms attached to C atoms omitted for clarity.

The pyraza­bol 2 exists as a centrosymmetric dimer in the crystal, which formally results from two HB(3,5-iPr2pz)2 monomers (Fig. 3[link]). The two B atoms are inter­connected by two μ-bridging (3,5-iPr2pz) moieties, resulting in a planar, six-membered B2N4 ring. The B—N bonds within this ring are virtually equal at 1.554 (2) Å (B—N1) and 1.557 (2) Å (B—N2′), and therefore similar to that within the (TpiPr2) ligand in 1. In contrast, the B—N bond to the terminal (3,5-iPr2pz) moiety (B—N3) is slightly shortened to 1.532 (2) Å. The B atoms in 2 exhibit a virtually ideal tetra­hedral coordination with bonding angles in the narrow range 108.3 (1)–110.7 (1)°. The mol­ecular structure of 2 is very similar to that of the 3,5-di­methyl­pyrazolyl analog, trans-{(3,5-Me2pz)HB(μ-3,5-Me2pz)}2 [B—N = 1.5419 (2) and 1.5486 (1) Å for μ-(3,5-Me2pz) and 1.5257 (2) Å for terminal 3,5-Me2pz, N—B—N = 108.532 (6)–109.091 (6)°; Alcock & Sawyer, 1974[Alcock, N. W. & Sawyer, J. F. (1974). Acta Cryst. B30, 2899-2901.]]. In contrast, the unsubstituted pyraza­bol trans-{(pz)HB(μ-pz)}2 is non-centrosymmetric and features a remarkably puckered B2N4 ring [B—N = 1.546 (3)–1.559 (3) Å for μ-pz and 1.501 (3)–1.533 (3) Å for terminal pz, N—B—N = 105.2 (2)–111.0 (2)°; Kresiński, 1999[Kresiński, R. A. (1999). J. Chem. Soc. Dalton Trans. pp. 401-406.]].

[Figure 3]
Figure 3
The mol­ecular structure of compound 2 in the crystal, showing orientational disorder of one isopropyl group. Displacement ellipsoids drawn at the 50% probability level, H atoms attached to C atoms omitted for clarity. [Symmetry code: (′) [{1\over 2}] − x, [{1\over 2}] − y, −z.]

3. Supra­molecular features

In both compounds 1 and 2, no unusually short inter­molecular contacts have been observed. In 1, the bulky iPr groups at the mol­ecule's surface does not allow for inter­molecular N—H⋯N hydrogen bonding.

4. Database survey

For selected references on the reactivity of the sandwich complexes Ln(C5Me5)2 (Ln = Sm, Eu, Yb), see: Evans et al. (1983[Evans, W. J., Bloom, I., Hunter, W. E. & Atwood, J. L. (1983). J. Am. Chem. Soc. 105, 1401-1403.], 1988[Evans, W. J., Ulibarri, T. A. & Ziller, J. W. (1988). J. Am. Chem. Soc. 110, 6877-6879.]), Evans (2007[Evans, W. J. (2007). Inorg. Chem. 46, 3435-3449.]).

For general information on scorpionate ligands, see: Kitajima et al. (1992[Kitajima, N., Fujisawa, K., Fujimoto, C., Morooka, Y., Hashimoto, S., Kitagawa, T., Toriumi, K., Tatsumi, K. & Nakamura, A. (1992). J. Am. Chem. Soc. 114, 1277-1291.]), Pettinari (2008[Pettinari, C. (2008). Scorpionates II: Chelating Borate Ligands. Imperial College Press, London.]),Trofimenko (1966[Trofimenko, S. (1966). J. Am. Chem. Soc. 88, 1842-1844.], 1999[Trofimenko, S. (1999). The Coordination Chemistry of Scorpionates - Pyrazolylborate Ligands. Imperial College Press, London.]).

For the chemistry of divalent lanthanide scorpionate complexes, see: Davies et al. (1985[Davies, C. E., Gardiner, I. M., Green, J. C., Green, M. L. H., Hazel, N. J., Grebenik, P. D., Mtetwa, V. S. B. & Prout, H. (1985). J. Chem. Soc. Dalton Trans. pp. 669-683.]), Domingos et al. (2002[Domingos, Â., Elsegood, M. R. J., Hillier, A. C., Lin, G., Liu, S. Y., Lopes, I., Marques, N., Maunder, G. H., McDonald, R., Sella, A., Steed, J. W. & Takats, J. (2002). Inorg. Chem. 41, 6761-6768.]), Hillier et al. (2001[Hillier, A. C., Zhang, X. W., Maunder, G. H., Liu, S. Y., Eberspacher, T. A., Metz, M. V., McDonald, R., Domingos, Â., Marques, N., Day, V. W., Sella, A. & Takats, J. (2001). Inorg. Chem. 40, 5106-5116.]), Kühling et al. (2015[Kühling, M., Wickleder, C., Ferguson, M. J., Hrib, C. G., McDonald, R., Suta, M., Hilfert, L., Takats, J. & Edelmann, F. T. (2015). New J. Chem. 39, 7617-7625.], 2016[Kühling, M., McDonald, R., Liebing, P., Hilfert, L., Ferguson, M. J., Takats, J. & Edelmann, F. T. (2016). Dalton Trans. 45, 10118-10121.]), Marques et al. (2002[Marques, N., Sella, A. & Takats, J. (2002). Chem. Rev. 102, 2137-2160.]), Momin et al. (2014[Momin, A., Carter, L., Yang, Y., McDonald, R., Essafi (née Labouille), S., Nief, F., Del Rosal, I., Sella, A., Maron, L. & Takats, J. (2014). Inorg. Chem. 53, 12066-12075.]), Suta et al. (2017[Suta, M., Kühling, M., Liebing, P., Edelmann, F. T. & Wickleder, C. (2017). J. Lumin. 187, 62-68.]).

For general information on the chemistry and structures of pyraza­boles, see: Cavero et al. (2008[Cavero, E., Giménez, R., Uriel, S., Beltrán, E., Serrano, J. L., Alkorta, I. & Elguero, J. (2008). Cryst. Growth Des. 8, 838-847.]), Niedenzu & Niedenzu (1984[Niedenzu, K. & Niedenzu, P. M. (1984). Inorg. Chem. 23, 3713-3716.]), Niedenzu & Nöth (1983[Niedenzu, K. & Nöth, H. (1983). Chem. Ber. 116, 1132-1153.]), Trofimenko (1966[Trofimenko, S. (1966). J. Am. Chem. Soc. 88, 1842-1844.]).

For information on practical applications of pyraza­boles, see: Jadhav et al. (2013[Jadhav, T., Maragani, R., Misra, R., Sreeramulu, Y., Rao, D. N. & Mobin, S. M. (2013). Dalton Trans. 42, 4340-4342.], 2015[Jadhav, T., Dhokale, B., Patil, Y. & Misra, R. (2015). RSC Adv. 5, 68187-68191.]), Misra et al. (2013[Misra, R., Jadhav, T. & Mobin, S. M. (2013). Dalton Trans. 42, 16614-16620.], 2014[Misra, R., Jadhav, T. & Mobin, S. M. (2014). Dalton Trans. 43, 2013-2022.]), Patil et al. (2017[Patil, Y., Jadhav, T., Dhokale, B., Butenschön, H. & Misra, R. (2017). ChemistrySelect 2, 415-420.]).

5. Synthesis and crystallization

All operations were performed under an argon atmosphere using standard Schlenk techniques. THF, hexa­methyl­disiloxane (HMDSO), and n-pentane were distilled from sodium/benzo­phenone under argon prior to use. NMR spectra were recorded on a Bruker DPX400 (1H: 400 MHz) spectrom­eter in THF-D8 at 295 (2) K. The 11B NMR spectra were obtained by using inverse gated decoupling on a Bruker Avance 400 NMR spectrometer, operating at 128.4 MHz. The external standard was 15 wt-% BF3·OEt2 in CDCl3 (δB = 0 ppm). IR spectra were measured on a Bruker Vertex V70 spectrometer equipped with a diamond ATR unit, electron impact mass spectra on a MAT95 spectrometer with an ioniz­ation energy of 70 eV. Elemental analyses (C, H and N) were performed using a VARIO EL cube apparatus. The starting materials EuI2(THF)2 (Girard et al. 1980[Girard, P., Namy, J. L. & Kagan, H. B. (1980). J. Am. Chem. Soc. 102, 2693-2698.]) and KTpiPr2 (Kitajima et al. 1992[Kitajima, N., Fujisawa, K., Fujimoto, C., Morooka, Y., Hashimoto, S., Kitagawa, T., Toriumi, K., Tatsumi, K. & Nakamura, A. (1992). J. Am. Chem. Soc. 114, 1277-1291.]) were prepared according to published procedures.

Preparation of (TpiPr2)(3,5-iPr2Hpz)2EuIII (1) and trans-{(3,5-iPr2pz)HB(μ-3,5-iPr2pz)}2 (2): In a 250 mL Schlenk flask, THF (150 mL) was added to a mixture of EuI2(THF)2 (2.36 g, 4.29 mmol) and KTpiPr2 (3.20 g, 6.33 mmol), and the resulting suspension was stirred for 12 h at r.t. A white precipitate (KI) was removed by filtration and the neon-yellow, fluorescent filtrate was evaporated to dryness. The residue was extracted with n-pentane (3 × 50 mL), the combined extracts filtered again and concentrated in vacuo to a total volume of ca 30 mL. Cooling to 277 K afforded bright-yellow, air-sensitive crystals of 1 (3.64 g, 78%), which were suitable for X-ray diffraction. The mother liquid was taken to dryness, and the slightly sticky residue was redissolved in ca 5 mL of THF. Addition of dry hexa­methyl­disiloxane (ca 50 mL) followed by cooling to 277 K for several days afforded ca 0.5 g of 2 as colorless, cube-like single-crystals.

1: Analysis calculated for C45H78BEuIN10, M = 1049.86 g mol−1: C 51.48, H 7.58, N 13.34%. Found: C 50.88, H 7.77, N 12.59%. M.p. ca 353 K (dec.). IR: ν 3173 w, 3096 w (ν C—H pyrazol­yl), 2961 s, 2929 m, 2869 m (ν CH3), 2550 w (νB—H), 1565 w, 1534 m, 1460 s, 1426 m, 1379 s, 1361 s, 1295 m, 1170 vs, 1104 m, 1046 s, 1012 s, 958 w, 923 w, 878 w, 787 vs, 767 s, 716 m, 659 s, 587 w, 511 w, 462 w, 389 w, 362 w, 306 w, 258 w, 219 w, 109 s, 75 m cm−1. 1H NMR (400.1 MHz, THF-D8, 300 K): δ 11.6 (s br, B—H), 5.70 (s br, 5H, C-H pyrazol­yl), 2.88 δ 153.8 (br, q-C pyrazol­yl), 98.7, 99.3 (C—H pyrazol­yl), 27.9, 32.1 (C—H iPr), 23.2 (CH3 iPr). 11B NMR (300 K, THF-D8, 128.4 MHz): δ −5.3 (s, br) ppm. MS: m/z (%) 769 (98) [Eu(TpiPr2)(iPr2pz)]+, 616 (92) [Eu(TpiPr2)]+, 477 (85), 321 (100), 302 (55) [EuBH(iPr2pz-CH3)]+, 152 (21) [iPr2pz]+, 137 (63).

2: Analysis calculated for C36H62B2N8, M = 628.56 g mol−1: C 68.79, H 9.94, N 17.83%. Found: C 68.50, H 10.10, N 17.53%. M.p. 553 K. IR: ν 3176 w, 3094 w (ν C—H pyrazol­yl), 2966 s, 2928 m, 2869 m, 2825 w (ν CH3), 2467 w (ν B—H), 1576 w, 1541 m, 1497 m, 1461 m, 1369 m, 1301 s, 1233 vs, 1169 vs, 1134 vs, 1090 s, 1063 s, 1041 m, 1015 m, 982 s, 919 w, 879 w, 832 s, 788 s, 751 m, 723 m, 675 m, 566 m, 508 m, 473 w, 365 m, 302 m, 246 m, 137 m, 106 m, 75 m cm−1. 1H NMR (400.1 MHz, THF-D8, 300 K): δ 11.0 (s br, 2H, B—H), 5.75 (s br, 4H, C-H pyrazol­yl), 2.87–2.91 (m, 4H, C—H iPr), 1.15–1.27 (m, 48H, CH3 iPr) ppm. 13C NMR (300 K, THF-D8, 100 MHz): δ 160.7 (br, q-C pyrazol­yl), 97.5 (C—H pyrazol­yl), 28.5 (C—H iPr), 23.5 (CH3 iPr). 11B NMR (300 K, THF-D8, 128.4 MHz): δ −4.3 (s, br) ppm. MS: m/z (%) 627 (62) [M]+, 476 (100) [C27H46B2N6]+, 461 (75) [C26H43B2N6]+, 325 (66) [C18H31B2N4]+, 152 (74) [C6H2B2N4]+, 137 (89) [pz2].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms were refined as riding atoms with B—H = 1.00 Å and C—H = 0.98–1.00 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(B,C) for all others. In 1, two isopropyl groups are each disordered over two orientations with occupancy ratios of 0.574 (10):0.426 (10) and 0.719 (16):0.281 (16). In 2, one isopropyl group is similarly disordered, occupancy ratio 0.649 (9):0.351 (9).

Table 1
Experimental details

  1 2
Crystal data
Chemical formula [Eu(C27H46BN6)I(C9H16N2)2] C36H62B2N8
Mr 1048.84 628.55
Crystal system, space group Orthorhombic, Pbca Monoclinic, C2/c
Temperature (K) 153 153
a, b, c (Å) 19.5319 (4), 26.6614 (4), 19.8681 (3) 25.7646 (11), 11.2134 (3), 15.0968 (7)
α, β, γ (°) 90, 90, 90 90, 118.792 (3), 90
V3) 10346.3 (3) 3822.4 (3)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.85 0.07
Crystal size (mm) 0.49 × 0.27 × 0.21 0.33 × 0.29 × 0.13
 
Data collection
Diffractometer Stoe IPDS 2T Stoe IPDS 2T
Absorption correction Numerical (X-AREA and X-RED; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.535, 0.716
No. of measured, independent and observed [I > 2σ(I)] reflections 43898, 10158, 8229 10509, 3367, 2594
Rint 0.045 0.046
(sin θ/λ)max−1) 0.617 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.063, 1.04 0.044, 0.104, 1.02
No. of reflections 10158 3367
No. of parameters 576 238
No. of restraints 24 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.24, −1.27 0.25, −0.21
Computer programs: X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA and X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(3,5-diisopropyl-1H-pyrazole)[hydrotris(3,5-diisopropylpyrazolyl)borato]iodidoeuropium(II) (1) top
Crystal data top
[Eu(C27H46BN6)I(C9H16N2)2]Dx = 1.347 Mg m3
Mr = 1048.84Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 44511 reflections
a = 19.5319 (4) Åθ = 2.2–26.2°
b = 26.6614 (4) ŵ = 1.85 mm1
c = 19.8681 (3) ÅT = 153 K
V = 10346.3 (3) Å3Block, yellow
Z = 80.49 × 0.27 × 0.21 mm
F(000) = 4312
Data collection top
Stoe IPDS 2T
diffractometer
10158 independent reflections
Radiation source: fine-focus sealed tube8229 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.045
area detector scansθmax = 26.0°, θmin = 2.2°
Absorption correction: numerical
(X-AREA and X-RED; Stoe & Cie, 2002)
h = 2324
Tmin = 0.535, Tmax = 0.716k = 3232
43898 measured reflectionsl = 2124
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0226P)2 + 10.682P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
10158 reflectionsΔρmax = 1.24 e Å3
576 parametersΔρmin = 1.27 e Å3
24 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: heavy-atom methodExtinction coefficient: 0.00019 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.23921 (15)0.19065 (10)0.45330 (14)0.0232 (6)
C20.21068 (16)0.19034 (11)0.38902 (14)0.0273 (6)
H40.1832760.2157460.3690570.033*
C30.23046 (15)0.14552 (10)0.36038 (14)0.0238 (6)
C40.23355 (17)0.23068 (11)0.50638 (15)0.0283 (6)
H50.2639080.2210370.5447890.034*
C50.25808 (19)0.28129 (12)0.47934 (18)0.0384 (8)
H80.2554170.3064930.5151430.058*
H60.2289810.2915440.4415890.058*
H70.3055750.2782520.4639530.058*
C60.16048 (18)0.23508 (12)0.53306 (17)0.0381 (8)
H100.1587950.2607250.5683520.057*
H90.1460110.2027460.5517240.057*
H110.1297350.2445810.4962240.057*
C70.21582 (15)0.12724 (11)0.29037 (14)0.0291 (6)
H120.2186470.0897890.2902760.035*
C80.14350 (19)0.14246 (15)0.26872 (18)0.0492 (9)
H140.1337310.1285340.2240960.074*
H130.1402940.1791210.2669700.074*
H150.1102060.1294740.3012420.074*
C90.2686 (2)0.14745 (12)0.24108 (16)0.0392 (8)
H170.2590150.1344090.1959490.059*
H180.3144710.1368030.2551550.059*
H160.2664400.1841720.2403950.059*
C100.48118 (14)0.09139 (11)0.45682 (14)0.0244 (6)
C110.49553 (15)0.07902 (11)0.39050 (14)0.0274 (6)
H190.5393990.0779250.3699110.033*
C120.43383 (15)0.06867 (10)0.36050 (14)0.0238 (6)
C130.52990 (15)0.10295 (12)0.51323 (15)0.0309 (7)
H200.5023090.1140620.5529280.037*
C140.56970 (19)0.05623 (13)0.53359 (17)0.0432 (8)
H210.6003010.0643300.5711370.065*
H220.5968050.0443720.4952500.065*
H230.5376140.0299380.5474690.065*
C150.57849 (19)0.14513 (14)0.4948 (2)0.0483 (9)
H240.6073700.1532130.5336680.073*
H250.5520760.1748280.4817850.073*
H260.6074490.1345940.4570930.073*
C160.42087 (16)0.04955 (11)0.29062 (14)0.0287 (6)
H270.3746540.0614150.2759380.034*
C170.4208 (2)0.00760 (12)0.29044 (17)0.0436 (9)
H300.4123170.0197690.2446420.065*
H280.3846770.0198800.3204680.065*
H290.4652950.0199210.3060870.065*
C180.4739 (2)0.06968 (17)0.24131 (17)0.0512 (10)
H320.4608570.0603800.1953460.077*
H330.5188190.0553080.2518680.077*
H310.4761530.1062950.2450010.077*
C190.26615 (17)0.00515 (11)0.55876 (15)0.0290 (6)
C200.23614 (18)0.02982 (12)0.51569 (17)0.0341 (7)
H340.2137860.0600760.5281250.041*
C210.24547 (15)0.01156 (11)0.45133 (16)0.0268 (7)
C220.27416 (19)0.00427 (12)0.63403 (15)0.0362 (7)
H350.2830220.0394930.6489670.043*
C230.3355 (2)0.02675 (15)0.65418 (18)0.0469 (9)
H370.3402000.0264210.7032830.070*
H380.3768570.0126350.6336620.070*
H360.3292490.0613450.6386630.070*
C240.2098 (2)0.01320 (16)0.66876 (19)0.0524 (10)
H390.2170360.0131510.7175760.079*
H410.1986570.0472530.6538000.079*
H400.1720260.0094460.6574890.079*
C250.22093 (18)0.03350 (12)0.38605 (16)0.0346 (7)
H420.2581860.0294030.3519650.041*
C260.2065 (2)0.08964 (13)0.3940 (2)0.0525 (10)
H450.1943440.1039370.3501690.079*
H440.1685490.0944620.4255560.079*
H430.2475230.1064450.4113530.079*
C270.1578 (2)0.00645 (14)0.36021 (19)0.0471 (9)
H470.1430550.0216540.3176930.071*
H460.1686140.0290130.3528190.071*
H480.1208840.0092540.3934290.071*
C280.17695 (16)0.13410 (11)0.67075 (15)0.0291 (6)
C290.10972 (16)0.11984 (13)0.65687 (15)0.0353 (7)
H490.0716670.1215930.6865500.042*
C300.10960 (17)0.10284 (13)0.59193 (16)0.0353 (7)
C310.20606 (18)0.15603 (13)0.73387 (16)0.0373 (8)
H500.2475950.1361060.7461930.045*
C320.2284 (3)0.20987 (16)0.7225 (2)0.0698 (13)
H530.2477100.2234050.7642410.105*
H510.1887270.2300490.7090490.105*
H520.2630590.2109330.6869090.105*
C330.1558 (2)0.15271 (18)0.79216 (19)0.0608 (11)
H550.1767960.1670160.8326540.091*
H540.1441320.1174990.8003820.091*
H560.1142220.1714830.7810020.091*
C34A0.0541 (2)0.08120 (17)0.54784 (19)0.0532 (10)0.574 (10)
H57A0.0133500.1020800.5597350.064*0.574 (10)
C34B0.0541 (2)0.08120 (17)0.54784 (19)0.0532 (10)0.426 (10)
H57B0.0664280.0448010.5487160.064*0.426 (10)
C350.0648 (2)0.09304 (16)0.47511 (18)0.0532 (10)
H580.0711830.1292680.4696440.080*
H590.0246580.0822480.4492770.080*
H600.1054870.0753710.4587030.080*
C36A0.0340 (5)0.0322 (3)0.5685 (5)0.076 (3)0.574 (10)
H61A0.0203030.0330420.6159860.114*0.574 (10)
H62A0.0725010.0090550.5628950.114*0.574 (10)
H63A0.0046630.0209410.5410060.114*0.574 (10)
C36B0.0104 (5)0.0799 (5)0.5750 (5)0.063 (4)0.426 (10)
H61B0.0090180.0624950.6184330.095*0.426 (10)
H62B0.0412220.0619300.5443710.095*0.426 (10)
H63B0.0270940.1141750.5815170.095*0.426 (10)
C370.43817 (16)0.24760 (12)0.54152 (15)0.0315 (7)
C380.46062 (18)0.27479 (13)0.48529 (16)0.0387 (8)
H640.4842380.3059370.4855910.046*
C390.44185 (17)0.24765 (12)0.43003 (15)0.0341 (7)
C400.4448 (2)0.26136 (14)0.61417 (16)0.0458 (9)
H650.4228130.2344990.6418280.055*
C410.5196 (3)0.2646 (2)0.6334 (2)0.0818 (17)
H670.5235190.2757080.6802450.123*
H680.5428050.2886350.6039060.123*
H660.5408520.2314950.6285000.123*
C420.4073 (3)0.3109 (2)0.6274 (2)0.0861 (18)
H690.4128740.3203900.6747070.129*
H710.3585440.3068160.6172310.129*
H700.4265940.3372200.5985750.129*
C43A0.4504 (2)0.25747 (16)0.35604 (17)0.0512 (10)0.719 (16)
H72A0.4378570.2936470.3510160.061*0.719 (16)
C43B0.4504 (2)0.25747 (16)0.35604 (17)0.0512 (10)0.281 (16)
H72B0.4708870.2917750.3534440.061*0.281 (16)
C44A0.5189 (4)0.2553 (5)0.3336 (3)0.072 (3)0.719 (16)
H73A0.5211370.2660470.2864540.108*0.719 (16)
H74A0.5358420.2208840.3375030.108*0.719 (16)
H75A0.5471590.2776430.3612290.108*0.719 (16)
C44B0.5127 (12)0.2193 (12)0.3331 (8)0.071 (6)0.281 (16)
H73B0.5513460.2229430.3641410.106*0.281 (16)
H74B0.5275070.2276870.2873420.106*0.281 (16)
H75B0.4961650.1845950.3341900.106*0.281 (16)
C45A0.3975 (4)0.2304 (5)0.3138 (3)0.057 (2)0.719 (16)
H76A0.3516290.2375830.3312770.085*0.719 (16)
H77A0.4059470.1941540.3157730.085*0.719 (16)
H78A0.4007170.2417880.2670330.085*0.719 (16)
C45B0.3905 (11)0.2610 (10)0.3212 (9)0.058 (5)0.281 (16)
H76B0.4003860.2648980.2731140.087*0.281 (16)
H77B0.3646380.2902080.3371400.087*0.281 (16)
H78B0.3633730.2305570.3282520.087*0.281 (16)
B0.30572 (17)0.06863 (11)0.40118 (16)0.0217 (6)
H10.2954160.0535630.3562120.026*
N10.26882 (12)0.12017 (8)0.40630 (10)0.0207 (4)
N20.27389 (12)0.14851 (8)0.46446 (11)0.0224 (5)
N30.38405 (12)0.07583 (8)0.40739 (11)0.0217 (5)
N40.41373 (12)0.09024 (9)0.46732 (11)0.0234 (5)
N50.27948 (12)0.03263 (8)0.45666 (11)0.0223 (5)
N60.29237 (12)0.04292 (9)0.52350 (11)0.0250 (5)
N70.17398 (13)0.10721 (9)0.57009 (13)0.0310 (5)
H20.1871290.0986620.5293100.037*
N80.21714 (13)0.12622 (9)0.61732 (12)0.0298 (5)
N90.41090 (14)0.20651 (10)0.45416 (12)0.0306 (6)
H30.3942580.1826170.4283460.037*
N100.40781 (13)0.20540 (10)0.52242 (12)0.0289 (5)
I0.42224 (2)0.11967 (2)0.71250 (2)0.04898 (7)
EU0.34693 (2)0.12375 (2)0.57077 (2)0.02286 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0221 (14)0.0230 (14)0.0245 (14)0.0014 (12)0.0007 (11)0.0010 (11)
C20.0259 (16)0.0254 (14)0.0305 (15)0.0057 (12)0.0045 (12)0.0012 (11)
C30.0214 (14)0.0251 (13)0.0248 (14)0.0008 (12)0.0002 (11)0.0017 (11)
C40.0319 (16)0.0263 (14)0.0268 (15)0.0066 (13)0.0006 (13)0.0028 (12)
C50.044 (2)0.0286 (16)0.043 (2)0.0008 (15)0.0017 (15)0.0063 (14)
C60.041 (2)0.0350 (17)0.0383 (18)0.0086 (15)0.0065 (15)0.0033 (13)
C70.0332 (16)0.0271 (14)0.0269 (14)0.0015 (13)0.0069 (12)0.0031 (12)
C80.042 (2)0.063 (2)0.043 (2)0.0119 (19)0.0176 (16)0.0166 (17)
C90.055 (2)0.0339 (17)0.0287 (16)0.0040 (17)0.0029 (16)0.0004 (13)
C100.0183 (14)0.0261 (14)0.0288 (14)0.0018 (12)0.0004 (11)0.0004 (11)
C110.0165 (14)0.0387 (17)0.0270 (15)0.0004 (13)0.0028 (11)0.0005 (12)
C120.0208 (15)0.0276 (14)0.0229 (13)0.0021 (12)0.0041 (11)0.0026 (11)
C130.0218 (15)0.0392 (16)0.0316 (16)0.0052 (13)0.0003 (12)0.0060 (13)
C140.042 (2)0.050 (2)0.0380 (19)0.0024 (17)0.0161 (15)0.0061 (15)
C150.037 (2)0.049 (2)0.059 (2)0.0175 (17)0.0167 (17)0.0002 (17)
C160.0233 (15)0.0394 (16)0.0235 (14)0.0020 (13)0.0004 (12)0.0018 (12)
C170.056 (2)0.0411 (18)0.0332 (17)0.0113 (17)0.0097 (16)0.0104 (14)
C180.042 (2)0.085 (3)0.0259 (17)0.007 (2)0.0069 (15)0.0005 (17)
C190.0272 (15)0.0295 (15)0.0304 (16)0.0003 (13)0.0055 (13)0.0063 (12)
C200.0340 (17)0.0284 (16)0.0398 (18)0.0063 (14)0.0072 (15)0.0070 (13)
C210.0226 (16)0.0230 (15)0.0348 (17)0.0024 (12)0.0034 (11)0.0012 (12)
C220.043 (2)0.0365 (17)0.0291 (16)0.0030 (16)0.0084 (14)0.0101 (13)
C230.045 (2)0.059 (2)0.0371 (19)0.0125 (19)0.0034 (16)0.0110 (16)
C240.045 (2)0.072 (3)0.041 (2)0.005 (2)0.0151 (17)0.0221 (18)
C250.0351 (19)0.0308 (16)0.0378 (17)0.0121 (14)0.0035 (14)0.0043 (13)
C260.068 (3)0.0303 (18)0.060 (2)0.0145 (19)0.000 (2)0.0075 (16)
C270.044 (2)0.048 (2)0.050 (2)0.0111 (18)0.0107 (17)0.0014 (16)
C280.0284 (15)0.0262 (15)0.0328 (15)0.0022 (12)0.0073 (12)0.0018 (12)
C290.0278 (16)0.0426 (18)0.0355 (16)0.0032 (15)0.0066 (13)0.0021 (14)
C300.0268 (17)0.0393 (17)0.0398 (17)0.0073 (14)0.0024 (13)0.0068 (14)
C310.0373 (19)0.0404 (18)0.0342 (17)0.0038 (15)0.0001 (14)0.0040 (14)
C320.098 (4)0.056 (3)0.055 (3)0.024 (3)0.013 (3)0.012 (2)
C330.060 (3)0.086 (3)0.037 (2)0.006 (2)0.0109 (19)0.018 (2)
C34A0.039 (2)0.073 (3)0.047 (2)0.025 (2)0.0084 (17)0.0071 (19)
C34B0.039 (2)0.073 (3)0.047 (2)0.025 (2)0.0084 (17)0.0071 (19)
C350.048 (2)0.067 (3)0.045 (2)0.006 (2)0.0090 (17)0.0075 (18)
C36A0.070 (6)0.064 (5)0.095 (6)0.041 (5)0.037 (5)0.019 (5)
C36B0.025 (5)0.103 (9)0.061 (6)0.020 (5)0.011 (4)0.009 (6)
C370.0315 (17)0.0348 (16)0.0281 (15)0.0101 (14)0.0032 (13)0.0003 (12)
C380.045 (2)0.0397 (18)0.0311 (16)0.0199 (16)0.0014 (15)0.0022 (13)
C390.0349 (17)0.0413 (17)0.0261 (15)0.0099 (15)0.0018 (14)0.0075 (14)
C400.055 (2)0.057 (2)0.0251 (16)0.0231 (19)0.0060 (15)0.0063 (15)
C410.072 (3)0.141 (5)0.033 (2)0.041 (3)0.014 (2)0.003 (3)
C420.125 (5)0.085 (4)0.048 (3)0.001 (3)0.022 (3)0.027 (2)
C43A0.064 (3)0.065 (2)0.0245 (16)0.022 (2)0.0027 (17)0.0075 (16)
C43B0.064 (3)0.065 (2)0.0245 (16)0.022 (2)0.0027 (17)0.0075 (16)
C44A0.058 (4)0.128 (8)0.031 (3)0.041 (5)0.004 (3)0.004 (4)
C44B0.074 (11)0.118 (14)0.021 (6)0.022 (11)0.018 (7)0.003 (9)
C45A0.054 (4)0.093 (6)0.023 (3)0.027 (4)0.005 (2)0.007 (3)
C45B0.081 (11)0.062 (11)0.031 (7)0.019 (10)0.007 (7)0.017 (8)
B0.0184 (16)0.0228 (15)0.0239 (15)0.0031 (13)0.0004 (12)0.0019 (12)
N10.0199 (11)0.0201 (11)0.0222 (10)0.0001 (10)0.0009 (9)0.0001 (9)
N20.0226 (12)0.0242 (12)0.0204 (11)0.0020 (10)0.0010 (9)0.0024 (9)
N30.0205 (12)0.0241 (11)0.0204 (11)0.0007 (10)0.0002 (9)0.0006 (9)
N40.0180 (12)0.0269 (12)0.0252 (12)0.0016 (10)0.0020 (9)0.0040 (9)
N50.0189 (12)0.0236 (11)0.0245 (11)0.0014 (10)0.0008 (9)0.0005 (9)
N60.0231 (13)0.0297 (12)0.0222 (11)0.0009 (10)0.0028 (9)0.0022 (9)
N70.0296 (14)0.0359 (13)0.0274 (12)0.0050 (11)0.0033 (11)0.0035 (11)
N80.0286 (13)0.0304 (13)0.0303 (12)0.0030 (12)0.0006 (10)0.0002 (11)
N90.0353 (15)0.0348 (14)0.0216 (11)0.0072 (12)0.0006 (11)0.0016 (10)
N100.0300 (14)0.0361 (14)0.0206 (11)0.0020 (11)0.0001 (10)0.0026 (10)
I0.04194 (13)0.07629 (18)0.02871 (11)0.00290 (13)0.00875 (9)0.00910 (11)
EU0.02157 (7)0.02746 (7)0.01955 (7)0.00247 (6)0.00070 (5)0.00068 (6)
Geometric parameters (Å, º) top
C1—N21.331 (4)C30—N71.336 (4)
C1—C21.393 (4)C30—C34A1.508 (5)
C1—C41.504 (4)C30—C34B1.508 (5)
C2—C31.379 (4)C31—C321.517 (5)
C2—H40.9500C31—C331.520 (5)
C3—N11.360 (3)C31—H501.0000
C3—C71.501 (4)C32—H530.9800
C4—C61.527 (4)C32—H510.9800
C4—C51.529 (4)C32—H520.9800
C4—H51.0000C33—H550.9800
C5—H80.9800C33—H540.9800
C5—H60.9800C33—H560.9800
C5—H70.9800C34a—C36A1.424 (8)
C6—H100.9800C34a—C351.494 (5)
C6—H90.9800C34a—H57A1.0000
C6—H110.9800C34b—C36B1.371 (9)
C7—C91.521 (4)C34b—C351.494 (5)
C7—C81.531 (4)C34b—H57B1.0000
C7—H121.0000C35—H580.9800
C8—H140.9800C35—H590.9800
C8—H130.9800C35—H600.9800
C8—H150.9800C36a—H61A0.9800
C9—H170.9800C36a—H62A0.9800
C9—H180.9800C36a—H63A0.9800
C9—H160.9800C36b—H61B0.9800
C10—N41.334 (4)C36b—H62B0.9800
C10—C111.387 (4)C36b—H63B0.9800
C10—C131.502 (4)C37—N101.327 (4)
C11—C121.372 (4)C37—C381.402 (4)
C11—H190.9500C37—C401.495 (4)
C12—N31.360 (4)C38—C391.365 (4)
C12—C161.501 (4)C38—H640.9500
C13—C151.516 (5)C39—N91.341 (4)
C13—C141.523 (5)C39—C43A1.502 (4)
C13—H201.0000C39—C43B1.502 (4)
C14—H210.9800C40—C411.511 (6)
C14—H220.9800C40—C421.534 (6)
C14—H230.9800C40—H651.0000
C15—H240.9800C41—H670.9800
C15—H250.9800C41—H680.9800
C15—H260.9800C41—H660.9800
C16—C181.523 (4)C42—H690.9800
C16—C171.524 (4)C42—H710.9800
C16—H271.0000C42—H700.9800
C17—H300.9800C43a—C44A1.411 (8)
C17—H280.9800C43a—C45A1.514 (8)
C17—H290.9800C43a—H72A1.0000
C18—H320.9800C43b—C45B1.36 (2)
C18—H330.9800C43b—C44B1.651 (19)
C18—H310.9800C43b—H72B1.0000
C19—N61.329 (4)C44a—H73A0.9800
C19—C201.395 (5)C44a—H74A0.9800
C19—C221.504 (4)C44a—H75A0.9800
C20—C211.380 (4)C44b—H73B0.9800
C20—H340.9500C44b—H74B0.9800
C21—N51.357 (4)C44b—H75B0.9800
C21—C251.501 (4)C45a—H76A0.9800
C22—C241.507 (5)C45a—H77A0.9800
C22—C231.510 (5)C45a—H78A0.9800
C22—H351.0000C45b—H76B0.9800
C23—H370.9800C45b—H77B0.9800
C23—H380.9800C45b—H78B0.9800
C23—H360.9800B—N31.547 (4)
C24—H390.9800B—N51.549 (4)
C24—H410.9800B—N11.555 (4)
C24—H400.9800B—H11.0000
C25—C271.518 (5)N1—N21.384 (3)
C25—C261.531 (4)N2—EU2.633 (2)
C25—H421.0000N3—N41.379 (3)
C26—H450.9800N4—EU2.593 (2)
C26—H440.9800N5—N61.379 (3)
C26—H430.9800N6—EU2.581 (2)
C27—H470.9800N7—N81.359 (3)
C27—H460.9800N7—H20.8800
C27—H480.9800N8—EU2.699 (2)
C28—N81.337 (4)N9—N101.358 (3)
C28—C291.395 (4)N9—H30.8800
C28—C311.496 (4)N10—EU2.660 (2)
C29—C301.367 (4)I—EU3.1788 (2)
C29—H490.9500
N2—C1—C2110.6 (2)C31—C32—H52109.5
N2—C1—C4121.3 (3)H53—C32—H52109.5
C2—C1—C4128.1 (3)H51—C32—H52109.5
C3—C2—C1105.7 (3)C31—C33—H55109.5
C3—C2—H4127.1C31—C33—H54109.5
C1—C2—H4127.1H55—C33—H54109.5
N1—C3—C2108.0 (2)C31—C33—H56109.5
N1—C3—C7124.4 (2)H55—C33—H56109.5
C2—C3—C7127.6 (3)H54—C33—H56109.5
C1—C4—C6111.5 (3)C36a—C34a—C35120.8 (5)
C1—C4—C5110.9 (3)C36a—C34a—C30112.4 (4)
C6—C4—C5110.3 (3)C35—C34a—C30112.4 (3)
C1—C4—H5108.0C36a—C34a—H57A102.8
C6—C4—H5108.0C35—C34a—H57A102.8
C5—C4—H5108.0C30—C34a—H57A102.8
C4—C5—H8109.5C36b—C34b—C35120.9 (6)
C4—C5—H6109.5C36b—C34b—C30116.2 (5)
H8—C5—H6109.5C35—C34b—C30112.4 (3)
C4—C5—H7109.5C36b—C34b—H57B100.9
H8—C5—H7109.5C35—C34b—H57B100.9
H6—C5—H7109.5C30—C34b—H57B100.9
C4—C6—H10109.5C34a—C35—H58109.5
C4—C6—H9109.5C34a—C35—H59109.5
H10—C6—H9109.5H58—C35—H59109.5
C4—C6—H11109.5C34a—C35—H60109.5
H10—C6—H11109.5H58—C35—H60109.5
H9—C6—H11109.5H59—C35—H60109.5
C3—C7—C9110.6 (2)C34a—C36a—H61A109.5
C3—C7—C8110.5 (3)C34a—C36a—H62A109.5
C9—C7—C8110.5 (3)H61a—C36a—H62A109.5
C3—C7—H12108.4C34a—C36a—H63A109.5
C9—C7—H12108.4H61a—C36a—H63A109.5
C8—C7—H12108.4H62a—C36a—H63A109.5
C7—C8—H14109.5C34b—C36b—H61B109.5
C7—C8—H13109.5C34b—C36b—H62B109.5
H14—C8—H13109.5H61b—C36b—H62B109.5
C7—C8—H15109.5C34b—C36b—H63B109.5
H14—C8—H15109.5H61b—C36b—H63B109.5
H13—C8—H15109.5H62b—C36b—H63B109.5
C7—C9—H17109.5N10—C37—C38110.5 (3)
C7—C9—H18109.5N10—C37—C40121.5 (3)
H17—C9—H18109.5C38—C37—C40128.0 (3)
C7—C9—H16109.5C39—C38—C37106.4 (3)
H17—C9—H16109.5C39—C38—H64126.8
H18—C9—H16109.5C37—C38—H64126.8
N4—C10—C11110.0 (2)N9—C39—C38105.5 (3)
N4—C10—C13120.9 (3)N9—C39—C43A122.8 (3)
C11—C10—C13129.0 (3)C38—C39—C43A131.7 (3)
C12—C11—C10106.4 (3)N9—C39—C43B122.8 (3)
C12—C11—H19126.8C38—C39—C43B131.7 (3)
C10—C11—H19126.8C37—C40—C41110.0 (3)
N3—C12—C11107.6 (2)C37—C40—C42109.6 (3)
N3—C12—C16124.1 (3)C41—C40—C42111.7 (4)
C11—C12—C16128.2 (3)C37—C40—H65108.5
C10—C13—C15111.6 (3)C41—C40—H65108.5
C10—C13—C14110.7 (3)C42—C40—H65108.5
C15—C13—C14110.5 (3)C40—C41—H67109.5
C10—C13—H20107.9C40—C41—H68109.5
C15—C13—H20107.9H67—C41—H68109.5
C14—C13—H20107.9C40—C41—H66109.5
C13—C14—H21109.5H67—C41—H66109.5
C13—C14—H22109.5H68—C41—H66109.5
H21—C14—H22109.5C40—C42—H69109.5
C13—C14—H23109.5C40—C42—H71109.5
H21—C14—H23109.5H69—C42—H71109.5
H22—C14—H23109.5C40—C42—H70109.5
C13—C15—H24109.5H69—C42—H70109.5
C13—C15—H25109.5H71—C42—H70109.5
H24—C15—H25109.5C44a—C43a—C39114.0 (4)
C13—C15—H26109.5C44a—C43a—C45A116.9 (5)
H24—C15—H26109.5C39—C43a—C45A112.6 (4)
H25—C15—H26109.5C44a—C43a—H72A103.8
C12—C16—C18111.1 (3)C39—C43a—H72A103.8
C12—C16—C17110.0 (2)C45a—C43a—H72A103.8
C18—C16—C17110.6 (3)C45b—C43b—C39114.5 (8)
C12—C16—H27108.3C45b—C43b—C44B122.4 (12)
C18—C16—H27108.3C39—C43b—C44B104.1 (7)
C17—C16—H27108.3C45b—C43b—H72B104.7
C16—C17—H30109.5C39—C43b—H72B104.7
C16—C17—H28109.5C44b—C43b—H72B104.7
H30—C17—H28109.5C43a—C44a—H73A109.5
C16—C17—H29109.5C43a—C44a—H74A109.5
H30—C17—H29109.5H73a—C44a—H74A109.5
H28—C17—H29109.5C43a—C44a—H75A109.5
C16—C18—H32109.5H73a—C44a—H75A109.5
C16—C18—H33109.5H74a—C44a—H75A109.5
H32—C18—H33109.5C43b—C44b—H73B109.5
C16—C18—H31109.5C43b—C44b—H74B109.5
H32—C18—H31109.5H73b—C44b—H74B109.5
H33—C18—H31109.5C43b—C44b—H75B109.5
N6—C19—C20110.2 (3)H73b—C44b—H75B109.5
N6—C19—C22119.7 (3)H74b—C44b—H75B109.5
C20—C19—C22130.1 (3)C43a—C45a—H76A109.5
C21—C20—C19106.1 (3)C43a—C45a—H77A109.5
C21—C20—H34127.0H76a—C45a—H77A109.5
C19—C20—H34127.0C43a—C45a—H78A109.5
N5—C21—C20107.4 (3)H76a—C45a—H78A109.5
N5—C21—C25124.2 (3)H77a—C45a—H78A109.5
C20—C21—C25128.4 (3)C43b—C45b—H76B109.5
C19—C22—C24111.9 (3)C43b—C45b—H77B109.5
C19—C22—C23110.8 (3)H76b—C45b—H77B109.5
C24—C22—C23111.8 (3)C43b—C45b—H78B109.5
C19—C22—H35107.4H76b—C45b—H78B109.5
C24—C22—H35107.4H77b—C45b—H78B109.5
C23—C22—H35107.4N3—B—N5110.3 (2)
C22—C23—H37109.5N3—B—N1110.1 (2)
C22—C23—H38109.5N5—B—N1110.3 (2)
H37—C23—H38109.5N3—B—H1108.7
C22—C23—H36109.5N5—B—H1108.7
H37—C23—H36109.5N1—B—H1108.7
H38—C23—H36109.5C3—N1—N2109.2 (2)
C22—C24—H39109.5C3—N1—B130.6 (2)
C22—C24—H41109.5N2—N1—B120.2 (2)
H39—C24—H41109.5C1—N2—N1106.6 (2)
C22—C24—H40109.5C1—N2—EU128.40 (18)
H39—C24—H40109.5N1—N2—EU124.87 (16)
H41—C24—H40109.5C12—N3—N4109.3 (2)
C21—C25—C27111.5 (3)C12—N3—B129.4 (2)
C21—C25—C26110.5 (3)N4—N3—B121.3 (2)
C27—C25—C26110.5 (3)C10—N4—N3106.6 (2)
C21—C25—H42108.1C10—N4—EU127.79 (18)
C27—C25—H42108.1N3—N4—EU124.67 (17)
C26—C25—H42108.1C21—N5—N6109.7 (2)
C25—C26—H45109.5C21—N5—B130.1 (2)
C25—C26—H44109.5N6—N5—B120.1 (2)
H45—C26—H44109.5C19—N6—N5106.6 (2)
C25—C26—H43109.5C19—N6—EU126.86 (19)
H45—C26—H43109.5N5—N6—EU126.29 (16)
H44—C26—H43109.5C30—N7—N8113.1 (3)
C25—C27—H47109.5C30—N7—H2123.5
C25—C27—H46109.5N8—N7—H2123.5
H47—C27—H46109.5C28—N8—N7104.0 (2)
C25—C27—H48109.5C28—N8—EU145.8 (2)
H47—C27—H48109.5N7—N8—EU109.68 (17)
H46—C27—H48109.5C39—N9—N10113.3 (2)
N8—C28—C29110.7 (3)C39—N9—H3123.4
N8—C28—C31120.3 (3)N10—N9—H3123.4
C29—C28—C31129.1 (3)C37—N10—N9104.3 (2)
C30—C29—C28106.2 (3)C37—N10—EU142.21 (19)
C30—C29—H49126.9N9—N10—EU113.47 (18)
C28—C29—H49126.9N6—EU—N468.39 (7)
N7—C30—C29106.0 (3)N6—EU—N272.16 (7)
N7—C30—C34A121.4 (3)N4—EU—N273.92 (7)
C29—C30—C34A132.6 (3)N6—EU—N10137.43 (7)
N7—C30—C34B121.4 (3)N4—EU—N1076.75 (7)
C29—C30—C34B132.6 (3)N2—EU—N1075.37 (7)
C28—C31—C32110.7 (3)N6—EU—N875.95 (7)
C28—C31—C33111.8 (3)N4—EU—N8138.80 (7)
C32—C31—C33110.7 (3)N2—EU—N876.11 (7)
C28—C31—H50107.8N10—EU—N8121.58 (8)
C32—C31—H50107.8N6—EU—I119.00 (5)
C33—C31—H50107.8N4—EU—I117.23 (5)
C31—C32—H53109.5N2—EU—I165.92 (5)
C31—C32—H51109.5N10—EU—I98.11 (5)
H53—C32—H51109.5N8—EU—I97.58 (5)
N2—C1—C2—C30.7 (3)N9—C39—C43b—C44b75.4 (13)
C4—C1—C2—C3179.8 (3)C38—C39—C43b—C44b105.1 (13)
C1—C2—C3—N10.4 (3)C2—C3—N1—N20.0 (3)
C1—C2—C3—C7177.4 (3)C7—C3—N1—N2177.9 (3)
N2—C1—C4—C6111.6 (3)C2—C3—N1—B178.4 (3)
C2—C1—C4—C667.4 (4)C7—C3—N1—B0.5 (5)
N2—C1—C4—C5125.1 (3)N3—B—N1—C3116.0 (3)
C2—C1—C4—C555.9 (4)N5—B—N1—C3121.9 (3)
N1—C3—C7—C992.6 (3)N3—B—N1—N262.2 (3)
C2—C3—C7—C984.9 (4)N5—B—N1—N259.8 (3)
N1—C3—C7—C8144.6 (3)C2—C1—N2—N10.7 (3)
C2—C3—C7—C837.9 (4)C4—C1—N2—N1179.8 (3)
N4—C10—C11—C121.7 (3)C2—C1—N2—EU176.38 (19)
C13—C10—C11—C12175.9 (3)C4—C1—N2—EU4.5 (4)
C10—C11—C12—N31.3 (3)C3—N1—N2—C10.4 (3)
C10—C11—C12—C16174.9 (3)B—N1—N2—C1178.2 (2)
N4—C10—C13—C15127.3 (3)C3—N1—N2—EU176.29 (17)
C11—C10—C13—C1555.3 (4)B—N1—N2—EU2.3 (3)
N4—C10—C13—C14109.1 (3)C11—C12—N3—N40.6 (3)
C11—C10—C13—C1468.3 (4)C16—C12—N3—N4175.8 (2)
N3—C12—C16—C18150.9 (3)C11—C12—N3—B178.8 (3)
C11—C12—C16—C1833.5 (4)C16—C12—N3—B2.4 (4)
N3—C12—C16—C1786.3 (4)N5—B—N3—C12125.1 (3)
C11—C12—C16—C1789.4 (4)N1—B—N3—C12112.9 (3)
N6—C19—C20—C210.2 (4)N5—B—N3—N452.9 (3)
C22—C19—C20—C21177.3 (3)N1—B—N3—N469.1 (3)
C19—C20—C21—N50.3 (4)C11—C10—N4—N31.3 (3)
C19—C20—C21—C25177.6 (3)C13—C10—N4—N3176.5 (2)
N6—C19—C22—C24139.4 (3)C11—C10—N4—EU168.18 (19)
C20—C19—C22—C2443.4 (5)C13—C10—N4—EU14.0 (4)
N6—C19—C22—C2395.2 (4)C12—N3—N4—C100.5 (3)
C20—C19—C22—C2382.1 (5)B—N3—N4—C10177.9 (2)
N5—C21—C25—C2775.4 (4)C12—N3—N4—EU169.45 (17)
C20—C21—C25—C27101.5 (4)B—N3—N4—EU12.2 (3)
N5—C21—C25—C26161.3 (3)C20—C21—N5—N60.2 (3)
C20—C21—C25—C2621.8 (5)C25—C21—N5—N6177.7 (3)
N8—C28—C29—C300.3 (4)C20—C21—N5—B177.7 (3)
C31—C28—C29—C30179.0 (3)C25—C21—N5—B4.8 (5)
C28—C29—C30—N70.1 (4)N3—B—N5—C21121.5 (3)
C28—C29—C30—C34a178.3 (4)N1—B—N5—C21116.6 (3)
C28—C29—C30—C34b178.3 (4)N3—B—N5—N655.8 (3)
N8—C28—C31—C3266.9 (4)N1—B—N5—N666.1 (3)
C29—C28—C31—C32112.3 (4)C20—C19—N6—N50.0 (3)
N8—C28—C31—C33169.1 (3)C22—C19—N6—N5177.7 (3)
C29—C28—C31—C3311.6 (5)C20—C19—N6—EU174.9 (2)
N7—C30—C34a—C36a107.3 (6)C22—C19—N6—EU7.3 (4)
C29—C30—C34a—C36a70.6 (7)C21—N5—N6—C190.1 (3)
N7—C30—C34a—C3532.9 (5)B—N5—N6—C19177.9 (2)
C29—C30—C34a—C35149.1 (4)C21—N5—N6—EU175.07 (18)
N7—C30—C34b—C36b178.2 (7)B—N5—N6—EU7.1 (3)
C29—C30—C34b—C36b3.8 (9)C29—C30—N7—N80.1 (4)
N7—C30—C34b—C3532.9 (5)C34a—C30—N7—N8178.3 (3)
C29—C30—C34b—C35149.1 (4)C34b—C30—N7—N8178.3 (3)
N10—C37—C38—C390.8 (4)C29—C28—N8—N70.4 (3)
C40—C37—C38—C39178.8 (4)C31—C28—N8—N7179.0 (3)
C37—C38—C39—N90.8 (4)C29—C28—N8—EU170.2 (3)
C37—C38—C39—C43a178.8 (4)C31—C28—N8—EU10.4 (5)
C37—C38—C39—C43b178.8 (4)C30—N7—N8—C280.3 (3)
N10—C37—C40—C41117.8 (4)C30—N7—N8—EU174.1 (2)
C38—C37—C40—C4162.6 (5)C38—C39—N9—N100.6 (4)
N10—C37—C40—C42119.1 (4)C43a—C39—N9—N10179.1 (3)
C38—C37—C40—C4260.5 (5)C43b—C39—N9—N10179.1 (3)
N9—C39—C43a—C44a111.9 (7)C38—C37—N10—N90.5 (4)
C38—C39—C43a—C44a68.5 (8)C40—C37—N10—N9179.2 (3)
N9—C39—C43a—C45a24.2 (7)C38—C37—N10—EU179.1 (2)
C38—C39—C43a—C45a155.3 (6)C40—C37—N10—EU1.2 (6)
N9—C39—C43b—C45b60.8 (14)C39—N9—N10—C370.1 (4)
C38—C39—C43b—C45b118.7 (13)C39—N9—N10—EU179.8 (2)
trans-4,8-Bis(3,5-diisopropylpyrazol-1-yl)-1,3,5,7-tetraisopropylpyrazabole (2) top
Crystal data top
C36H62B2N8F(000) = 1376
Mr = 628.55Dx = 1.092 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 25.7646 (11) ÅCell parameters from 11890 reflections
b = 11.2134 (3) Åθ = 2.0–26.2°
c = 15.0968 (7) ŵ = 0.07 mm1
β = 118.792 (3)°T = 153 K
V = 3822.4 (3) Å3Plate, colorless
Z = 40.33 × 0.29 × 0.13 mm
Data collection top
Stoe IPDS 2T
diffractometer
2594 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Detector resolution: 6.67 pixels mm-1θmax = 25.0°, θmin = 2.0°
area detector scansh = 3029
10509 measured reflectionsk = 1213
3367 independent reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.050P)2 + 1.3932P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3367 reflectionsΔρmax = 0.25 e Å3
238 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0022 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.32091 (7)0.43231 (14)0.12232 (11)0.0228 (3)
C20.31092 (7)0.42821 (15)0.20414 (12)0.0275 (4)
H20.3281760.4783830.2619670.033*
C30.27098 (7)0.33708 (14)0.18577 (11)0.0239 (3)
C40.36140 (7)0.51263 (14)0.10426 (12)0.0255 (4)
H30.3508660.5069560.0314000.031*
C50.42566 (7)0.47407 (17)0.16846 (13)0.0361 (4)
H50.4514500.5275730.1558100.054*
H60.4304550.3922530.1507390.054*
H40.4363890.4775730.2401280.054*
C60.35282 (9)0.64149 (16)0.12723 (15)0.0390 (4)
H90.3787210.6938910.1139010.059*
H80.3627810.6483660.1983970.059*
H70.3114530.6649420.0841520.059*
C70.24394 (7)0.29648 (16)0.24900 (12)0.0302 (4)
H100.2239570.2180980.2223170.036*
C80.29206 (10)0.2793 (2)0.35783 (14)0.0543 (6)
H110.2740680.2536110.3989450.081*
H120.3130650.3547940.3842370.081*
H130.3200740.2184560.3604670.081*
C90.19746 (9)0.38648 (18)0.24156 (16)0.0451 (5)
H150.1791270.3581610.2814490.068*
H140.1670060.3952180.1707350.068*
H160.2164350.4637800.2677400.068*
C100.06813 (7)0.23099 (14)0.02850 (12)0.0257 (4)
C110.06359 (7)0.32593 (15)0.03555 (13)0.0290 (4)
H170.0314640.3799700.0683150.035*
C120.11522 (7)0.32426 (14)0.04087 (11)0.0242 (3)
C130.02374 (7)0.19290 (17)0.06011 (13)0.0322 (4)
H180.0396840.1203550.1034670.039*
C140.01516 (10)0.2889 (2)0.12299 (18)0.0527 (6)
H200.0114350.2591680.1474520.079*
H190.0021670.3599660.0813170.079*
H210.0535470.3093030.1807520.079*
C150.03477 (8)0.1591 (2)0.03071 (16)0.0520 (6)
H240.0615590.1269830.0075830.078*
H230.0278730.0986830.0707610.078*
H220.0526620.2299900.0724240.078*
C16A0.13485 (7)0.40591 (15)0.09797 (13)0.0292 (4)0.649 (9)
H25A0.1688070.3674380.1015620.035*0.649 (9)
C17A0.1569 (3)0.5251 (3)0.0392 (4)0.0435 (11)0.649 (9)
H26A0.1716750.5770490.0743760.065*0.649 (9)
H27A0.1888760.5088640.0292620.065*0.649 (9)
H28A0.1240790.5645760.0355020.065*0.649 (9)
C18A0.0865 (2)0.4274 (6)0.2035 (3)0.0535 (14)0.649 (9)
H29A0.1019680.4745410.2403130.080*0.649 (9)
H30A0.0540760.4709500.2015810.080*0.649 (9)
H31A0.0717600.3508050.2377780.080*0.649 (9)
C16B0.13485 (7)0.40591 (15)0.09797 (13)0.0292 (4)0.351 (9)
H25B0.1787890.3997590.0688500.035*0.351 (9)
C17B0.1037 (4)0.3646 (8)0.2133 (5)0.045 (2)0.351 (9)
H26B0.1152400.4182780.2519170.067*0.351 (9)
H27B0.0605620.3669280.2412310.067*0.351 (9)
H28B0.1160130.2830300.2174590.067*0.351 (9)
C18B0.1187 (6)0.5326 (6)0.0920 (9)0.053 (3)0.351 (9)
H29B0.1322040.5837120.1294470.079*0.351 (9)
H30B0.1376250.5578070.0210630.079*0.351 (9)
H31B0.0755800.5393100.1214280.079*0.351 (9)
B0.21039 (7)0.18853 (16)0.04185 (12)0.0209 (4)
H10.2209470.1171810.0869850.025*
N10.25728 (5)0.28776 (11)0.09607 (9)0.0205 (3)
N20.28824 (5)0.34639 (11)0.05681 (9)0.0198 (3)
N30.14859 (5)0.23196 (11)0.01778 (9)0.0207 (3)
N40.11934 (6)0.17386 (12)0.06116 (9)0.0235 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0190 (8)0.0221 (8)0.0248 (8)0.0002 (6)0.0085 (6)0.0021 (6)
C20.0270 (9)0.0295 (9)0.0254 (8)0.0041 (7)0.0121 (7)0.0077 (7)
C30.0220 (8)0.0275 (8)0.0210 (7)0.0009 (7)0.0095 (6)0.0027 (6)
C40.0244 (8)0.0246 (8)0.0256 (8)0.0043 (7)0.0105 (7)0.0019 (7)
C50.0250 (9)0.0431 (10)0.0374 (10)0.0067 (8)0.0128 (8)0.0010 (8)
C60.0451 (11)0.0273 (9)0.0485 (11)0.0060 (8)0.0255 (10)0.0046 (8)
C70.0306 (9)0.0372 (10)0.0262 (8)0.0092 (8)0.0165 (7)0.0063 (7)
C80.0474 (12)0.0863 (17)0.0293 (10)0.0183 (12)0.0185 (9)0.0022 (10)
C90.0496 (12)0.0469 (12)0.0550 (12)0.0104 (10)0.0382 (10)0.0136 (10)
C100.0213 (8)0.0295 (9)0.0277 (8)0.0015 (7)0.0130 (7)0.0006 (7)
C110.0234 (8)0.0294 (9)0.0350 (9)0.0046 (7)0.0147 (7)0.0040 (7)
C120.0234 (8)0.0229 (8)0.0265 (8)0.0023 (7)0.0122 (7)0.0009 (6)
C130.0262 (9)0.0385 (10)0.0368 (9)0.0005 (8)0.0190 (8)0.0045 (8)
C140.0529 (13)0.0612 (14)0.0649 (14)0.0020 (11)0.0450 (12)0.0062 (11)
C150.0312 (10)0.0748 (15)0.0488 (12)0.0145 (10)0.0184 (9)0.0055 (11)
C16A0.0271 (9)0.0287 (9)0.0360 (9)0.0053 (7)0.0183 (8)0.0086 (7)
C17A0.054 (3)0.0287 (17)0.056 (2)0.0048 (18)0.033 (2)0.0051 (16)
C18A0.045 (2)0.067 (3)0.0401 (19)0.010 (2)0.0142 (17)0.020 (2)
C16B0.0271 (9)0.0287 (9)0.0360 (9)0.0053 (7)0.0183 (8)0.0086 (7)
C17B0.048 (4)0.053 (5)0.036 (3)0.001 (3)0.022 (3)0.012 (3)
C18B0.079 (7)0.030 (3)0.075 (6)0.009 (4)0.058 (6)0.013 (3)
B0.0200 (9)0.0204 (9)0.0215 (8)0.0001 (7)0.0093 (7)0.0012 (7)
N10.0186 (6)0.0228 (7)0.0205 (6)0.0007 (5)0.0098 (5)0.0005 (5)
N20.0167 (6)0.0214 (7)0.0215 (6)0.0011 (5)0.0095 (5)0.0001 (5)
N30.0199 (7)0.0215 (7)0.0226 (6)0.0008 (5)0.0117 (5)0.0009 (5)
N40.0224 (7)0.0261 (7)0.0250 (7)0.0028 (6)0.0138 (6)0.0002 (5)
Geometric parameters (Å, º) top
C1—N21.3464 (19)C13—C141.520 (3)
C1—C21.379 (2)C13—H181.0000
C1—C41.499 (2)C14—H200.9800
C2—C31.380 (2)C14—H190.9800
C2—H20.9500C14—H210.9800
C3—N11.3431 (19)C15—H240.9800
C3—C71.498 (2)C15—H230.9800
C4—C51.524 (2)C15—H220.9800
C4—C61.527 (2)C16a—C18A1.496 (4)
C4—H31.0000C16a—C17A1.552 (4)
C5—H50.9800C16a—H25A1.0000
C5—H60.9800C17a—H26A0.9800
C5—H40.9800C17a—H27A0.9800
C6—H90.9800C17a—H28A0.9800
C6—H80.9800C18a—H29A0.9800
C6—H70.9800C18a—H30A0.9800
C7—C81.520 (3)C18a—H31A0.9800
C7—C91.528 (3)C16b—C18B1.496 (7)
C7—H101.0000C16b—C17B1.595 (7)
C8—H110.9800C16b—H25B1.0000
C8—H120.9800C17b—H26B0.9800
C8—H130.9800C17b—H27B0.9800
C9—H150.9800C17b—H28B0.9800
C9—H140.9800C18b—H29B0.9800
C9—H160.9800C18b—H30B0.9800
C10—N41.330 (2)C18b—H31B0.9800
C10—C111.405 (2)B—N31.532 (2)
C10—C131.498 (2)B—N11.554 (2)
C11—C121.371 (2)B—N2i1.557 (2)
C11—H170.9500B—H11.0000
C12—N31.364 (2)N1—N21.3693 (16)
C12—C16A1.502 (2)N2—Bi1.557 (2)
C12—C16B1.502 (2)N3—N41.3772 (17)
C13—C151.518 (3)
N2—C1—C2108.29 (13)C13—C14—H19109.5
N2—C1—C4122.67 (13)H20—C14—H19109.5
C2—C1—C4129.02 (14)C13—C14—H21109.5
C1—C2—C3106.71 (14)H20—C14—H21109.5
C1—C2—H2126.6H19—C14—H21109.5
C3—C2—H2126.6C13—C15—H24109.5
N1—C3—C2108.41 (13)C13—C15—H23109.5
N1—C3—C7122.71 (14)H24—C15—H23109.5
C2—C3—C7128.86 (14)C13—C15—H22109.5
C1—C4—C5110.60 (13)H24—C15—H22109.5
C1—C4—C6109.73 (13)H23—C15—H22109.5
C5—C4—C6110.85 (14)C18a—C16a—C12111.80 (19)
C1—C4—H3108.5C18a—C16a—C17A111.0 (3)
C5—C4—H3108.5C12—C16a—C17A109.18 (17)
C6—C4—H3108.5C18a—C16a—H25A108.3
C4—C5—H5109.5C12—C16a—H25A108.3
C4—C5—H6109.5C17a—C16a—H25A108.3
H5—C5—H6109.5C16a—C17a—H26A109.5
C4—C5—H4109.5C16a—C17a—H27A109.5
H5—C5—H4109.5H26a—C17a—H27A109.5
H6—C5—H4109.5C16a—C17a—H28A109.5
C4—C6—H9109.5H26a—C17a—H28A109.5
C4—C6—H8109.5H27a—C17a—H28A109.5
H9—C6—H8109.5C16a—C18a—H29A109.5
C4—C6—H7109.5C16a—C18a—H30A109.5
H9—C6—H7109.5H29a—C18a—H30A109.5
H8—C6—H7109.5C16a—C18a—H31A109.5
C3—C7—C8109.85 (14)H29a—C18a—H31A109.5
C3—C7—C9109.93 (14)H30a—C18a—H31A109.5
C8—C7—C9111.42 (16)C18b—C16b—C12111.3 (3)
C3—C7—H10108.5C18b—C16b—C17B109.5 (5)
C8—C7—H10108.5C12—C16b—C17B108.5 (3)
C9—C7—H10108.5C18b—C16b—H25B109.2
C7—C8—H11109.5C12—C16b—H25B109.2
C7—C8—H12109.5C17b—C16b—H25B109.2
H11—C8—H12109.5C16b—C17b—H26B109.5
C7—C8—H13109.5C16b—C17b—H27B109.5
H11—C8—H13109.5H26b—C17b—H27B109.5
H12—C8—H13109.5C16b—C17b—H28B109.5
C7—C9—H15109.5H26b—C17b—H28B109.5
C7—C9—H14109.5H27b—C17b—H28B109.5
H15—C9—H14109.5C16b—C18b—H29B109.5
C7—C9—H16109.5C16b—C18b—H30B109.5
H15—C9—H16109.5H29b—C18b—H30B109.5
H14—C9—H16109.5C16b—C18b—H31B109.5
N4—C10—C11111.05 (13)H29b—C18b—H31B109.5
N4—C10—C13121.20 (14)H30b—C18b—H31B109.5
C11—C10—C13127.74 (15)N3—B—N1110.66 (12)
C12—C11—C10105.58 (14)N3—B—N2i110.67 (12)
C12—C11—H17127.2N1—B—N2i108.29 (12)
C10—C11—H17127.2N3—B—H1109.1
N3—C12—C11107.36 (13)N1—B—H1109.1
N3—C12—C16A123.61 (13)N2i—B—H1109.1
C11—C12—C16A129.03 (15)C3—N1—N2108.29 (12)
N3—C12—C16B123.61 (13)C3—N1—B125.87 (12)
C11—C12—C16B129.03 (15)N2—N1—B125.66 (11)
C10—C13—C15111.21 (14)C1—N2—N1108.30 (11)
C10—C13—C14111.11 (15)C1—N2—Bi126.05 (12)
C15—C13—C14111.14 (17)N1—N2—Bi125.43 (12)
C10—C13—H18107.7C12—N3—N4110.45 (12)
C15—C13—H18107.7C12—N3—B130.79 (12)
C14—C13—H18107.7N4—N3—B118.75 (12)
C13—C14—H20109.5C10—N4—N3105.56 (12)
N2—C1—C2—C30.15 (18)C7—C3—N1—N2178.58 (14)
C4—C1—C2—C3178.52 (15)C2—C3—N1—B175.10 (14)
C1—C2—C3—N10.01 (18)C7—C3—N1—B3.3 (2)
C1—C2—C3—C7178.32 (16)N3—B—N1—C361.64 (19)
N2—C1—C4—C5103.02 (17)N2i—B—N1—C3176.89 (13)
C2—C1—C4—C575.1 (2)N3—B—N1—N2112.79 (14)
N2—C1—C4—C6134.38 (16)N2i—B—N1—N28.7 (2)
C2—C1—C4—C647.5 (2)C2—C1—N2—N10.23 (16)
N1—C3—C7—C8132.58 (18)C4—C1—N2—N1178.73 (13)
C2—C3—C7—C849.3 (2)C2—C1—N2—Bi174.58 (14)
N1—C3—C7—C9104.46 (18)C4—C1—N2—Bi3.9 (2)
C2—C3—C7—C973.6 (2)C3—N1—N2—C10.23 (16)
N4—C10—C11—C120.08 (19)B—N1—N2—C1175.02 (13)
C13—C10—C11—C12179.94 (16)C3—N1—N2—Bi174.62 (13)
C10—C11—C12—N30.00 (18)B—N1—N2—Bi10.1 (2)
C10—C11—C12—C16a179.54 (16)C11—C12—N3—N40.08 (17)
C10—C11—C12—C16b179.54 (16)C16a—C12—N3—N4179.49 (14)
N4—C10—C13—C15120.42 (18)C16b—C12—N3—N4179.49 (14)
C11—C10—C13—C1559.7 (2)C11—C12—N3—B178.88 (14)
N4—C10—C13—C14115.21 (18)C16a—C12—N3—B0.7 (2)
C11—C10—C13—C1464.6 (2)C16b—C12—N3—B0.7 (2)
N3—C12—C16a—C18a135.3 (3)N1—B—N3—C1260.88 (19)
C11—C12—C16a—C18a45.3 (4)N2i—B—N3—C1259.2 (2)
N3—C12—C16a—C17a101.6 (3)N1—B—N3—N4117.84 (14)
C11—C12—C16a—C17a77.9 (3)N2i—B—N3—N4122.10 (13)
N3—C12—C16b—C18b139.2 (6)C11—C10—N4—N30.13 (17)
C11—C12—C16b—C18b40.3 (6)C13—C10—N4—N3179.99 (14)
N3—C12—C16b—C17b100.3 (4)C12—N3—N4—C100.13 (16)
C11—C12—C16b—C17b80.2 (5)B—N3—N4—C10179.09 (13)
C2—C3—N1—N20.14 (17)
Symmetry code: (i) x+1/2, y+1/2, z.
 

Funding information

General financial support of this work by the Otto-von-Guericke-Universität is gratefully acknowledged.

References

First citationAlcock, N. W. & Sawyer, J. F. (1974). Acta Cryst. B30, 2899–2901.  CSD CrossRef CAS IUCr Journals
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationCavero, E., Giménez, R., Uriel, S., Beltrán, E., Serrano, J. L., Alkorta, I. & Elguero, J. (2008). Cryst. Growth Des. 8, 838–847.  CSD CrossRef CAS
First citationDavies, C. E., Gardiner, I. M., Green, J. C., Green, M. L. H., Hazel, N. J., Grebenik, P. D., Mtetwa, V. S. B. & Prout, H. (1985). J. Chem. Soc. Dalton Trans. pp. 669–683.  CSD CrossRef
First citationDomingos, Â., Elsegood, M. R. J., Hillier, A. C., Lin, G., Liu, S. Y., Lopes, I., Marques, N., Maunder, G. H., McDonald, R., Sella, A., Steed, J. W. & Takats, J. (2002). Inorg. Chem. 41, 6761–6768.  CSD CrossRef PubMed CAS
First citationEvans, W. J. (2007). Inorg. Chem. 46, 3435–3449.  Web of Science CrossRef PubMed CAS
First citationEvans, W. J., Bloom, I., Hunter, W. E. & Atwood, J. L. (1983). J. Am. Chem. Soc. 105, 1401–1403.  CSD CrossRef CAS
First citationEvans, W. J., Ulibarri, T. A. & Ziller, J. W. (1988). J. Am. Chem. Soc. 110, 6877–6879.  CSD CrossRef CAS Web of Science
First citationGirard, P., Namy, J. L. & Kagan, H. B. (1980). J. Am. Chem. Soc. 102, 2693–2698.  CrossRef CAS Web of Science
First citationHillier, A. C., Zhang, X. W., Maunder, G. H., Liu, S. Y., Eberspacher, T. A., Metz, M. V., McDonald, R., Domingos, Â., Marques, N., Day, V. W., Sella, A. & Takats, J. (2001). Inorg. Chem. 40, 5106–5116.  Web of Science CSD CrossRef PubMed CAS
First citationJadhav, T., Dhokale, B., Patil, Y. & Misra, R. (2015). RSC Adv. 5, 68187–68191.  CrossRef CAS
First citationJadhav, T., Maragani, R., Misra, R., Sreeramulu, Y., Rao, D. N. & Mobin, S. M. (2013). Dalton Trans. 42, 4340–4342.  CrossRef CAS PubMed
First citationKitajima, N., Fujisawa, K., Fujimoto, C., Morooka, Y., Hashimoto, S., Kitagawa, T., Toriumi, K., Tatsumi, K. & Nakamura, A. (1992). J. Am. Chem. Soc. 114, 1277–1291.  CSD CrossRef CAS Web of Science
First citationKresiński, R. A. (1999). J. Chem. Soc. Dalton Trans. pp. 401–406.
First citationKühling, M., McDonald, R., Liebing, P., Hilfert, L., Ferguson, M. J., Takats, J. & Edelmann, F. T. (2016). Dalton Trans. 45, 10118–10121.  PubMed
First citationKühling, M., Wickleder, C., Ferguson, M. J., Hrib, C. G., McDonald, R., Suta, M., Hilfert, L., Takats, J. & Edelmann, F. T. (2015). New J. Chem. 39, 7617–7625.
First citationLobbia, G. G., Bonati, F., Cecchi, P. & Pettinari, C. (1992). Gazz. Chim. Ital. 121, 355–358.
First citationMarques, N., Sella, A. & Takats, J. (2002). Chem. Rev. 102, 2137–2160.  Web of Science CrossRef PubMed CAS
First citationMisra, R., Jadhav, T. & Mobin, S. M. (2013). Dalton Trans. 42, 16614–16620.  CSD CrossRef CAS PubMed
First citationMisra, R., Jadhav, T. & Mobin, S. M. (2014). Dalton Trans. 43, 2013–2022.  CSD CrossRef CAS PubMed
First citationMomin, A., Carter, L., Yang, Y., McDonald, R., Essafi (née Labouille), S., Nief, F., Del Rosal, I., Sella, A., Maron, L. & Takats, J. (2014). Inorg. Chem. 53, 12066–12075.
First citationNiedenzu, K. & Niedenzu, P. M. (1984). Inorg. Chem. 23, 3713–3716.  CrossRef CAS
First citationNiedenzu, K. & Nöth, H. (1983). Chem. Ber. 116, 1132–1153.  CSD CrossRef CAS
First citationPatil, Y., Jadhav, T., Dhokale, B., Butenschön, H. & Misra, R. (2017). ChemistrySelect 2, 415–420.  CrossRef CAS
First citationPettinari, C. (2008). Scorpionates II: Chelating Borate Ligands. Imperial College Press, London.
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationStoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.
First citationSuta, M., Kühling, M., Liebing, P., Edelmann, F. T. & Wickleder, C. (2017). J. Lumin. 187, 62–68.  CSD CrossRef CAS
First citationTrofimenko, S. (1966). J. Am. Chem. Soc. 88, 1842–1844.  CrossRef CAS Web of Science
First citationTrofimenko, S. (1993). Chem. Rev. 93, 943–980.  CrossRef CAS Web of Science
First citationTrofimenko, S. (1999). The Coordination Chemistry of Scorpionates – Pyrazolylborate Ligands. Imperial College Press, London.
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds