research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, thermal and fluorescence properties of 2,2′:6′,2′′-terpyridine-1,1′,1′′-triium tetra­chlorido­nickelate(II) chloride

CROSSMARK_Color_square_no_text.svg

aUnité de Recherche Chimie de l'Environnement et Moléculaire, Structurale, 'CHEMS', Faculté des Sciences Exactes,Campus Chaabet Ersas, Université, Frères Mentouri Constantine 1, 25000 Constantine, Algeria, bCentre de Recherche en Biotechnologie, Constantine, Algeria, and cLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
*Correspondence e-mail: bendjeddoulamia@gmail.com

Edited by G. Smith, Queensland University of Technology, Australia (Received 21 October 2017; accepted 21 November 2017; online 28 November 2017)

The title compound, (C15H14N3)[NiCl4]Cl, comprises an NiII cation tetra­hedrally coordinated by four chloride anions, a non-coordinating chloride anion and an essentially planar terpyridinium trication (tpyH33+), in which the central pyridinium ring forms dihedral angles of 5.7 (2) and 6.0 (2)° with the peripheral pyridinium rings. Three inter-species N—H⋯Cl hydrogen bonds are formed with the Cl anion, which also forms a link between the (tpyH33+) cations through an aromatic C—H⋯Cl inter­action, forming a zigzag chain extending along the 21 (b) screw axis. Two of the anionic Cl atoms of the [NiCl4]2− anions form Ni—Cl⋯π inter­actions with separate pyridinium rings [Ni⋯Cg = 3.669 (3) and 3.916 (4) Å]. In the crystal, successive undulating inorganic and organic layers are formed, extending across the (100) plane. Thermogravimetric and differential thermal analysis (TGA/DTA) indicate that the compound starts to decompose at 313 K and may be a candidate for use as a blue-light luminescent material.

1. Chemical context

The 2,2′:6′,2′′-terpyridine mol­ecule (tpy) has been the object of numerous studies because of its excellent complexing properties on metal ions. The multitude of applications of this cation motivated a large development in the synthesis of terpyridines during the last decade. The compounds derived from the terpyridine mol­ecule can be used in photochemistry for the realization of luminescent materials (Adeloye et al., 2012[Adeloye, A. O., Olomola, T. O., Adebayo, A. I. & Ajibade, P. A. (2012). Int. J. Mol. Sci. 13, 3511-3526.]), the assembly of electrochemical sensors (Indelli et al., 1998[Indelli, M. T., Bignozzi, C. A., Scandola, F. & Collin, J. P. (1998). Inorg. Chem. 37, 6084-6089.]), in photocatalysis (Mori et al., 2012[Mori, K., Watanabe, K., Fuku, K. & Yamashita, H. (2012). Chem. Eur. J. 18, 415-418.]) and as a sensitizing agent in photovoltaic conversion processes (Kohle et al., 1996[Kohle, O., Ruile, S. & Grätzel, M. (1996). Inorg. Chem. 35, 4779-4787.]). The literature reports some hybrid complexes of transition metal species incorporating tpy as a neutral ligand as well as complexes with its protonated forms [(tpyH+), (tpyH22+), (tpyH33+)] (Kochel, 2006[Kochel, A. (2006). Acta Cryst. E62, m37-m38.]). The title compound, which is a new hybrid complex, was characterized using IR spectroscopy and X-ray crystallography and its thermal and fluorescence properties have also been recorded.

2. Structural commentary

Crystals of (C15H14N3)[NiCl4]Cl, (I)[link], are monoclinic (space group P21), the asymmetric unit comprising an organic terpyridinium (tpyH33+) cation, a tetra­chloro­nickelate(II) [NiCl4]2− dianion and a free chloride anion (Cl5) (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
The asymmetric unit of (C15H14N3)[NiCl4]Cl, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The (tpyH33+) cation has the ciscis conformation and is essentially planar, with dihedral angles between the central pyridine ring and the two peripheral ring moieties of the ligand of 5.7 (2) and 6.0 (2)°. The three protonated N atoms (N1, N2 and N3) form hydrogen bonds with the chloride counter-anion (Cl5) (Table 1[link]), giving short H11⋯H22 and H22⋯H33 contacts (1.70 and 1.68 Å, respectively), which are comparable to those reported for tpyH3Cl(PF6)2 (H⋯H range: 1.667–1.684 Å; Yoshikawa et al., 2016[Yoshikawa, N., Yamabe, S., Kanehisa, N., Inoue, T. & Takashima, H. (2016). J. Phys. Org. Chem. 29, 269-275.]). The complete protonation of an aromatic mol­ecule that is nitro­gen-enriched (a polynitro­genous derivative) is rarely observed, probably because of an unfavorable charge distribution resulting from the proximity of the nitro­gen H atoms, as previously indicated in this structure. This results in an opening of the inter­nal angles of the three N atoms [C1—N1—C5 = 124.0 (4), C10—N2—C6 = 118.9 (3) and C15—N3—C11 = 123.2 (3)°]. These values are comparable to those found in the literature for (tpyH33+). In 2,2′:6′,2′′-terpyridine­triium bis­(hexa­fluorido­phosphate) chloride (Yoshikawa et al., 2016[Yoshikawa, N., Yamabe, S., Kanehisa, N., Inoue, T. & Takashima, H. (2016). J. Phys. Org. Chem. 29, 269-275.]), C1—N1—C5 = 122.90, C6—N2—C10 = 117.60 and C11—N3—C15 = 123.27, C16—N4—C20 = 123.69, C21—N5—C25 = 118.22 and C26—N6—C30 = 123.97° and in catena-[(2,2′:6′,2′′-terpyridin­ium)(μ3-sulfato)­sulfato­dioxouranium) nitrate dihydrate] (Jie Ling et al., 2010[Ling, J., Sigmon, G. E., Ward, M., Roback, N. & Carman Burns, P. (2010). Z. Kristallogr. 225, 230-239.]), C1—N1—C5 = 123.33, C6—N2—C10 = 118.03 and C11—N3—C15 = 123.29°. The inter­nal angles for a deprotonated terpyridine are C1—N1—C5 = 116.9 (8), C10—N2—C6 = 119.6 (11) and C15—N3—C11 = 117.1 (8)° (Maynard et al., 2009[Maynard, B. A., Smith, P. A. & Sykora, R. E. (2009). Acta Cryst. E65, m1132-m1133.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯Cl5 0.86 2.26 3.026 (4) 149
N2—H22⋯Cl5 0.86 2.67 3.532 (4) 178
N3—H33⋯Cl5 0.86 2.25 3.010 (4) 148
C14—H14⋯Cl5i 0.93 2.78 3.421 (6) 127
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z].

The nickel(II) centre of the dianion has a quasi-regular tetra­hedral environment [Ni—Cl bond length range, 2.185 (2)–2.201 (2) Å and Cl—Ni—Cl bond angle range, 108.08 (5)–111.59 (5)°] (Fig. 2[link]). The inter­atomic distance and angle values are in good agreement with those taken from the literature (Igashira-Kamiyama et al., 2013[Igashira-Kamiyama, A., Itai, T., Arai, Y. & Konno, T. (2013). Acta Cryst. E69, m339.]).

[Figure 2]
Figure 2
The nickel tetra­hedral environment.

3. Supra­molecular features

The previously described inter-species unit formed through the three individual N—H⋯Cl hydrogen bonds between the (tpyH33+) cation and the Cl5 anion (Table 1[link]) is extended through a C14—H14⋯Cl5i hydrogen bond into chains extending along the 21 screw axis of the unit cell. Convoluted layers comprising successive [tpyH33+, Cl] (type A) and [NiCl4]2− (type B) ions extend across the (100) plane (Figs. 3[link] and 4[link]). Two of the anionic Cl atoms of the [NiCl4]2− anion form Ni—Cl⋯π inter­actions with separate pyridine ring moieties of the cation within the asymmetric unit: Ni1—Cl1⋯Cg1 = 3.916 (4) Å and Ni1—Cl2⋯Cg2 = 3.669 (3) Å, where Cg1 and Cg2 are the centroids of the N1/C1–C5 and N2/C6–C10 rings, respectively (Fig. 3[link]).

[Figure 3]
Figure 3
A view of the two-dimensional network of (I)[link], showing the N—H⋯Cl and C—H⋯Cl hydrogen bonds (red dashed lines) and Ni—Cl⋯π inter­actions (blue dashed lines).
[Figure 4]
Figure 4
A perspective view of layers A and B.

4. Thermogravimetric analysis (TGA)

Thermal analyses were performed on a SETARM 92-16.18 PC/PG 1 instrument from 303 to 1273 K under a dynamic air atmosphere and under nitro­gen at 200.0 ml min−1 with a heating rate of 10 K min−1.

The stability of the (C15H14N3)[NiCl4]Cl complex was measured by TGA and the experimental results are in agreement with the calculated data. As shown in Fig. 5[link], the first weight loss of 16.5% (calculated 15.21%) at 40–126 K corresponds to the loss of the two coordinated chloride anions and the second loss of 48.6% (calculated 49.9%) at 126–281 K corresponds to the loss of the organic mol­ecule tpyH33+, and then the two coordinated and free chloride anions gradually decompose (ΔP/P = 23.14%, calculated = 22.51%). In addition, the corresponding endothermic peaks (at 394.16; 554.63°C and at 638 K) in the differential scanning ATD curve also record the processes of weight loss.

[Figure 5]
Figure 5
The thermogravimetric (TG) and differential thermal analysis (DTA) curves.

5. Luminescent properties

Photoluminescence spectra were measured using a Cary Eclipse (Agilent Technologies) fluorescence spectrophotometer.

The fluorescence properties of (C15H14N3)[NiCl4]Cl and the free ligand tpy were investigated in the solid state at 298 K. As depicted in Fig. 6[link], the new compound (I)[link] exhibits fluorescence emission at ca 481 nm (excited at 250 nm) compared to that of tpy (425 nm, excited at 250 nm), which can be attributed to ππ* electronic transitions. Thus, the title compound may be a candidate for use as a blue-light luminescent material and it is believed that more transition metal heterocyclic compounds with good luminescent properties may be developed (Wen et al., 2007[Wen, L., Lu, Z., Lin, J., Tian, Z., Zhu, H. & Meng, Q. (2007). Cryst. Growth Des. 7, 93-99.]; Zhang et al., 2010[Zhang, L.-P., Ma, J.-F., Yang, J., Pang, Y.-Y. & Ma, J.-C. (2010). Inorg. Chem. 49, 1535-1550.]; Huang et al., 2013[Huang, F.-P., Yang, Z.-M., Yao, P.-F., Yu, Q., Tian, J.-L., Bian, H.-D., Yan, S.-P., Liao, D.-Z. & Cheng, P. (2013). CrystEngComm, 15, 2657-2668.]).

[Figure 6]
Figure 6
The solid-state fluorescence spectrum of tpy and the title compound (I)[link] (excitation at 250 nm).

6. Database survey

A search of the Cambridge Structural Database (Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) shows 4279 hits comprising the terpyridine species. However, only two structures containing the (tpyH33+) form are present (Ling et al., 2010[Ling, J., Sigmon, G. E., Ward, M., Roback, N. & Carman Burns, P. (2010). Z. Kristallogr. 225, 230-239.]; Yoshikawa et al., 2016[Yoshikawa, N., Yamabe, S., Kanehisa, N., Inoue, T. & Takashima, H. (2016). J. Phys. Org. Chem. 29, 269-275.]).

7. Synthesis and crystallization

All the chemicals and solvents were purchased commercially and used as received. The infrared spectra were recorded on a Perkin–Elmer spectrometer at room temperature in the range of 4000–500 cm−1. tpy (1.67 g, 10 mmol) was dissolved in a 50/50 mixture of water and ethanol (20 ml) in a 50 ml round-bottom flask. Nickel(II) chloride (2.50 g, 10 mmol) was added to the flask to give a green-coloured solution that was stirred for 3 h under gentle heat, producing a green-coloured precipitate. The precipitate was filtered and washed twice with cold water/ethanol solvent then dried under vacuum for 20 min, producing a green powder (2.7g, 64% yield). Green prismatic crystals of the title complex (I)[link] suitable for X-ray analysis were obtained from water/ethanol solvent. IR of (I)[link] (cm−1): 3390 (v/s), 2930 (v/s), 1667.8 (s), 1622.4 (s), 1417.4 (m), 987.6 (w), 540.6 (w).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed at calculated positions and refined as riding atoms, with C—H = 0.93 Å, N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C,N). Although not of relevance with this achiral mol­ecule, the Flack parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) was determined as 0.178 (16) for 4425 Friedel pairs. Minor non-merohedral twinning was identified and allowed for in the refinement, giving a BASF factor of 0.1783.

Table 2
Experimental details

Crystal data
Chemical formula (C15H14N3)[NiCl4]Cl
Mr 472.25
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 6.689 (5), 13.809 (5), 10.620 (5)
β (°) 101.271 (5)
V3) 962.0 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.71
Crystal size (mm) 0.20 × 0.10 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 36239, 8772, 6308
Rint 0.031
(sin θ/λ)max−1) 0.828
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.150, 1.15
No. of reflections 8772
No. of parameters 218
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.54, −0.51
Computer programs: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and POVRay (Persistence of Vision, 2004[Persistence of Vision (2004). POVRay. Persistence of Vision Raytracer Pty. Ltd, Victoria, Australia.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008) and POVRay (Persistence of Vision, 2004).

(I) top
Crystal data top
(C15H14N3)[NiCl4]ClF(000) = 476
Mr = 472.25Dx = 1.630 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6308 reflections
a = 6.689 (5) Åθ = 3.0–36.1°
b = 13.809 (5) ŵ = 1.71 mm1
c = 10.620 (5) ÅT = 293 K
β = 101.271 (5)°Prism, green
V = 962.0 (9) Å30.20 × 0.10 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
6308 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 36.1°, θmin = 3.0°
φ and ω scansh = 1110
36239 measured reflectionsk = 2222
8772 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.6276P]
where P = (Fo2 + 2Fc2)/3
8772 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.54 e Å3
1 restraintΔρmin = 0.51 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2>2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6965 (5)0.0120 (2)0.2808 (3)0.0423 (8)
N20.6834 (4)0.1969 (2)0.2073 (2)0.0345 (7)
N30.3276 (4)0.2445 (2)0.0620 (3)0.0378 (8)
C10.6807 (7)0.0822 (3)0.3068 (4)0.0564 (14)
C20.8509 (9)0.1305 (4)0.3730 (5)0.0682 (16)
C31.0290 (9)0.0823 (4)0.4081 (5)0.0704 (16)
C41.0401 (7)0.0151 (4)0.3788 (4)0.0570 (14)
C50.8694 (5)0.0637 (3)0.3144 (3)0.0400 (9)
C60.8612 (5)0.1667 (3)0.2779 (3)0.0377 (8)
C71.0221 (6)0.2299 (4)0.3166 (4)0.0514 (13)
C80.9989 (6)0.3259 (3)0.2837 (5)0.0566 (11)
C90.8147 (6)0.3578 (3)0.2109 (4)0.0510 (11)
C100.6616 (5)0.2905 (2)0.1750 (3)0.0360 (8)
C110.4595 (5)0.3173 (2)0.0989 (3)0.0374 (8)
C120.3955 (7)0.4115 (3)0.0654 (4)0.0493 (11)
C130.1989 (7)0.4256 (3)0.0041 (4)0.0555 (14)
C140.0724 (7)0.3501 (4)0.0406 (4)0.0574 (14)
C150.1389 (6)0.2582 (3)0.0065 (4)0.0496 (11)
Ni10.67429 (7)0.12776 (3)0.66208 (4)0.0431 (1)
Cl10.53022 (16)0.01301 (7)0.60866 (11)0.0556 (3)
Cl20.55986 (17)0.23114 (8)0.50704 (10)0.0576 (3)
Cl30.6050 (2)0.18121 (10)0.84272 (11)0.0672 (4)
Cl41.00476 (14)0.11245 (9)0.68627 (12)0.0629 (4)
Cl50.27653 (15)0.03265 (7)0.11437 (12)0.0576 (3)
H10.557800.114700.280900.0680*
H20.842600.195700.393200.0820*
H31.143900.114400.452000.0840*
H41.162900.048000.402400.0680*
H71.144800.207400.364500.0620*
H81.105300.369200.309800.0680*
H90.795500.422500.187300.0610*
H110.589700.041300.240200.0510*
H120.482400.463800.088900.0590*
H130.153500.488200.025900.0670*
H140.058100.360300.088200.0690*
H150.053500.205400.030800.0600*
H220.585100.156700.183100.0410*
H330.366100.186300.083300.0450*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0412 (14)0.0405 (14)0.0434 (14)0.0049 (11)0.0040 (11)0.0059 (11)
N20.0329 (11)0.0359 (12)0.0329 (11)0.0041 (9)0.0023 (9)0.0026 (10)
N30.0373 (13)0.0349 (13)0.0394 (13)0.0067 (10)0.0029 (10)0.0032 (10)
C10.069 (3)0.044 (2)0.057 (2)0.0067 (19)0.014 (2)0.0092 (17)
C20.099 (4)0.050 (2)0.059 (2)0.021 (3)0.024 (3)0.017 (2)
C30.067 (3)0.081 (3)0.061 (2)0.032 (3)0.007 (2)0.016 (2)
C40.047 (2)0.073 (3)0.048 (2)0.0178 (19)0.0019 (16)0.0088 (19)
C50.0381 (15)0.0508 (18)0.0295 (13)0.0063 (14)0.0024 (11)0.0005 (12)
C60.0330 (13)0.0479 (17)0.0306 (13)0.0024 (12)0.0024 (11)0.0055 (12)
C70.0339 (15)0.069 (3)0.0476 (19)0.0069 (16)0.0011 (14)0.0065 (18)
C80.0444 (19)0.061 (2)0.063 (2)0.0246 (17)0.0074 (18)0.0163 (19)
C90.052 (2)0.0391 (17)0.064 (2)0.0166 (15)0.0168 (18)0.0104 (16)
C100.0373 (14)0.0345 (14)0.0361 (14)0.0030 (11)0.0070 (12)0.0056 (11)
C110.0431 (16)0.0350 (14)0.0352 (14)0.0037 (12)0.0106 (12)0.0022 (11)
C120.061 (2)0.0354 (16)0.053 (2)0.0041 (15)0.0147 (17)0.0042 (14)
C130.068 (3)0.050 (2)0.0486 (19)0.0185 (19)0.0118 (18)0.0102 (17)
C140.057 (2)0.062 (3)0.049 (2)0.024 (2)0.0004 (17)0.0058 (18)
C150.0417 (18)0.055 (2)0.0487 (19)0.0085 (15)0.0002 (15)0.0056 (16)
Ni10.0447 (2)0.0389 (2)0.0450 (2)0.0022 (2)0.0074 (2)0.0037 (2)
Cl10.0557 (5)0.0396 (4)0.0668 (6)0.0065 (4)0.0008 (4)0.0078 (4)
Cl20.0582 (6)0.0542 (5)0.0578 (5)0.0045 (4)0.0048 (4)0.0156 (4)
Cl30.0789 (7)0.0736 (7)0.0531 (5)0.0027 (6)0.0231 (5)0.0196 (5)
Cl40.0395 (4)0.0623 (7)0.0851 (7)0.0057 (4)0.0075 (4)0.0053 (5)
Cl50.0413 (4)0.0435 (5)0.0823 (7)0.0114 (4)0.0017 (4)0.0015 (5)
Geometric parameters (Å, º) top
Ni1—Cl12.194 (2)C7—C81.372 (7)
Ni1—Cl22.201 (2)C8—C91.392 (6)
Ni1—Cl32.188 (2)C9—C101.380 (5)
Ni1—Cl42.185 (2)C10—C111.480 (5)
N1—C51.347 (5)C11—C121.394 (5)
N1—C11.338 (5)C12—C131.390 (7)
N2—C61.342 (4)C13—C141.351 (7)
N2—C101.338 (4)C14—C151.370 (7)
N3—C151.341 (5)C1—H10.9300
N3—C111.344 (4)C2—H20.9300
N1—H110.8600C3—H30.9300
N2—H220.8600C4—H40.9300
N3—H330.8600C7—H70.9300
C1—C21.387 (7)C8—H80.9300
C2—C31.352 (8)C9—H90.9300
C3—C41.386 (8)C12—H120.9300
C4—C51.384 (6)C13—H130.9300
C5—C61.472 (6)C14—H140.9300
C6—C71.384 (6)C15—H150.9300
Cl1—Ni1—Cl4109.13 (5)N2—C10—C9122.8 (3)
Cl1—Ni1—Cl2108.08 (5)N3—C11—C10116.7 (3)
Cl1—Ni1—Cl3111.59 (5)N3—C11—C12118.2 (3)
Cl3—Ni1—Cl4108.20 (5)C10—C11—C12125.1 (3)
Cl2—Ni1—Cl3109.57 (5)C11—C12—C13118.5 (4)
Cl2—Ni1—Cl4110.28 (5)C12—C13—C14121.3 (4)
C1—N1—C5124.0 (4)C13—C14—C15119.1 (4)
C6—N2—C10118.9 (3)N3—C15—C14119.8 (4)
C11—N3—C15123.2 (3)N1—C1—H1121.00
C5—N1—H11118.00C2—C1—H1121.00
C1—N1—H11118.00C1—C2—H2120.00
C10—N2—H22121.00C3—C2—H2120.00
C6—N2—H22121.00C4—C3—H3120.00
C15—N3—H33118.00C2—C3—H3120.00
C11—N3—H33118.00C3—C4—H4120.00
N1—C1—C2118.8 (4)C5—C4—H4120.00
C1—C2—C3119.7 (5)C6—C7—H7120.00
C2—C3—C4119.9 (5)C8—C7—H7120.00
C3—C4—C5120.4 (5)C9—C8—H8120.00
N1—C5—C4117.2 (4)C7—C8—H8120.00
C4—C5—C6125.7 (4)C8—C9—H9121.00
N1—C5—C6117.2 (3)C10—C9—H9121.00
N2—C6—C5115.5 (3)C11—C12—H12121.00
N2—C6—C7121.5 (4)C13—C12—H12121.00
C5—C6—C7123.0 (3)C14—C13—H13119.00
C6—C7—C8119.4 (4)C12—C13—H13119.00
C7—C8—C9119.4 (4)C13—C14—H14121.00
C8—C9—C10118.0 (4)C15—C14—H14120.00
N2—C10—C11115.1 (3)C14—C15—H15120.00
C9—C10—C11122.1 (3)N3—C15—H15120.00
C5—N1—C1—C20.4 (6)C4—C5—C6—N2175.1 (3)
C1—N1—C5—C40.5 (5)C4—C5—C6—C77.0 (6)
C1—N1—C5—C6179.7 (3)N2—C6—C7—C80.9 (6)
C10—N2—C6—C5177.3 (3)C5—C6—C7—C8176.8 (4)
C10—N2—C6—C70.7 (5)C6—C7—C8—C90.7 (7)
C6—N2—C10—C90.2 (5)C7—C8—C9—C100.2 (6)
C6—N2—C10—C11179.1 (3)C8—C9—C10—N20.1 (6)
C15—N3—C11—C10179.5 (3)C8—C9—C10—C11179.3 (4)
C15—N3—C11—C120.8 (5)N2—C10—C11—N35.3 (4)
C11—N3—C15—C140.8 (6)N2—C10—C11—C12173.4 (3)
N1—C1—C2—C31.0 (7)C9—C10—C11—N3175.5 (3)
C1—C2—C3—C40.6 (8)C9—C10—C11—C125.9 (5)
C2—C3—C4—C50.4 (7)N3—C11—C12—C130.1 (6)
C3—C4—C5—N11.0 (6)C10—C11—C12—C13178.5 (4)
C3—C4—C5—C6179.9 (4)C11—C12—C13—C141.0 (6)
N1—C5—C6—N24.0 (4)C12—C13—C14—C151.0 (7)
N1—C5—C6—C7173.9 (3)C13—C14—C15—N30.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···Cl50.862.263.026 (4)149
N1—H11···N20.862.282.666 (4)107
N2—H22···Cl50.862.673.532 (4)178
N2—H22···N30.862.292.654 (4)106
N3—H33···Cl50.862.253.010 (4)148
C14—H14···Cl5i0.932.783.421 (6)127
Symmetry code: (i) x, y+1/2, z.
 

Funding information

This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (URCHEMS), Université Frères Mentouri Constantine, Algeria, and the Biotechnology Research Center (CRBt), Constantine, Algeria. Thanks are due to MESRS and ATRST (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Thématique de Recherche en Sciences et Technologie, Algérie) for financial support via the PNR program.

References

First citationAdeloye, A. O., Olomola, T. O., Adebayo, A. I. & Ajibade, P. A. (2012). Int. J. Mol. Sci. 13, 3511–3526.  Web of Science CrossRef CAS PubMed
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationHuang, F.-P., Yang, Z.-M., Yao, P.-F., Yu, Q., Tian, J.-L., Bian, H.-D., Yan, S.-P., Liao, D.-Z. & Cheng, P. (2013). CrystEngComm, 15, 2657–2668.  Web of Science CSD CrossRef CAS
First citationIgashira-Kamiyama, A., Itai, T., Arai, Y. & Konno, T. (2013). Acta Cryst. E69, m339.  CSD CrossRef IUCr Journals
First citationIndelli, M. T., Bignozzi, C. A., Scandola, F. & Collin, J. P. (1998). Inorg. Chem. 37, 6084–6089.  Web of Science CrossRef PubMed CAS
First citationKochel, A. (2006). Acta Cryst. E62, m37–m38.  Web of Science CSD CrossRef IUCr Journals
First citationKohle, O., Ruile, S. & Grätzel, M. (1996). Inorg. Chem. 35, 4779–4787.  CrossRef CAS Web of Science
First citationLing, J., Sigmon, G. E., Ward, M., Roback, N. & Carman Burns, P. (2010). Z. Kristallogr. 225, 230–239.  CAS
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals
First citationMaynard, B. A., Smith, P. A. & Sykora, R. E. (2009). Acta Cryst. E65, m1132–m1133.  Web of Science CSD CrossRef IUCr Journals
First citationMori, K., Watanabe, K., Fuku, K. & Yamashita, H. (2012). Chem. Eur. J. 18, 415–418.  Web of Science CrossRef CAS PubMed
First citationPersistence of Vision (2004). POVRay. Persistence of Vision Raytracer Pty. Ltd, Victoria, Australia.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWen, L., Lu, Z., Lin, J., Tian, Z., Zhu, H. & Meng, Q. (2007). Cryst. Growth Des. 7, 93–99.  Web of Science CSD CrossRef CAS
First citationYoshikawa, N., Yamabe, S., Kanehisa, N., Inoue, T. & Takashima, H. (2016). J. Phys. Org. Chem. 29, 269–275.  Web of Science CSD CrossRef CAS
First citationZhang, L.-P., Ma, J.-F., Yang, J., Pang, Y.-Y. & Ma, J.-C. (2010). Inorg. Chem. 49, 1535–1550.  Web of Science CSD CrossRef CAS PubMed

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds