research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-benzyl-2-[(E)-2-(furan-2-yl)ethen­yl]-2,3-di­hydro­quinazolin-4(1H)-one and 3-benzyl-2-[(E)-2-(thio­phen-2-yl)ethen­yl]-2,3-di­hydro­quinazolin-4(1H)-one from synchrotron X-ray diffraction

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of Cameroon, bOrganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, cNational Research Centre "Kurchatov Institute", 1 Acad. Kurchatov Sq., Moscow 123182, Russian Federation, and dInorganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation
*Correspondence e-mail: toflavien@yahoo.fr

Edited by S. V. Lindeman, Marquette University, USA (Received 2 December 2017; accepted 5 December 2017; online 1 January 2018)

The chiral title compounds, C21H18N2O2, (I), and C21H18N2OS, (II) – products of the three-component reaction between benzyl­amine, isatoic anhydride and furyl- or thienyl-acrolein – are isostructural and form isomorphous racemic crystals. The tetra­hydro­pyrimidine ring in (I) and (II) adopts a sofa conformation. The amino N atom has a trigonal–pyramidal geometry [sum of the bond angles is 347.0° for both (I) and (II)], whereas the amido N atom is flat [sum of the bond angles is 359.3° for both (I) and (II)]. The furyl- and thienylethenyl substituents in (I) and (II) are planar and the conformation about the bridging C=C bond is E. These bulky fragments occupy the axial position at the quaternary C atom of the tetra­hydro­pyrimidine ring, apparently, due to steric reasons. In the crystals, mol­ecules of (I) and (II) form hydrogen-bonded helicoidal chains propagating along [010] by strong inter­molecular N—H⋯O hydrogen bonds.

1. Chemical context

The synthesis and chemistry of quinazoline and quinazolinone derivatives have remained at the focus of biochemical research over the past decade owing to their high and diverse physiological activities (for recent reviews, see: Jafari et al., 2016[Jafari, E., Khajouei, M. R., Hassanzadeh, F., Hakimelahi, G. H. & Khodarahmi, G. A. (2016). Res. Pharm. Sci. 11, 1-14.]; Wang & Gao, 2013[Wang, D. & Gao, F. (2013). Chem. Cent. J. 7, 95.]; Selvam & Kumar, 2011[Selvam, T. P. & Kumar, P. V. (2011). Res. Pharm. 1, 1-21.]). A large part of these studies has been aimed at the development of methods for the synthesis of 2-aryl-substituted quinazolines. However, 2-ethenylquinazolines are much more attractive synthons for subsequent modifications of the heterocyclic skeleton.

Two synthetic approaches A and B (Fig. 1[link]) are known for 2-ethenylphenyl-substituted heterocycles (Mohammadpoor-Baltork et al., 2011[Mohammadpoor-Baltork, I., Khosropour, A. R., Moghadam, M., Tangestaninejad, S., Mirkhani, V., Soltani, M. & Mirjafari, A. (2011). J. Heterocycl. Chem. 48, 1419-1427.]; Ramesh et al., 2012[Ramesh, K., Karnakar, K., Satish, G., Anil Kumar, B. S. P. & Nageswar, Y. V. D. (2012). Tetrahedron Lett. 53, 6936-6939.]; Cheng et al., 2012[Cheng, D.-J., Tian, Y. & Tian, S.-K. (2012). Adv. Synth. Catal. 354, 995-999.]; Ghorbani-Choghamarani & Norouzi, 2014[Ghorbani-Choghamarani, A. & Norouzi, N. (2014). J. Mol. Catal. A Chem. 395, 172-179.]; Zhang et al., 2014[Zhang, J., Ren, D., Ma, Y., Wang, W. & Wu, H. (2014). Tetrahedron, 70, 5274-5282.], 2016[Zhang, J., Liu, J., Ma, Y., Ren, D., Cheng, P., Zhao, J., Zhang, F. & Yao, Y. (2016). Bioorg. Med. Chem. Lett. 26, 2273-2277.]; Deng et al., 2015[Deng, T., Wang, H. & Cai, C. (2015). J. Fluor. Chem. 169, 72-77.]; Noori et al., 2017[Noori, N., Nikoorazm, M. & Ghorbani-Choghamarani, A. (2017). Catal. Lett. 147, 204-214.]; Alinezhad et al., 2017[Alinezhad, H., Soleymani, E. & Zare, M. (2017). Res. Chem. Intermed. 43, 457-466.]). However, up to date, there is practically no information about the synthesis of 2-ethenylhetaryl-substituted quinazolines (Frackenpohl et al., 2016[Frackenpohl, J., Zeishans, J., Heinemann, I., Willms, L., Mueller, T., Busch, M., Vonkoskull, P. D., Haeuser-Hahn, I., Rosinger, C. H., Dittgen, J. & Schmitt, M. H. (2016). Patent CN103228141B, Bayer Intellectual Property GmbH.]; Zaytsev et al., 2015[Zaytsev, V. P., Revutskaya, E. L., Kuz'menko, M. G., Novikov, R. A., Zubkov, F. I., Sorokina, E. A., Nikitina, E. V., Toze, F. A. A. & Varlamov, A. V. (2015). Russ. Chem. Bull. 64, 1345-1353.]; Celltech & Limited, 2004[Celltech R. & D. Limited (2004). Patent WO2004/18462A1.]; Kundu & Chaudhuri, 2001[Kundu, N. G. & Chaudhuri, G. (2001). Tetrahedron, 57, 6833-6842.]). Taking into account the high biological activity of furan, thio­phene, and pyrrole derivatives, it appeared very attractive to obtain quinazolines of this type. It is well known that, for biological researches, the conformation of a mol­ecule plays a key role. In this connection, the present work is aimed at revealing the conformational features of 2-ethenylhetaryl-substituted quinazolines.

[Figure 1]
Figure 1
The two general methods, A and B, for the synthesis of 3-benzyl-2-[(E)-2-(2-ar­yl)ethen­yl]-2,3-di­hydro­quinazolin-4(1H)-ones (I)[link] and (II)[link].

Using method A, the three-component reaction between benzyl­amine, isatoic anhydride and furyl- or thienylacrolein in the presence of a catalytic qu­antity of p-TsOH afforded the 3-benzyl-2-[(E)-2-(furan-2-yl)ethen­yl]-2,3-di­hydro­quinazolin-4(1H)-one (I)[link] and 3-benzyl-2-[(E)-2-(thio­phen-2-yl)ethen­yl]-2,3-di­hydro­quinazolin-4(1H)-one (II)[link] in moderate yields.

[Scheme 1]

2. Structural commentary

Compounds (I)[link], C21H18N2O2, and (II)[link], C21H18N2OS – the products of the three-component reaction between benzyl­amine, isatoic anhydride and furyl- or thienyl-acrolein are isostructural and crystallize in the ortho­rhom­bic space group Pbca (Figs. 2[link] and 3[link]).

[Figure 2]
Figure 2
The mol­ecular structure of (I)[link]. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 3]
Figure 3
The mol­ecular structure of (II)[link]. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

The tetra­hydro­pyrimidine ring in (I)[link] and (II)[link] adopts a sofa conformation, with the C2 carbon atom deviating from the mean plane of the other atoms of the ring by 0.526 (1) and 0.528 (2) Å for (I)[link] and (II)[link], respectively. The nitro­gen N1 atom has a trigonal-pyramidal geometry [sum of the bond angles is 347° for both (I)[link] and (II)], whereas the nitro­gen N3 atom is flattened [sum of the bond angles is 359.3° for both (I)[link] and (II)]. The furyl- and thienyl-ethenyl substituents in (I)[link] and (II)[link] are planar and have the E-conformation at the C9=C10 double bond. Remarkably, these bulky fragments occupy the axial position at the quaternary C2 carbon atom of the tetra­hydro­pyrimidine ring, apparently, due to the steric inter­action with the benzyl substituent.

The mol­ecules of (I)[link] and (II)[link] possess an asymmetric center at the C2 carbon atom. The crystals of (I)[link] and (II)[link] are racemates.

3. Supra­molecular features

In the crystals of (I)[link] and (II)[link], mol­ecules form hydrogen-bonded helicoidal chains propagating along the [010] direction by strong inter­molecular N—H⋯O hydrogen bonds (Tables 1[link] and 2[link], Figs. 4[link] and 5[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.897 (15) 2.111 (15) 2.9557 (14) 156.7 (12)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (3) 2.14 (3) 2.978 (2) 161 (2)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 4]
Figure 4
The crystal structure of (I)[link], demonstrating the hydrogen-bonded helicoidal chains propagating in the [010] direction. Dashed lines indicate the inter­molecular N—H⋯O hydrogen bonds.
[Figure 5]
Figure 5
The crystal structure of (II)[link], demonstrating the hydrogen-bonded helicoidal chains propagating in the [010] direction. Dashed lines indicate the inter­molecular N—H⋯O hydrogen bonds.

4. Synthesis and crystallization

3-Benzyl-2-[(E)-2-(2-ar­yl)ethen­yl]-2,3-di­hydro­quinazolin-4-ones (I)[link] and (II)[link] were synthesized using a method similar to the recently described procedure (Fig. 6[link]) (Zaytsev et al., 2017[Zaytsev, V. P., Revutskaya, E. L., Nikanorova, T. V., Nikitina, E. V., Dorovatovskii, P. V., Khrustalev, V. N., Yagafarov, N. Z., Zubkov, F. I. & Varlamov, A. V. (2017). Synthesis, DOI: 10.1055/s-0036-1588812.]).

[Figure 6]
Figure 6
Syntheses of 3-benzyl-2-[(E)-2-(furan-2-yl)ethen­yl]-2,3-di­hydro­quin­az­o­lin-4(1H)-one (I) and 3-benzyl-2-[(E)-2-(thio­phen-2-yl)ethen­yl]-2,3-di­hydro­quinazolin-4(1H)-one (II).

General procedure. p-TsOH (0.79 g, 4.6 mmol) was added to a mixture of isatoic anhydride (1.5 g, 9.2 mmol), benzyl­amine (1.2 mL, 11.0 mmol), and furyl- or thienylacrolein (9.2 mmol) in 50 mL EtOH. The reaction mixture was heated under reflux for 4 h. The progress of the reaction was monitored by TLC. When the reaction completed, the mixture was diluted with H2O (100 mL) and extracted with EtOAc (3 × 50 mL). The organic layers were combined, dried (MgSO4), concentrated in vacuo and the residue was purified by column chromatography on SiO2 (3 × 20 cm) using hexane and then EtOAc/hexane (1/10→1/5) mixtures as eluent. The resulting product was recrystallized from a mixture of hexa­ne–EtOAc [for (I)] or EtOAc–EtOH [for (II)] to afford the analytically pure samples of the target products.

3-Benzyl-2-[(E)-2-(furan-2-yl)ethen­yl]-2,3-di­hydro­quin­az­olin-4(1H)-one (I). Colourless prisms. Yield is 2.31 g (76%). M.p. = 427.1 K (hexa­ne–EtOAc). IR (KBr), ν (cm−1): 3376, 1645, 1611. 1H NMR (CDCl3, 600.2 MHz, 301 K): δ = 3.86 (d, 1H, CH2N, J = 15.1), 4.61 (br s, 1H, NH), 4.98 (br d, 1H, H2, J = 5.5), 5.59 (d, 1H, CH2N, J = 15.1), 6.24 (d, 1H, H3, furyl, J = 3.1), 6.25 (d, 1H, CH=CH, J = 6.2), 6.34 (dd, 1H, H4, furyl, J = 2.1, J = 3.1), 6.59 (d, 1H, H8, J = 8.2), 6.83 (t, 1H, H6, J = 7.6), 7.24–7.34 (m, 7H, HAr), 7.96 (dd, 1H, H5, J = 1.4, J = 7.6). 13C NMR (CDCl3, 100 MHz, 301 K): δ = 46.7 (CH2N), 69.8 (C2), 109.9, 111.5, 114.8, 119.1, 121.1, 123.6, 127.5, 127.9, 128.7, 128.7, 133.6, 115.7, 136.9, 145.4, 151.1, 142.7 (CAr, CH=CH), 162.9 (NCO). MS (EI, 70 eV): m/z = 330 [M]+ (93), 239 (100), 197 (71), 170 (20), 160 (19), 120 (40), 106 (55), 91 (81), 76 (58), 65 (45), 51 (37), 43 (20).

3-Benzyl-2-[(E)-2-(thio­phen-2-yl)ethen­yl]-2,3-di­hydro­quinazolin-4(1H)-one (II). Yellow prisms. Yield is 2.39 g (75%). M.p. = 434.1–435.1 K (EtOAc–EtOH). IR (KBr), ν (cm−1): 3306, 1625, 1506. 1H NMR (DMSO, 600.2 MHz, 301 K): δ = 4.05 (d, 1H, CH2N, J = 15.8), 5.15-5.17 (m, 2H, H2, CH2N), 6.00 (dd, 1H, CH=CH, J = 6.8, J = 15.1), 6.69–6.76 (m, 3H, H6, H8, CH=CH), 6.96 (dd, 1H, H4, thienyl, J = 3.4, J = 5.2), 7.07 (br d, 1H, H3, thienyl, J = 3.4), 7.07 (br s, 1H, NH), 7.23–7.32 (m, 6H, HAr), 7.38 (br d, 1H, H2, thienyl, J = 5.2), 7.66 (dd, 1H, H5, J = 1.4, J = 8.2). 13C NMR (DMSO, 150.9 MHz, 301 K): δ = 47.0 (CH2N), 69.6 (C2), 115.1, 115.2, 118.0, 125.7 (2C), 126.4, 127.7, 127.9, 128.1, 128.3, 128.4, 129.0, 134.0, 138.3, 140.8, 147.1 (CAr, CH=CH), 162.4 (NCO). MS (EI, 70 eV): m/z = 346 [M]+ (76), 255 (100), 237 (93), 213 (37), 106 (14), 91 (99), 65 (13).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. X-ray diffraction studies were carried out on the "Belok" beamline of the National Research Center "Kurchatov Institute" (Moscow, Russian Federation) using a Rayonix SX165 CCD detector. A total of 360 images for each compounds were collected using an oscillation range of 1.0° (φ scan mode, two different crystal orientations) and corrected for absorption using the SCALA program (Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.]). The data were indexed, integrated and scaled using the utility iMOSFLM in the CCP4 program (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C21H18N2O2 C21H18N2OS
Mr 330.37 346.43
Crystal system, space group Orthorhombic, Pbca Orthorhombic, Pbca
Temperature (K) 100 100
a, b, c (Å) 14.292 (3), 13.729 (3), 17.230 (3) 14.245 (3), 13.855 (3), 17.629 (4)
V3) 3380.8 (12) 3479.3 (13)
Z 8 8
Radiation type Synchrotron, λ = 0.96260 Å Synchrotron, λ = 0.96260 Å
μ (mm−1) 0.17 0.44
Crystal size (mm) 0.30 × 0.25 × 0.15 0.30 × 0.25 × 0.25
 
Data collection
Diffractometer Rayonix SX165 CCD Rayonix SX165 CCD
Absorption correction Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.]) Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
Tmin, Tmax 0.940, 0.970 0.870, 0.890
No. of measured, independent and observed [I > 2σ(I)] reflections 34783, 3705, 3017 20322, 3594, 3024
Rint 0.079 0.064
(sin θ/λ)max−1) 0.646 0.647
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.112, 1.08 0.050, 0.147, 1.08
No. of reflections 3705 3594
No. of parameters 230 217
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.17 0.71, −0.72
Computer programs: Marccd (Doyle, 2011[Doyle, R. A. (2011). Marccd software manual. Rayonix L. L. C. Evanston, IL 60201 USA.]), iMOSFLM (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

The hydrogen atoms of the amino groups were localized in difference-Fourier maps and refined isotropically with fixed displacement parameters [Uĩso(H) = 1.2Ueq(N)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00 Å and refined in the riding model with fixed isotropic displacement parameters [Uĩso(H) = 1.2Ueq(C)].

A relatively large number of reflections (a few dozen) were omitted due to the following reasons: (1) In order to achieve better I/σ statistics for high-angle reflections we selected a larger exposure time, which resulted in some intensity overloads in the low-angle part of the area. These corrupted intensities were excluded from final steps of the refinement. (2) In the current setup of the instrument, the low-temperature device eclipses a small region of the detector near its high-angle limit. This resulted in zero intensity of some reflections. (3) In the case of (II)[link], the quality of the single crystal chosen for the diffraction experiment was far from perfect. Some systematic intensity deviations can be due to extinction and defects present in the crystal.

Supporting information


Computing details top

For both structures, data collection: Marccd (Doyle, 2011); cell refinement: iMOSFLM (Battye et al., 2011); data reduction: iMOSFLM (Battye et al., 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2015); software used to prepare material for publication: SHELXTL (Sheldrick, 2015).

3-Benzyl-2-[(E)-2-(furan-2-yl)ethenyl]-2,3-dihydroquinazolin-4(1H)-one (I) top
Crystal data top
C21H18N2O2Dx = 1.298 Mg m3
Mr = 330.37Synchrotron radiation, λ = 0.96260 Å
Orthorhombic, PbcaCell parameters from 600 reflections
a = 14.292 (3) Åθ = 3.0–36.0°
b = 13.729 (3) ŵ = 0.17 mm1
c = 17.230 (3) ÅT = 100 K
V = 3380.8 (12) Å3Prism, colourless
Z = 80.30 × 0.25 × 0.15 mm
F(000) = 1392
Data collection top
Rayonix SX165 CCD
diffractometer
3017 reflections with I > 2σ(I)
/f scanRint = 0.079
Absorption correction: multi-scan
(Scala; Evans, 2006)
θmax = 38.5°, θmin = 3.2°
Tmin = 0.940, Tmax = 0.970h = 1818
34783 measured reflectionsk = 1717
3705 independent reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.539P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3705 reflectionsΔρmax = 0.28 e Å3
230 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.0041 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.94874 (5)0.38755 (6)0.80431 (5)0.0290 (2)
O20.78370 (6)0.74574 (6)0.58408 (5)0.0324 (2)
N10.75445 (7)0.45360 (8)0.55253 (6)0.0259 (3)
H10.7542 (10)0.3883 (11)0.5507 (8)0.031*
C20.73864 (8)0.49053 (9)0.63117 (7)0.0245 (3)
H20.67720.46410.64930.029*
N30.72977 (6)0.59857 (7)0.62784 (6)0.0241 (2)
C40.78346 (8)0.65486 (9)0.57961 (7)0.0243 (3)
C4A0.83803 (7)0.60140 (8)0.51944 (7)0.0239 (3)
C50.89993 (8)0.65246 (9)0.47069 (8)0.0287 (3)
H50.91150.71960.48000.034*
C60.94453 (8)0.60605 (10)0.40899 (8)0.0336 (3)
H60.98630.64090.37630.040*
C70.92651 (9)0.50687 (10)0.39610 (8)0.0343 (3)
H70.95640.47470.35410.041*
C80.86562 (8)0.45466 (9)0.44362 (7)0.0296 (3)
H80.85450.38750.43380.036*
C8A0.82023 (7)0.50135 (9)0.50644 (7)0.0240 (3)
C90.81224 (8)0.45883 (8)0.68936 (7)0.0243 (3)
H90.87600.47430.67980.029*
C100.78969 (8)0.40943 (9)0.75408 (7)0.0253 (3)
H100.72510.39630.76180.030*
C110.85346 (8)0.37393 (9)0.81353 (7)0.0252 (3)
C120.83634 (9)0.32594 (9)0.88182 (7)0.0295 (3)
H120.77690.30770.90170.035*
C130.92549 (9)0.30860 (9)0.91761 (8)0.0328 (3)
H130.93670.27680.96570.039*
C140.99049 (9)0.34671 (9)0.86917 (8)0.0321 (3)
H141.05600.34560.87840.039*
C150.67156 (8)0.64346 (9)0.68802 (7)0.0271 (3)
H15A0.68810.71330.69210.032*
H15B0.68600.61250.73850.032*
C160.56621 (8)0.63468 (8)0.67274 (7)0.0232 (3)
C170.52921 (8)0.59729 (9)0.60354 (7)0.0255 (3)
H170.57020.57500.56390.031*
C180.43186 (8)0.59258 (9)0.59243 (8)0.0287 (3)
H180.40740.56640.54560.034*
C190.37128 (8)0.62615 (9)0.64965 (8)0.0319 (3)
H190.30550.62330.64180.038*
C200.40750 (9)0.66416 (9)0.71896 (8)0.0316 (3)
H200.36630.68760.75800.038*
C210.50438 (8)0.66754 (9)0.73049 (7)0.0272 (3)
H210.52860.69230.77790.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0247 (4)0.0273 (5)0.0350 (5)0.0009 (3)0.0026 (4)0.0020 (4)
O20.0333 (5)0.0183 (5)0.0457 (6)0.0014 (3)0.0002 (4)0.0013 (4)
N10.0288 (5)0.0170 (5)0.0319 (6)0.0020 (4)0.0042 (4)0.0008 (4)
C20.0222 (5)0.0201 (6)0.0311 (7)0.0013 (4)0.0017 (5)0.0008 (5)
N30.0208 (5)0.0193 (5)0.0322 (6)0.0012 (4)0.0011 (4)0.0016 (4)
C40.0208 (5)0.0188 (6)0.0335 (7)0.0010 (4)0.0060 (5)0.0002 (5)
C4A0.0200 (5)0.0213 (6)0.0303 (7)0.0016 (4)0.0045 (5)0.0009 (5)
C50.0231 (5)0.0247 (7)0.0385 (7)0.0003 (5)0.0042 (5)0.0036 (5)
C60.0256 (6)0.0383 (8)0.0370 (8)0.0006 (5)0.0015 (5)0.0044 (6)
C70.0283 (6)0.0421 (8)0.0326 (7)0.0059 (6)0.0002 (5)0.0057 (6)
C80.0274 (6)0.0263 (7)0.0351 (7)0.0033 (5)0.0062 (5)0.0055 (5)
C8A0.0215 (5)0.0219 (6)0.0285 (7)0.0018 (4)0.0075 (5)0.0007 (5)
C90.0214 (5)0.0212 (6)0.0305 (7)0.0006 (4)0.0013 (5)0.0027 (5)
C100.0224 (5)0.0225 (6)0.0311 (7)0.0001 (4)0.0002 (5)0.0031 (5)
C110.0248 (5)0.0220 (6)0.0289 (7)0.0002 (5)0.0008 (5)0.0042 (5)
C120.0326 (6)0.0285 (7)0.0274 (7)0.0013 (5)0.0018 (5)0.0019 (5)
C130.0430 (7)0.0279 (7)0.0276 (7)0.0010 (6)0.0090 (6)0.0003 (5)
C140.0308 (6)0.0262 (7)0.0394 (8)0.0004 (5)0.0122 (6)0.0010 (6)
C150.0234 (6)0.0266 (7)0.0312 (7)0.0010 (5)0.0025 (5)0.0047 (5)
C160.0232 (5)0.0192 (6)0.0273 (6)0.0000 (4)0.0018 (5)0.0032 (5)
C170.0263 (6)0.0234 (6)0.0268 (7)0.0019 (5)0.0015 (5)0.0021 (5)
C180.0287 (6)0.0253 (7)0.0320 (7)0.0016 (5)0.0070 (5)0.0049 (5)
C190.0200 (5)0.0332 (7)0.0426 (8)0.0018 (5)0.0019 (5)0.0100 (6)
C200.0275 (6)0.0312 (7)0.0360 (8)0.0004 (5)0.0090 (5)0.0063 (6)
C210.0296 (6)0.0246 (7)0.0274 (7)0.0016 (5)0.0018 (5)0.0033 (5)
Geometric parameters (Å, º) top
O1—C111.3836 (14)C9—H90.9500
O1—C141.3854 (16)C10—C111.4551 (17)
O2—C41.2501 (15)C10—H100.9500
N1—C8A1.3943 (16)C11—C121.3707 (18)
N1—C21.4643 (17)C12—C131.4354 (18)
N1—H10.897 (15)C12—H120.9500
C2—N31.4898 (16)C13—C141.3540 (19)
C2—C91.5169 (16)C13—H130.9500
C2—H21.0000C14—H140.9500
N3—C41.3699 (16)C15—C161.5334 (16)
N3—C151.4653 (15)C15—H15A0.9900
C4—C4A1.4905 (17)C15—H15B0.9900
C4A—C51.4069 (17)C16—C171.4017 (17)
C4A—C8A1.4149 (17)C16—C211.4051 (17)
C5—C61.3938 (19)C17—C181.4058 (16)
C5—H50.9500C17—H170.9500
C6—C71.403 (2)C18—C191.3907 (18)
C6—H60.9500C18—H180.9500
C7—C81.3934 (19)C19—C201.4023 (19)
C7—H70.9500C19—H190.9500
C8—C8A1.4154 (17)C20—C211.3996 (17)
C8—H80.9500C20—H200.9500
C9—C101.3445 (17)C21—H210.9500
C11—O1—C14106.06 (9)C9—C10—H10116.5
C8A—N1—C2117.92 (10)C11—C10—H10116.5
C8A—N1—H1116.9 (9)C12—C11—O1109.83 (10)
C2—N1—H1112.2 (9)C12—C11—C10130.80 (11)
N1—C2—N3108.80 (9)O1—C11—C10119.37 (10)
N1—C2—C9113.91 (9)C11—C12—C13106.86 (11)
N3—C2—C9111.72 (9)C11—C12—H12126.6
N1—C2—H2107.4C13—C12—H12126.6
N3—C2—H2107.4C14—C13—C12106.27 (11)
C9—C2—H2107.4C14—C13—H13126.9
C4—N3—C15120.66 (10)C12—C13—H13126.9
C4—N3—C2122.51 (9)C13—C14—O1110.99 (11)
C15—N3—C2116.09 (10)C13—C14—H14124.5
O2—C4—N3121.82 (11)O1—C14—H14124.5
O2—C4—C4A122.20 (11)N3—C15—C16113.75 (10)
N3—C4—C4A115.92 (10)N3—C15—H15A108.8
C5—C4A—C8A120.15 (11)C16—C15—H15A108.8
C5—C4A—C4119.93 (11)N3—C15—H15B108.8
C8A—C4A—C4119.61 (10)C16—C15—H15B108.8
C6—C5—C4A121.02 (12)H15A—C15—H15B107.7
C6—C5—H5119.5C17—C16—C21118.87 (11)
C4A—C5—H5119.5C17—C16—C15123.05 (11)
C5—C6—C7118.70 (12)C21—C16—C15118.07 (11)
C5—C6—H6120.6C16—C17—C18120.40 (11)
C7—C6—H6120.6C16—C17—H17119.8
C8—C7—C6121.38 (12)C18—C17—H17119.8
C8—C7—H7119.3C19—C18—C17120.28 (12)
C6—C7—H7119.3C19—C18—H18119.9
C7—C8—C8A120.18 (12)C17—C18—H18119.9
C7—C8—H8119.9C18—C19—C20119.82 (11)
C8A—C8—H8119.9C18—C19—H19120.1
N1—C8A—C4A119.18 (11)C20—C19—H19120.1
N1—C8A—C8122.12 (11)C21—C20—C19119.90 (12)
C4A—C8A—C8118.57 (11)C21—C20—H20120.1
C10—C9—C2121.78 (10)C19—C20—H20120.1
C10—C9—H9119.1C20—C21—C16120.72 (12)
C2—C9—H9119.1C20—C21—H21119.6
C9—C10—C11127.06 (11)C16—C21—H21119.6
C8A—N1—C2—N345.76 (13)C7—C8—C8A—C4A0.11 (17)
C8A—N1—C2—C979.59 (13)N1—C2—C9—C10122.41 (12)
N1—C2—N3—C438.41 (13)N3—C2—C9—C10113.81 (12)
C9—C2—N3—C488.20 (13)C2—C9—C10—C11179.09 (11)
N1—C2—N3—C15151.40 (9)C14—O1—C11—C120.15 (13)
C9—C2—N3—C1581.99 (12)C14—O1—C11—C10179.98 (10)
C15—N3—C4—O21.24 (16)C9—C10—C11—C12177.81 (13)
C2—N3—C4—O2171.00 (10)C9—C10—C11—O12.35 (18)
C15—N3—C4—C4A178.63 (9)O1—C11—C12—C130.14 (14)
C2—N3—C4—C4A11.61 (15)C10—C11—C12—C13179.99 (12)
O2—C4—C4A—C56.86 (17)C11—C12—C13—C140.07 (14)
N3—C4—C4A—C5175.76 (10)C12—C13—C14—O10.02 (15)
O2—C4—C4A—C8A166.71 (11)C11—O1—C14—C130.10 (14)
N3—C4—C4A—C8A10.66 (15)C4—N3—C15—C16111.21 (12)
C8A—C4A—C5—C60.12 (17)C2—N3—C15—C1678.40 (13)
C4—C4A—C5—C6173.42 (11)N3—C15—C16—C176.96 (16)
C4A—C5—C6—C70.08 (18)N3—C15—C16—C21174.31 (10)
C5—C6—C7—C80.18 (19)C21—C16—C17—C180.21 (17)
C6—C7—C8—C8A0.08 (19)C15—C16—C17—C18178.93 (11)
C2—N1—C8A—C4A27.67 (15)C16—C17—C18—C190.82 (18)
C2—N1—C8A—C8156.49 (11)C17—C18—C19—C200.48 (18)
C5—C4A—C8A—N1176.20 (10)C18—C19—C20—C210.45 (18)
C4—C4A—C8A—N12.63 (15)C19—C20—C21—C161.06 (18)
C5—C4A—C8A—C80.21 (16)C17—C16—C21—C200.73 (17)
C4—C4A—C8A—C8173.35 (10)C15—C16—C21—C20178.06 (11)
C7—C8—C8A—N1175.97 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.897 (15)2.111 (15)2.9557 (14)156.7 (12)
Symmetry code: (i) x+3/2, y1/2, z.
3-Benzyl-2-[(E)-2-(thiophen-2-yl)ethenyl]-2,3-dihydroquinazolin-4(1H)-one (II) top
Crystal data top
C21H18N2OSDx = 1.323 Mg m3
Mr = 346.43Synchrotron radiation, λ = 0.96260 Å
Orthorhombic, PbcaCell parameters from 600 reflections
a = 14.245 (3) Åθ = 3.0–33.0°
b = 13.855 (3) ŵ = 0.44 mm1
c = 17.629 (4) ÅT = 100 K
V = 3479.3 (13) Å3Prism, yellow
Z = 80.30 × 0.25 × 0.25 mm
F(000) = 1456
Data collection top
Rayonix SX165 CCD
diffractometer
3024 reflections with I > 2σ(I)
φ scanRint = 0.064
Absorption correction: multi-scan
(Scala; Evans, 2006)
θmax = 38.5°, θmin = 3.1°
Tmin = 0.870, Tmax = 0.890h = 1516
20322 measured reflectionsk = 1717
3594 independent reflectionsl = 1522
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: mixed
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0669P)2 + 2.4P]
where P = (Fo2 + 2Fc2)/3
3594 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.72 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.02475 (4)0.39698 (3)0.79544 (3)0.02956 (19)
O10.22041 (10)0.74793 (9)0.57892 (8)0.0307 (3)
N10.25131 (12)0.45803 (11)0.55151 (9)0.0249 (4)
H10.2524 (17)0.3954 (19)0.5496 (12)0.030*
C20.26696 (14)0.49600 (12)0.62814 (11)0.0244 (4)
H20.32870.47060.64630.029*
N30.27450 (11)0.60304 (10)0.62410 (9)0.0229 (4)
C40.22059 (13)0.65770 (13)0.57606 (10)0.0231 (4)
C4A0.16533 (14)0.60308 (12)0.51890 (10)0.0228 (4)
C50.10052 (15)0.65191 (14)0.47233 (11)0.0276 (4)
H50.08820.71840.48100.033*
C60.05414 (17)0.60404 (15)0.41351 (12)0.0333 (5)
H60.01030.63710.38230.040*
C70.07389 (16)0.50578 (16)0.40152 (12)0.0336 (5)
H70.04330.47270.36130.040*
C80.13683 (15)0.45601 (14)0.44685 (11)0.0301 (5)
H80.14870.38960.43760.036*
C8A0.18367 (13)0.50393 (12)0.50701 (10)0.0234 (4)
C90.19299 (14)0.46488 (12)0.68451 (11)0.0244 (4)
H90.12950.48190.67490.029*
C100.21254 (15)0.41433 (13)0.74758 (11)0.0264 (4)
H100.27670.39950.75660.032*
C110.14428 (15)0.37959 (13)0.80424 (10)0.0256 (4)
C120.16756 (16)0.32822 (13)0.87251 (11)0.0304 (3)
H120.22920.31100.88790.037*
C130.08295 (16)0.30680 (14)0.91398 (11)0.0304 (3)
H130.08300.27340.96100.037*
C140.00234 (17)0.33875 (14)0.87974 (11)0.0304 (3)
H140.05880.32980.90020.037*
C150.33187 (14)0.64888 (13)0.68295 (11)0.0265 (4)
H15A0.31630.61950.73260.032*
H15B0.31560.71830.68560.032*
C160.43773 (14)0.63919 (12)0.66925 (10)0.0224 (4)
C170.47531 (15)0.60700 (13)0.60001 (11)0.0261 (4)
H170.43450.59010.55950.031*
C180.57301 (16)0.59978 (14)0.59048 (12)0.0313 (5)
H180.59820.57650.54410.038*
C190.63326 (16)0.62705 (15)0.64953 (13)0.0345 (5)
H190.69930.62320.64290.041*
C200.59602 (16)0.66002 (14)0.71824 (13)0.0330 (5)
H200.63680.67930.75810.040*
C210.49895 (15)0.66462 (13)0.72819 (11)0.0257 (4)
H210.47410.68520.77550.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0350 (4)0.0244 (3)0.0293 (3)0.00022 (19)0.0016 (2)0.00190 (17)
O10.0362 (9)0.0153 (6)0.0407 (8)0.0011 (6)0.0010 (6)0.0009 (5)
N10.0316 (10)0.0150 (7)0.0280 (8)0.0016 (6)0.0027 (7)0.0011 (6)
C20.0263 (11)0.0178 (8)0.0292 (9)0.0015 (7)0.0010 (8)0.0008 (7)
N30.0224 (9)0.0165 (7)0.0298 (8)0.0006 (6)0.0011 (7)0.0017 (6)
C40.0232 (10)0.0177 (8)0.0284 (9)0.0001 (7)0.0038 (7)0.0004 (6)
C4A0.0245 (11)0.0186 (8)0.0253 (9)0.0016 (7)0.0043 (8)0.0010 (6)
C50.0306 (11)0.0236 (8)0.0285 (9)0.0014 (8)0.0029 (8)0.0012 (7)
C60.0345 (13)0.0369 (11)0.0286 (10)0.0016 (9)0.0012 (9)0.0013 (8)
C70.0358 (12)0.0365 (11)0.0287 (10)0.0053 (9)0.0014 (9)0.0059 (8)
C80.0363 (12)0.0237 (9)0.0305 (10)0.0043 (8)0.0063 (8)0.0050 (7)
C8A0.0249 (10)0.0203 (8)0.0250 (9)0.0031 (7)0.0058 (7)0.0005 (7)
C90.0237 (10)0.0201 (8)0.0295 (9)0.0012 (7)0.0022 (8)0.0011 (7)
C100.0291 (11)0.0213 (8)0.0288 (9)0.0005 (7)0.0004 (8)0.0020 (7)
C110.0325 (12)0.0194 (8)0.0248 (9)0.0009 (8)0.0008 (8)0.0018 (7)
C120.0409 (7)0.0244 (5)0.0260 (5)0.0018 (5)0.0042 (5)0.0015 (4)
C130.0409 (7)0.0244 (5)0.0260 (5)0.0018 (5)0.0042 (5)0.0015 (4)
C140.0409 (7)0.0244 (5)0.0260 (5)0.0018 (5)0.0042 (5)0.0015 (4)
C150.0272 (11)0.0240 (8)0.0283 (9)0.0007 (8)0.0004 (8)0.0044 (7)
C160.0239 (10)0.0173 (8)0.0260 (9)0.0003 (7)0.0001 (7)0.0028 (6)
C170.0282 (12)0.0220 (9)0.0281 (10)0.0006 (7)0.0025 (8)0.0037 (7)
C180.0339 (12)0.0258 (9)0.0341 (10)0.0020 (8)0.0087 (9)0.0066 (7)
C190.0259 (11)0.0284 (9)0.0492 (12)0.0014 (8)0.0031 (10)0.0107 (9)
C200.0327 (13)0.0254 (9)0.0409 (11)0.0002 (8)0.0079 (9)0.0048 (8)
C210.0279 (11)0.0194 (8)0.0297 (9)0.0011 (8)0.0022 (8)0.0021 (7)
Geometric parameters (Å, º) top
S1—C141.721 (2)C9—H90.9500
S1—C111.727 (2)C10—C111.475 (3)
O1—C41.251 (2)C10—H100.9500
N1—C8A1.396 (3)C11—C121.437 (3)
N1—C21.467 (2)C12—C131.440 (3)
N1—H10.87 (3)C12—H120.9500
C2—N31.489 (2)C13—C141.371 (3)
C2—C91.511 (3)C13—H130.9500
C2—H21.0000C14—H140.9500
N3—C41.371 (2)C15—C161.533 (3)
N3—C151.465 (2)C15—H15A0.9900
C4—C4A1.486 (3)C15—H15B0.9900
C4A—C51.409 (3)C16—C211.402 (3)
C4A—C8A1.414 (2)C16—C171.406 (3)
C5—C61.397 (3)C17—C181.405 (3)
C5—H50.9500C17—H170.9500
C6—C71.406 (3)C18—C191.401 (3)
C6—H60.9500C18—H180.9500
C7—C81.385 (3)C19—C201.399 (3)
C7—H70.9500C19—H190.9500
C8—C8A1.418 (3)C20—C211.395 (3)
C8—H80.9500C20—H200.9500
C9—C101.343 (3)C21—H210.9500
C14—S1—C1192.28 (10)C9—C10—H10116.8
C8A—N1—C2117.34 (15)C11—C10—H10116.8
C8A—N1—H1116.5 (16)C12—C11—C10125.22 (19)
C2—N1—H1113.1 (15)C12—C11—S1111.83 (15)
N1—C2—N3108.92 (14)C10—C11—S1122.94 (14)
N1—C2—C9113.41 (16)C11—C12—C13109.51 (19)
N3—C2—C9111.47 (15)C11—C12—H12125.2
N1—C2—H2107.6C13—C12—H12125.2
N3—C2—H2107.6C14—C13—C12114.26 (18)
C9—C2—H2107.6C14—C13—H13122.9
C4—N3—C15120.68 (15)C12—C13—H13122.9
C4—N3—C2122.63 (15)C13—C14—S1112.11 (17)
C15—N3—C2115.99 (15)C13—C14—H14123.9
O1—C4—N3121.87 (17)S1—C14—H14123.9
O1—C4—C4A122.35 (17)N3—C15—C16113.52 (15)
N3—C4—C4A115.74 (15)N3—C15—H15A108.9
C5—C4A—C8A120.09 (17)C16—C15—H15A108.9
C5—C4A—C4119.86 (16)N3—C15—H15B108.9
C8A—C4A—C4119.83 (17)C16—C15—H15B108.9
C6—C5—C4A120.97 (18)H15A—C15—H15B107.7
C6—C5—H5119.5C21—C16—C17119.12 (18)
C4A—C5—H5119.5C21—C16—C15118.25 (17)
C5—C6—C7118.5 (2)C17—C16—C15122.63 (17)
C5—C6—H6120.8C18—C17—C16120.24 (19)
C7—C6—H6120.8C18—C17—H17119.9
C8—C7—C6121.66 (19)C16—C17—H17119.9
C8—C7—H7119.2C19—C18—C17119.90 (19)
C6—C7—H7119.2C19—C18—H18120.0
C7—C8—C8A120.21 (18)C17—C18—H18120.0
C7—C8—H8119.9C20—C19—C18119.9 (2)
C8A—C8—H8119.9C20—C19—H19120.0
N1—C8A—C4A119.13 (17)C18—C19—H19120.0
N1—C8A—C8122.14 (16)C21—C20—C19120.0 (2)
C4A—C8A—C8118.60 (17)C21—C20—H20120.0
C10—C9—C2123.27 (19)C19—C20—H20120.0
C10—C9—H9118.4C20—C21—C16120.79 (19)
C2—C9—H9118.4C20—C21—H21119.6
C9—C10—C11126.45 (19)C16—C21—H21119.6
C8A—N1—C2—N346.4 (2)C7—C8—C8A—C4A0.6 (3)
C8A—N1—C2—C978.4 (2)N1—C2—C9—C10120.5 (2)
N1—C2—N3—C437.7 (2)N3—C2—C9—C10116.17 (19)
C9—C2—N3—C488.2 (2)C2—C9—C10—C11178.56 (17)
N1—C2—N3—C15151.91 (16)C9—C10—C11—C12177.92 (18)
C9—C2—N3—C1582.2 (2)C9—C10—C11—S12.0 (3)
C15—N3—C4—O12.2 (3)C14—S1—C11—C120.19 (15)
C2—N3—C4—O1172.24 (17)C14—S1—C11—C10179.70 (16)
C15—N3—C4—C4A179.85 (16)C10—C11—C12—C13179.56 (17)
C2—N3—C4—C4A9.9 (3)S1—C11—C12—C130.3 (2)
O1—C4—C4A—C58.7 (3)C11—C12—C13—C140.4 (2)
N3—C4—C4A—C5173.42 (17)C12—C13—C14—S10.2 (2)
O1—C4—C4A—C8A165.94 (18)C11—S1—C14—C130.02 (16)
N3—C4—C4A—C8A11.9 (3)C4—N3—C15—C16112.23 (18)
C8A—C4A—C5—C60.6 (3)C2—N3—C15—C1677.1 (2)
C4—C4A—C5—C6174.00 (18)N3—C15—C16—C21168.65 (15)
C4A—C5—C6—C70.3 (3)N3—C15—C16—C1712.1 (2)
C5—C6—C7—C80.7 (3)C21—C16—C17—C180.5 (3)
C6—C7—C8—C8A0.3 (3)C15—C16—C17—C18179.79 (16)
C2—N1—C8A—C4A28.7 (2)C16—C17—C18—C191.6 (3)
C2—N1—C8A—C8155.42 (18)C17—C18—C19—C201.0 (3)
C5—C4A—C8A—N1177.06 (17)C18—C19—C20—C210.8 (3)
C4—C4A—C8A—N12.4 (3)C19—C20—C21—C161.9 (3)
C5—C4A—C8A—C81.1 (3)C17—C16—C21—C201.2 (3)
C4—C4A—C8A—C8173.56 (17)C15—C16—C21—C20178.09 (17)
C7—C8—C8A—N1176.50 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (3)2.14 (3)2.978 (2)161 (2)
Symmetry code: (i) x+1/2, y1/2, z.
 

Funding information

Funding for this research was provided by the Ministry of Education and Science of the Russian Federation (award No. 4.1154.2017/4.6) (X-ray diffraction study) and by the Russian Foundation for Basic Research (grant No. 16–03-00125) (synthetic part).

References

First citationAlinezhad, H., Soleymani, E. & Zare, M. (2017). Res. Chem. Intermed. 43, 457–466.  Web of Science CrossRef CAS Google Scholar
First citationBattye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCelltech R. & D. Limited (2004). Patent WO2004/18462A1.  Google Scholar
First citationCheng, D.-J., Tian, Y. & Tian, S.-K. (2012). Adv. Synth. Catal. 354, 995–999.  Web of Science CSD CrossRef CAS Google Scholar
First citationDeng, T., Wang, H. & Cai, C. (2015). J. Fluor. Chem. 169, 72–77.  Web of Science CrossRef CAS Google Scholar
First citationDoyle, R. A. (2011). Marccd software manual. Rayonix L. L. C. Evanston, IL 60201 USA.  Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrackenpohl, J., Zeishans, J., Heinemann, I., Willms, L., Mueller, T., Busch, M., Vonkoskull, P. D., Haeuser-Hahn, I., Rosinger, C. H., Dittgen, J. & Schmitt, M. H. (2016). Patent CN103228141B, Bayer Intellectual Property GmbH.  Google Scholar
First citationGhorbani-Choghamarani, A. & Norouzi, N. (2014). J. Mol. Catal. A Chem. 395, 172–179.  CAS Google Scholar
First citationJafari, E., Khajouei, M. R., Hassanzadeh, F., Hakimelahi, G. H. & Khodarahmi, G. A. (2016). Res. Pharm. Sci. 11, 1–14.  Web of Science PubMed Google Scholar
First citationKundu, N. G. & Chaudhuri, G. (2001). Tetrahedron, 57, 6833–6842.  Web of Science CrossRef CAS Google Scholar
First citationMohammadpoor-Baltork, I., Khosropour, A. R., Moghadam, M., Tangestaninejad, S., Mirkhani, V., Soltani, M. & Mirjafari, A. (2011). J. Heterocycl. Chem. 48, 1419–1427.  CAS Google Scholar
First citationNoori, N., Nikoorazm, M. & Ghorbani-Choghamarani, A. (2017). Catal. Lett. 147, 204–214.  Web of Science CrossRef CAS Google Scholar
First citationRamesh, K., Karnakar, K., Satish, G., Anil Kumar, B. S. P. & Nageswar, Y. V. D. (2012). Tetrahedron Lett. 53, 6936–6939.  Web of Science CrossRef CAS Google Scholar
First citationSelvam, T. P. & Kumar, P. V. (2011). Res. Pharm. 1, 1–21.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, D. & Gao, F. (2013). Chem. Cent. J. 7, 95.  Web of Science CrossRef PubMed Google Scholar
First citationZaytsev, V. P., Revutskaya, E. L., Kuz'menko, M. G., Novikov, R. A., Zubkov, F. I., Sorokina, E. A., Nikitina, E. V., Toze, F. A. A. & Varlamov, A. V. (2015). Russ. Chem. Bull. 64, 1345–1353.  Web of Science CrossRef CAS Google Scholar
First citationZaytsev, V. P., Revutskaya, E. L., Nikanorova, T. V., Nikitina, E. V., Dorovatovskii, P. V., Khrustalev, V. N., Yagafarov, N. Z., Zubkov, F. I. & Varlamov, A. V. (2017). Synthesis, DOI: 10.1055/s-0036-1588812.  Google Scholar
First citationZhang, J., Liu, J., Ma, Y., Ren, D., Cheng, P., Zhao, J., Zhang, F. & Yao, Y. (2016). Bioorg. Med. Chem. Lett. 26, 2273–2277.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, J., Ren, D., Ma, Y., Wang, W. & Wu, H. (2014). Tetrahedron, 70, 5274–5282.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds