research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a zigzag CoII coordination polymer: catena-poly[[di­chlorido­bis­­(methanol-κO)cobalt(II)]-μ-bis­­(pyridin-3-ylmeth­yl)sulfane-κ2N:N′]

CROSSMARK_Color_square_no_text.svg

aDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, bMineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea, and cResearch institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: joobeomi@kigam.re.kr, kmpark@gnu.ac.kr

Edited by G. Smith, Queensland University of Technology, Australia (Received 28 October 2017; accepted 15 November 2017; online 17 November 2017)

Reaction of bis­(pyridin-3-ylmeth­yl)sulfane (L) with cobalt(II) chloride in methanol led to the formation of the title coordination polymer, [CoCl2(C12H12N2S)(CH3OH)2]n, in which the CoII cation lies on a crystallographic inversion centre and the S atom of the L ligand lies on a twofold rotation axis. Each CoII ion is coordinated by two pyridine N atoms from two bridging L ligands, two O atoms from methanol mol­ecules and two chloride anions, all inversion-related. The complex unit has an elongated octa­hedral geometry, in which N2O2 donor atoms occupy the equatorial positions and two chloride anions occupy the axial positions. Each L ligand links two CoII ions, forming an infinite zigzag chain propagating along the c-axis direction and further stabilized by O—H⋯Cl hydrogen bonds between the methanol mol­ecules and the chloride anions. Adjacent chains in the structure are connected by inter­molecular C—H⋯Cl hydrogen bonds, resulting in the formation of a three-dimensional supra­molecular architecture.

1. Chemical context

Up to now, large numbers of metal–organic coordination polymers with intriguing topologies and attractive properties have been constructed in which dipyridyl-type mol­ecules functioning as bridging ligands have mainly been used (Leong & Vittal, 2011[Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688-764.]; Wang et al., 2012[Wang, C., Zhang, T. & Lin, W. (2012). Chem. Rev. 112, 1084-1104.]; Liu et al., 2011[Liu, D., Chang, Y.-J. & Lang, J.-P. (2011). CrystEngComm, 13, 1851-1857.]). Our group has also investigated several metal–organic coordination polymers with inter­esting topologies using such dipyridyl-type ligands (Moon et al., 2011[Moon, S.-H., Kim, T. H. & Park, K.-M. (2011). Acta Cryst. E67, m1769-m1770.], 2016[Moon, S.-H., Kang, D. & Park, K.-M. (2016). Acta Cryst. E72, 1513-1516.], 2017[Moon, S.-H., Seo, J. & Park, K.-M. (2017). Acta Cryst. E73, 1700-1703.]; Lee et al., 2015[Lee, E., Ju, H., Moon, S.-H., Lee, S. S. & Park, K.-M. (2015). Bull. Korean Chem. Soc. 36, 1532-1535.]; Ju et al., 2014[Ju, H., Lee, E., Moon, S.-H., Lee, S. S. & Park, K.-M. (2014). Bull. Korean Chem. Soc. 35, 3658-3660.]; Im et al., 2017[Im, H., Lee, E., Moon, S.-H., Lee, S. S., Kim, T. H. & Park, K.-M. (2017). Bull. Korean Chem. Soc. 38, 127-129.]). In an extension of our research in this area, the title compound was prepared by the reaction of cobalt(II) chloride with bis­(pyridin-3-ylmeth­yl)sulfane, C12H12N2S, (L) as a flexible dipyridyl-type ligand [synthesized according to a literature procedure (Park et al., 2010[Park, K.-M., Seo, J., Moon, S.-H. & Lee, S. S. (2010). Cryst. Growth Des. 10, 4148-4154.]; Lee et al., 2012[Lee, E., Seo, J., Lee, S. S. & Park, K.-M. (2012). Cryst. Growth Des. 12, 3834-3837.])]. Our group has previously reported the crystal structure of a looped-chain CoII coordination polymer obtained through the reaction of cobalt(II) nitrate with L (Moon et al., 2017[Moon, S.-H., Seo, J. & Park, K.-M. (2017). Acta Cryst. E73, 1700-1703.]). In this article, we describe the crystal structure of the title compound, [Co(L)(CH3OH)2Cl2]n, with L = (pyridin-3-ylmeth­yl)sulfane, which adopts a one-dimensional zigzag topology.

[Scheme 1]

2. Structural commentary

As shown in Figs. 1[link] and 2[link], the mol­ecular structure of the title compound is generated by the combination of inversion and twofold rotation symmetries. Each CoII cation lies on a crystallographic inversion centre, and the twofold rotation axis passes through the S atom of the L ligand. Therefore, the asymmetric unit comprises one half of a CoII cation, one half of an L ligand, one chloride anion and one methanol mol­ecule. The coordination geometry of the CoII ion is elongated octa­hedral with the four equatorial positions being occupied by two pyridine N atoms from the two symmetry-related L ligands and two O atoms from two symmetry-related methanol mol­ecules, and the two axial positions being occupied by two chlorido ligands (Fig. 1[link]). Selected bond lengths and angles around the Co1 atom are listed in Table 1[link]. The coordination geometry of the title compound is similar to that found in di­chloro­bis­(methanol-κO)bis­[N-(1-naphth­yl)-N′-(3-pyrid­yl)urea-κN]cobalt(II) (Huang et al., 2008[Huang, X., Xia, Y., Zhang, H., Yan, Z., Tang, Y., Yang, X.-J. & Wu, B. (2008). Inorg. Chem. Commun. 11, 450-453.]).

Table 1
Selected geometric parameters (Å, °)

Co1—O1 2.119 (2) Co1—Cl1 2.4571 (11)
Co1—N1 2.153 (3)    
       
O1—Co1—N1 88.20 (11) N1—Co1—Cl1 92.11 (9)
O1—Co1—Cl1 90.53 (8)    
[Figure 1]
Figure 1
A view of mol­ecular structure of the title compound, showing the geometry around the CoII centre and the atom-numbering scheme [symmetry codes: (iii) −x + 1, −y, −z; (iv) −x + 1, y, −z − [{1\over 2}]]. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2]
Figure 2
The zigzag chain structure of the title compound extending along the c axis. Yellow dashed lines represent intra­molecular O—H⋯Cl hydrogen bonds in the zigzag chain. H atoms not involved in inter­molecular inter­actions have been omitted for clarity.

Each L ligand bridges two CoII ions into an infinite zigzag chain propagating along the c-axis direction (Fig. 2[link]). The separation between the CoII ions through a L ligand in the chain is 6.0595 (11) Å. The flexible thio­ether segment [C5—C6—S1—C6iv—C5iv; symmetry code: (iv) −x + 1, y, −z − [{1\over 2}]] of the L ligand shows a bent arrangement induced by a gauchegauche configuration with a torsion angle of 74.4 (3)° for the C5—C6—S1—C6iv and C6—S1—C6iv—C5iv units. This conformation of the L ligand is similar to those in a cyclic dimer-type silver(I) BF4 complex, [Ag(L)]2·2BF4 (Seo et al., 2003[Seo, J., Moon, S.-T., Kim, J., Lee, S. S. & Park, K.-M. (2003). Bull. Korean Chem. Soc. 24, 1393-1395.]), and a staircase-type copper(I) iodide coordination polymer, [(CuI)2(L)]n (Hanton et al., 2006[Hanton, L. R., Hellyer, R. M. & Spicer, M. D. (2006). Inorg. Chim. Acta, 359, 3659-3665.]). The zigzag topology of the chain may be induced by this conformation of the L ligand.

3. Supra­molecular features

An O1—H⋯Cl1i hydrogen bond (Table 2[link]; yellow dashed lines in Fig. 2[link]; symmetry code: (i) −x + 1, y, −z + [{1\over 2}]) between the methanol mol­ecule and the chloride anion contributes to the stabilization of the zigzag chain. In the crystal, weak C6—H⋯Cl1ii hydrogen bonds (Table 2[link]; sky-blue dashed lines in Fig. 3[link]) connect neighboring zigzag chains to generate a three-dimensional supra­molecular network.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1i 0.82 2.28 3.030 (3) 152
C6—H6A⋯Cl1ii 0.97 2.76 3.653 (4) 153
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y-{\script{1\over 2}}, -z].
[Figure 3]
Figure 3
The three-dimensional supra­molecular network formed through inter­molecular C—H⋯Cl hydrogen bonds (sky-blue dashed lines) between the chains. H atoms not involved in inter­molecular inter­actions have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the title ligand (L) gave three hits. Two of these (REJCAL, RENHOI; Hanton et al., 2006[Hanton, L. R., Hellyer, R. M. & Spicer, M. D. (2006). Inorg. Chim. Acta, 359, 3659-3665.]) are copper(I) iodide coordination polymers adopting staircase- and loop-type structures, respectively. The third (EXEZOW; Seo et al., 2003[Seo, J., Moon, S.-T., Kim, J., Lee, S. S. & Park, K.-M. (2003). Bull. Korean Chem. Soc. 24, 1393-1395.]) is a silver(I) BF4 complex with a cyclic dimer structure.

5. Synthesis and crystallization

The L ligand was synthesized according to a literature method (Park et al., 2010[Park, K.-M., Seo, J., Moon, S.-H. & Lee, S. S. (2010). Cryst. Growth Des. 10, 4148-4154.]; Lee et al., 2012[Lee, E., Seo, J., Lee, S. S. & Park, K.-M. (2012). Cryst. Growth Des. 12, 3834-3837.]). Crystals of the title compound were obtained by slow evaporation of a methanol solution of the L ligand with CoCl2·6H2O in an 1:1 molar ratio.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically with C—H = 0.93 Å for Csp2—H, 0.96 Å for methyl C—H, 0.97 Å for methyl­ene C—H, and 0.82 Å for alcohol O—H, and were refined as riding with Uiso(H) = 1.2Ueq(C,O).

Table 3
Experimental details

Crystal data
Chemical formula [CoCl2(C12H12N2S)(CH4O)2]
Mr 410.21
Crystal system, space group Monoclinic, C2/c
Temperature (K) 298
a, b, c (Å) 11.419 (2), 13.363 (2), 12.119 (2)
β (°) 106.226 (4)
V3) 1775.6 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.39
Crystal size (mm) 0.35 × 0.08 × 0.08
 
Data collection
Diffractometer Bruker CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.627, 0.888
No. of measured, independent and observed [I > 2σ(I)] reflections 5461, 1947, 1013
Rint 0.098
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.095, 0.92
No. of reflections 1947
No. of parameters 102
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.32
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

catena-Poly[[dichloridobis(methanol-κO)cobalt(II)]-µ-bis(pyridin-3-ylmethyl)sulfane-κ2N:N'] top
Crystal data top
[CoCl2(C12H12N2S)(CH4O)2]F(000) = 844
Mr = 410.21Dx = 1.534 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 11.419 (2) ÅCell parameters from 5771 reflections
b = 13.363 (2) Åθ = 2.4–28.2°
c = 12.119 (2) ŵ = 1.39 mm1
β = 106.226 (4)°T = 298 K
V = 1775.6 (6) Å3Needle, violet
Z = 40.35 × 0.08 × 0.08 mm
Data collection top
Bruker CCD area detector
diffractometer
1013 reflections with I > 2σ(I)
φ and ω scansRint = 0.098
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 27.0°, θmin = 2.4°
Tmin = 0.627, Tmax = 0.888h = 1414
5461 measured reflectionsk = 1713
1947 independent reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0319P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
1947 reflectionsΔρmax = 0.37 e Å3
102 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.00000.00000.0333 (2)
Cl10.64563 (9)0.04038 (8)0.18588 (8)0.0414 (3)
S10.50000.44202 (11)0.25000.0611 (5)
O10.3665 (2)0.0394 (2)0.0836 (2)0.0467 (8)
H1A0.35280.00100.13130.056*
N10.5559 (3)0.1544 (2)0.0120 (3)0.0361 (8)
C10.5742 (3)0.2051 (3)0.0774 (3)0.0365 (10)
H10.56820.16960.14480.044*
C20.5680 (4)0.2068 (3)0.1089 (4)0.0467 (12)
H20.55780.17340.17290.056*
C30.5946 (4)0.3071 (4)0.1189 (4)0.0599 (14)
H30.60210.34080.18770.072*
C40.6099 (4)0.3567 (3)0.0235 (4)0.0562 (13)
H40.62620.42500.02740.067*
C50.6011 (4)0.3051 (3)0.0771 (4)0.0416 (11)
C60.6204 (4)0.3550 (3)0.1819 (4)0.0543 (13)
H6A0.69750.39070.16010.065*
H6B0.62600.30400.23720.065*
C70.2751 (4)0.1150 (3)0.0567 (4)0.0570 (13)
H7A0.22410.10530.02020.068*
H7B0.22650.11120.10960.068*
H7C0.31320.17960.06250.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0461 (5)0.0281 (5)0.0281 (4)0.0030 (4)0.0143 (4)0.0000 (4)
Cl10.0512 (7)0.0429 (6)0.0305 (6)0.0051 (5)0.0122 (5)0.0002 (4)
S10.0791 (14)0.0273 (10)0.0658 (13)0.0000.0021 (11)0.000
O10.064 (2)0.0387 (17)0.0454 (18)0.0111 (15)0.0286 (17)0.0149 (13)
N10.048 (2)0.029 (2)0.034 (2)0.0012 (16)0.0140 (18)0.0029 (16)
C10.039 (3)0.035 (3)0.035 (2)0.004 (2)0.010 (2)0.000 (2)
C20.061 (3)0.041 (3)0.039 (3)0.006 (2)0.016 (2)0.002 (2)
C30.080 (4)0.047 (3)0.050 (3)0.005 (3)0.013 (3)0.020 (3)
C40.072 (4)0.025 (3)0.067 (4)0.010 (2)0.012 (3)0.010 (2)
C50.034 (3)0.033 (3)0.056 (3)0.006 (2)0.011 (2)0.003 (2)
C60.052 (3)0.045 (3)0.064 (3)0.015 (2)0.015 (3)0.014 (2)
C70.068 (3)0.054 (3)0.052 (3)0.013 (3)0.022 (3)0.008 (2)
Geometric parameters (Å, º) top
Co1—O12.119 (2)C1—H10.9300
Co1—O1i2.119 (2)C2—C31.372 (6)
Co1—N12.153 (3)C2—H20.9300
Co1—N1i2.153 (3)C3—C41.385 (6)
Co1—Cl1i2.4571 (11)C3—H30.9300
Co1—Cl12.4571 (11)C4—C51.380 (6)
S1—C61.814 (4)C4—H40.9300
S1—C6ii1.814 (4)C5—C61.504 (5)
O1—C71.424 (4)C6—H6A0.9700
O1—H1A0.8200C6—H6B0.9700
N1—C21.342 (5)C7—H7A0.9600
N1—C11.343 (5)C7—H7B0.9600
C1—C51.371 (5)C7—H7C0.9600
O1—Co1—O1i180.0N1—C2—C3123.6 (4)
O1—Co1—N188.20 (11)N1—C2—H2118.2
O1i—Co1—N191.80 (11)C3—C2—H2118.2
O1—Co1—N1i91.80 (11)C2—C3—C4118.0 (4)
O1i—Co1—N1i88.20 (11)C2—C3—H3121.0
N1—Co1—N1i180.0C4—C3—H3121.0
O1—Co1—Cl1i89.47 (8)C5—C4—C3120.3 (4)
O1i—Co1—Cl1i90.53 (8)C5—C4—H4119.9
N1—Co1—Cl1i87.89 (9)C3—C4—H4119.9
N1i—Co1—Cl1i92.11 (9)C1—C5—C4116.7 (4)
O1—Co1—Cl190.53 (8)C1—C5—C6121.0 (4)
O1i—Co1—Cl189.47 (8)C4—C5—C6122.2 (4)
N1—Co1—Cl192.11 (9)C5—C6—S1113.4 (3)
N1i—Co1—Cl187.89 (9)C5—C6—H6A108.9
Cl1i—Co1—Cl1180.0S1—C6—H6A108.9
C6—S1—C6ii100.3 (3)C5—C6—H6B108.9
C7—O1—Co1130.2 (2)S1—C6—H6B108.9
C7—O1—H1A109.5H6A—C6—H6B107.7
Co1—O1—H1A119.1O1—C7—H7A109.5
C2—N1—C1116.2 (4)O1—C7—H7B109.5
C2—N1—Co1121.1 (3)H7A—C7—H7B109.5
C1—N1—Co1122.6 (3)O1—C7—H7C109.5
N1—C1—C5125.1 (4)H7A—C7—H7C109.5
N1—C1—H1117.5H7B—C7—H7C109.5
C5—C1—H1117.5
C2—N1—C1—C51.6 (6)N1—C1—C5—C6179.8 (4)
Co1—N1—C1—C5175.0 (3)C3—C4—C5—C11.4 (7)
C1—N1—C2—C31.6 (6)C3—C4—C5—C6178.3 (4)
Co1—N1—C2—C3175.1 (3)C1—C5—C6—S1110.7 (4)
N1—C2—C3—C40.1 (7)C4—C5—C6—S169.6 (5)
C2—C3—C4—C51.4 (7)C6ii—S1—C6—C574.4 (3)
N1—C1—C5—C40.1 (6)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl1iii0.822.283.030 (3)152
C6—H6A···Cl1iv0.972.763.653 (4)153
Symmetry codes: (iii) x+1, y, z+1/2; (iv) x+3/2, y1/2, z.
 

Funding information

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A3A01020410).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationHanton, L. R., Hellyer, R. M. & Spicer, M. D. (2006). Inorg. Chim. Acta, 359, 3659–3665.  Web of Science CSD CrossRef CAS
First citationHuang, X., Xia, Y., Zhang, H., Yan, Z., Tang, Y., Yang, X.-J. & Wu, B. (2008). Inorg. Chem. Commun. 11, 450–453.  Web of Science CSD CrossRef CAS
First citationIm, H., Lee, E., Moon, S.-H., Lee, S. S., Kim, T. H. & Park, K.-M. (2017). Bull. Korean Chem. Soc. 38, 127–129.  Web of Science CSD CrossRef CAS
First citationJu, H., Lee, E., Moon, S.-H., Lee, S. S. & Park, K.-M. (2014). Bull. Korean Chem. Soc. 35, 3658–3660.  Web of Science CSD CrossRef CAS
First citationLee, E., Ju, H., Moon, S.-H., Lee, S. S. & Park, K.-M. (2015). Bull. Korean Chem. Soc. 36, 1532–1535.  Web of Science CrossRef CAS
First citationLee, E., Seo, J., Lee, S. S. & Park, K.-M. (2012). Cryst. Growth Des. 12, 3834–3837.  Web of Science CSD CrossRef CAS
First citationLeong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764.  Web of Science CrossRef CAS PubMed
First citationLiu, D., Chang, Y.-J. & Lang, J.-P. (2011). CrystEngComm, 13, 1851–1857.  Web of Science CSD CrossRef CAS
First citationMoon, S.-H., Kang, D. & Park, K.-M. (2016). Acta Cryst. E72, 1513–1516.  Web of Science CSD CrossRef IUCr Journals
First citationMoon, S.-H., Kim, T. H. & Park, K.-M. (2011). Acta Cryst. E67, m1769–m1770.  Web of Science CSD CrossRef IUCr Journals
First citationMoon, S.-H., Seo, J. & Park, K.-M. (2017). Acta Cryst. E73, 1700–1703.  Web of Science CSD CrossRef IUCr Journals
First citationPark, K.-M., Seo, J., Moon, S.-H. & Lee, S. S. (2010). Cryst. Growth Des. 10, 4148–4154.  Web of Science CSD CrossRef CAS
First citationSeo, J., Moon, S.-T., Kim, J., Lee, S. S. & Park, K.-M. (2003). Bull. Korean Chem. Soc. 24, 1393–1395.  CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationWang, C., Zhang, T. & Lin, W. (2012). Chem. Rev. 112, 1084–1104.  Web of Science CrossRef CAS PubMed
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds