research communications
Assembly of ZnII and CdII coordination polymers with different dimensionalities based on the semi-flexible 3-(1H-benzimidazol-2-yl)propanoic acid ligand
aKey Laboratory of Functional Organometallic Materials of General Colleges and Universities in Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, People's Republic of China
*Correspondence e-mail: w.w.fu@hynu.edu.cn
Two new coordination polymers, namely, poly[[μ3-3-(1H-benzimidazol-2-yl)propionato]zinc(II)], [Zn(C10H8N2O2)]n, (1), and poly[bis[μ2-3-(1H-benzimidazol-2-yl)propionato]cadmium(II)], [Cd(C10H8N2O2)2]n, (2) have been synthesized from 3-(1H-benzoimidazol-2-yl)propanoic acid ligands through a mixed-ligand synthetic strategy under a solvothermal environment, and studied by single-crystal X-ray diffraction. Complex 1 crystallizes in the orthorhombic Pbca and features a two-dimensional structure formed by a binuclear Zn2O4 core. Complex 2, however, crystallizes in the monoclinic P21/c and forms a one-dimensional chain structure. The ZnII and CdII ions have different coordination numbers and the 3-(1H-benzoimidazol-2-yl)propanoate ligands display different coordination modes. The structures reported here show the importance of the selection of metal ions and suitable ligands.
1. Chemical context
The structures of coordination polymers are strongly influenced by the organic ligands and metal ions and it is important to choose suitable ligands and metal ions under appropriate synthetic conditions to synthesize coordination complexes with interesting structures. The exploration of metal–organic frameworks (MOFs) have received much attention because of their intriguing architectures and wide range of potential applications in different fields (Castellanos et al., 2016; Zhang et al., 2016; Kumar et al., 2015; Liu et al., 2016; Müller-Buschbaum et al., 2015; Duerinck & Denayer, 2015; Mohan et al., 2015). The assembly of ZnII (Jurcic et al., 2015; Karmakar et al., 2016a,b; Liang et al., 2016; Wannapaiboon et al., 2015; Ying et al., 2015) and CdII (Xiao et al., 2015, Wu et al., 2011, Hu et al., 2015, Cao et al., 2014, Zhang et al., 2015) ions with multidentate nitrogen-containing ligands has produced various MOFs with fascinating structures and luminescent properties. The selection of chelating or bridging organic linkers often favors a structure-specific assembly and the factors that govern the formation of such complexes are complicated and include not only the nature of the ZnII and CdII ions and ligand structure but also anion-directed interactions as well as reaction conditions. In order to explore the coordination chemistry of this type of ligand, 3-(1H-benzimidazol-2-yl) propanoic acid (H2BIP) was chosen in the present study to construct new coordination polymers. A two-dimensional ZnII polymer and a one-dimensional CdII coordination polymer have been obtained.
2. Structural commentary
Complex 1 crystallizes in the orthorhombic in the centrosymmetric Pbca. The 3-(1H-benzoimdazol-2-yl)propanonic acid ligand deprotonates completely when bonding to ZnII ions. The of 1 consists of one ZnII ion and one 3-(1λ2-benzoimidazol-2-yl)propanoate anion. Geometric parameters are given in Table 1. As shown in Fig. 1, the ZnII ion has a tetrahedral ZnO2N2 environment completed by N2 from one 3-(1λ2-benzoimidazol-2-yl)propanoate anion, O2(−x + , y + , z) and N1(−x + , y + , z) from the second 3-(1λ2-benzoimidazol-2-yl)propanoate anion and O1(x − , −y + , −z) from the third 3-(1λ2-benzoimidazol-2-yl)propanoate anion. All the Zn—N/O bond distances [Zn—O: 1.9563 (16)–2.0208 (17) and Zn—N: 1.9624 (18)–1.9661 (16) Å] and the bond angles around Zn1 [99.22 (6)–120.28 (7)°] fall into the normal range. Each 3-(1λ2-benzoimidazol-2-yl)propanoate anion shows a tridentate chelating mode bridging three ZnII ions with the Zn⋯Zn distances of 4.066 (1), 5.870 (2) and 6.965 (2) Å. Zn1 and the symmetry-related Zn1 forming the shortest distance are bridged by O1 and O2 to form a binuclear Zn2 cluster. Adjacent clusters are connected by a Zn—N bond of 1.9661 (16) Å to generate 2D square-grid (4,4) layers (Fig. 2). As there are no classical hydrogen bonds in 1, these layers are packed by normal into an extended 3D framework (Fig. 3).
Complex 2 crystallizes in the monoclinic in the centrosymmetic P21/c. The 3-(1H-benzoimidazol-2-yl)propanonic acid ligands do not deprotonate completely when bonding to CdII ions. Geometric parameters are given in Table 2. As shown in Fig. 4, the CdII ion is five-coordinated by N3 from one 3-(1H-benzoimidazol-2-yl)propanoate anion, N1(x, y − 1, z) from the second 3-(1H-benzoimidazol-2-yl)propanoate anion, O1 from the third and O3(−x, −y, −z + 1) and O4(−x, −y, −z + 1) from the fourth. All the Cd—N/O bond distances [Cd—O: 2.285 (2)–2.362 (2) and Cd—N: 2.262 (3)–2.271 (3) Å] and the bond angles around Cd1 [55.44 (9)–146.52 (9)°] fall into the normal range. A distance of 2.667 (2) Å between Cd1 and O2 indicates the existence of a weak interaction between them. Two HBIP− anions connects two CdII ions with one bidentate carboxylate and one N atom forming end-to-end binuclear Cd2 cluster with a distance of 7.274 (1) Å. The other two HBIP− anions act as bridges to join two neighboring binuclear Cd2 clusters with one monodentate carboxylate and one N atom to generate 1D ladders along the b-axis direction (Fig. 5). In the crystal, N—H⋯O hydrogen bonds (Table 3) and π–π interactions involving the imidazole rings and benzimidazole ring systems with centroid–centroid distances of 3.569 (2) and 3.838 (2) Å connect the 1D ladders along a- and c-axis directions into an extended 3D framework (Fig. 6). Although there are large potential voids within the 1D ladders (7.274 × 8. 025 Å based on the distances of the CdII ions), they are interblocked by adjacent ladders.
|
3. Supramolecular features
The structures and the coordination modes of complexes 1 and 2 are quite different, which may be ascribed to a diverse metal coordination habit. The of a ZnII complex based on H2BIP is reported for the first time. In a comparison with its counterparts based on similar benzoimidazole carboxylic acids ligands, benzimidazole-2-butanoic acid (H2BIB) and 2-(1H-benzimidazol-2-ylthio)acetic acid (H2BITA), the same coordination modes are found for 1 (μ3-κN,O: κO': kN′ mode, μ3-BIP2−) and [Zn(BIB)]n (μ3-κN,O: κO': kN′ mode, μ3-BIB2−; Zhang et al., 2015) and different coordination modes are found for 1 and [Zn2(HBITA)4]·(DMF)2·(H2O)2 (μ2-κN: κO mode, μ2-HBITA− and μ1-κN,O mode, μ1-HBITA−; Yu et al., 2010), [Zn2(HBITA)4]n (μ2-κN: κO mode, μ2-HBITA−; Yu et al., 2010). Different dimensionalities, like 2D for 1, 3D for [Zn(BIB)]n, 0D for [Zn2(HBITA)4]·(DMF)2·(H2O)2 and 2D for [Zn2(HBITA)4]n are also found. CdII complexes based on H2BIP have already been observed with the appropriate Et3N reagent in a EtOH/H2O mixed solvent. By selection of the EtOH/H2O mixed solvent without any basic reagent, complex 2 was obtained with a relatively simple coordination mode (μ2-κN: κO,O′ mode, μ2-HBIP−) in comparison with diverse modes in {[Cd5Cl2(HBIP)4(BIP)2]·4DMF}n (μ2-κN,O: κO,O′ mode, μ2-HBIP−, μ3-κN,O: κO,O′: κN' mode, μ3-BIP2−, μ3-κN,O: κO,O′: κO' mode, μ3-HBIP−; Zheng et al., 2012) and [Cd3(HBIP)2(BIP)2]n (μ3-κN,O: κO,O′: κO' mode, μ3-BIP2−, μ4-κN,O: κO: κO': κO' mode, μ4-HBIP−; Zheng et al., 2012). In comparison with its counterpart based on similar benzoimidazole carboxylic acids, H2BIB, the same coordination modes are found for 2 and [Cd(HBIB)2]n·(H2O)n (μ2-κN: κO,O′ mode, μ2-HBIB−; Zhang et al., 2015). Different dimensionalities, such as 1D for 2, 2D for {[Cd5Cl2(HBIP)4(BIP)2]·4DMF}n, 1D for [Cd3(HBIP)2 (BIP)2]n and 2D for [Cd(HBIB)2]n·(H2O)n were also found. The different coordination modes and dimensionalities show the important roles of spacer lengths and flexibilities of ligands. The crystal structures reported here and before show that ligands containing both flexible carboxylic and benzimidazole groups are suitable for the construction of coordination polymers with interesting structures, adopting diverse coordination modes. The significant effect of metal ions, spacer length and flexibility of ligands on the structural assemblies of such crystalline materials is critical to the assemblies of MOFs in some particular systems.
4. Database Survey
Complexes with benzimidazole-based carboxylic acid, for example, 1H-benzimidazole-2-carboxylic acid (Xia et al., 2013; Qiao et al., 2013; Małecki & Maroń, 2012; Machura et al., 2014; Fernández et al., 2016) and 3-(1H-benzimidazole-2-yl) propanoic acid (Liu et al., 2015) have been reported. A limited number of coordination polymers constructed from 3-(1H-benzimidazol-2-yl) propanoic acid (H2BIP) have been reported including [Cd3(HBIP)2(BIP)2]n and [Cd5Cl2(BIP)4 (BIP)2]n (Zheng et al., 2012). [Cd3(HBIP)2(BIP)2]n presents a fascinating one-dimensional structure with helical character, made of four helical chains weaving together in two reverse orientations. [Cd5Cl2(BIP)4(BIP)2] exhibits a distinct (4,4) network and infinite pentanuclear secondary building units.
5. Synthesis and crystallization
3-(1H-Benzimidazol-2-yl)propanoic acid (H2BIP) was prepared by a literature method (Delval et al., 2008). Other reagents and solvents used in the reactions were purchased from Aladdin-Chemical and used without purification.
5.1. Preparation of 1
H2BIP (0.02 mmol, 0.038 g) and Zn(NO3)2·6H2O (0.2 mmol, 0.060 g) were dissolved in EtOH/H2O (1:1 v/v, 8 ml) mixed solvent. The mixture was sealed in a closed vessel and heated at 413 K for 72 h; the mixture was then cooled slowly to room temperature at a rate of 2 K h−1. Many pale-yellow block-shaped crystals were collected.
5.2. Preparation of 2
H2BIP (0.02 mmol, 0.038 g), Cd(CH3COO)2·2H2O (0.2mmol, 0.053 g) were dissolved in EtOH/H2O (1:1 v/v, 8 ml) mixed solvent. The mixture was sealed in a closed vessel and heated at 413 K for 72 h; the mixture was then cooled slowly to room temperature at a rate of 2 K h−1. Many brown prismatic crystals were collected.
5.3. Refinement
Crystal data, data collection and structure . H atoms on N atoms were found in the difference-Fourier map and were refined isotropically while restraining the N—H distances to 0.86 Å. Other H atoms were generated geometrically and were allowed to ride on their parent atoms in the riding-model approximation, with C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C)(aromatic) and C—H = 0.97 Å, Uiso(H) = 1.5Ueq(C) for methyl hydrogen atoms.
details are summarized in Table 4
|
Supporting information
https://doi.org/10.1107/S2056989017017534/lh5857sup1.cif
contains datablocks 1, 2. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989017017534/lh58571sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989017017534/lh58572sup3.hkl
For both structures, data collection: APEX2 (Bruker, 2012). Cell
SAINT (Bruker, 2012) for (1); SMART (Bruker, 2012) for (2). For both structures, data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXL2014 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).[Zn(C10H8N2O2)] | Dx = 1.729 Mg m−3 |
Mr = 253.55 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 5004 reflections |
a = 8.956 (4) Å | θ = 3.0–27.6° |
b = 10.697 (5) Å | µ = 2.50 mm−1 |
c = 20.331 (9) Å | T = 296 K |
V = 1947.8 (15) Å3 | Block, yellow |
Z = 8 | 0.28 × 0.25 × 0.21 mm |
F(000) = 1024 |
Bruker SMART CCD area-detector diffractometer | 1525 reflections with I > 2σ(I) |
phi and ω scans | Rint = 0.046 |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | θmax = 25.0°, θmin = 2.0° |
Tmin = 0.541, Tmax = 0.622 | h = −10→10 |
9832 measured reflections | k = −12→11 |
1725 independent reflections | l = −24→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.063 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0338P)2 + 0.8648P] where P = (Fo2 + 2Fc2)/3 |
1725 reflections | (Δ/σ)max < 0.001 |
136 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.56 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.61499 (3) | 0.44565 (2) | 0.08133 (2) | 0.02929 (11) | |
C1 | 0.8742 (2) | 0.31428 (19) | 0.14864 (9) | 0.0272 (4) | |
C2 | 0.9402 (3) | 0.4128 (2) | 0.18261 (10) | 0.0361 (5) | |
H2 | 0.8972 | 0.4919 | 0.1832 | 0.043* | |
C3 | 1.0712 (3) | 0.3886 (2) | 0.21531 (12) | 0.0487 (6) | |
H3 | 1.1175 | 0.4528 | 0.2384 | 0.058* | |
C4 | 1.1366 (3) | 0.2704 (3) | 0.21484 (13) | 0.0512 (6) | |
H4 | 1.2268 | 0.2584 | 0.2366 | 0.061* | |
C5 | 1.0711 (3) | 0.1710 (2) | 0.18305 (11) | 0.0402 (5) | |
H5 | 1.1136 | 0.0917 | 0.1837 | 0.048* | |
C6 | 0.9381 (2) | 0.19494 (18) | 0.14985 (9) | 0.0278 (4) | |
C7 | 0.7378 (2) | 0.18898 (16) | 0.08956 (9) | 0.0273 (4) | |
C8 | 0.6243 (2) | 0.1407 (2) | 0.04189 (11) | 0.0326 (5) | |
H8A | 0.5329 | 0.1886 | 0.0464 | 0.039* | |
H8B | 0.6018 | 0.0542 | 0.0523 | 0.039* | |
C9 | 0.6791 (2) | 0.14918 (19) | −0.02923 (10) | 0.0347 (5) | |
H9A | 0.6001 | 0.1208 | −0.0582 | 0.042* | |
H9B | 0.6992 | 0.2361 | −0.0396 | 0.042* | |
C10 | 0.8184 (2) | 0.07312 (18) | −0.04282 (10) | 0.0296 (4) | |
N1 | 0.84880 (17) | 0.11670 (14) | 0.11236 (9) | 0.0289 (4) | |
N2 | 0.74575 (17) | 0.30823 (13) | 0.10974 (8) | 0.0268 (4) | |
O1 | 0.91054 (16) | 0.11866 (15) | −0.08295 (7) | 0.0373 (4) | |
O2 | 0.83644 (16) | −0.03094 (12) | −0.01494 (7) | 0.0332 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.03268 (17) | 0.01695 (16) | 0.03822 (18) | 0.00017 (8) | 0.00399 (10) | 0.00205 (9) |
C1 | 0.0323 (10) | 0.0252 (10) | 0.0240 (10) | −0.0034 (8) | 0.0028 (8) | 0.0001 (8) |
C2 | 0.0459 (12) | 0.0284 (11) | 0.0341 (12) | −0.0065 (9) | 0.0030 (10) | −0.0084 (9) |
C3 | 0.0548 (14) | 0.0475 (14) | 0.0437 (13) | −0.0116 (12) | −0.0098 (12) | −0.0148 (12) |
C4 | 0.0507 (14) | 0.0570 (16) | 0.0460 (14) | −0.0032 (12) | −0.0209 (11) | −0.0069 (13) |
C5 | 0.0438 (12) | 0.0384 (12) | 0.0382 (12) | 0.0045 (10) | −0.0119 (10) | −0.0008 (10) |
C6 | 0.0329 (10) | 0.0256 (10) | 0.0250 (9) | −0.0030 (8) | −0.0006 (8) | 0.0009 (8) |
C7 | 0.0290 (10) | 0.0207 (10) | 0.0323 (10) | −0.0013 (8) | −0.0003 (8) | 0.0000 (8) |
C8 | 0.0283 (10) | 0.0235 (10) | 0.0459 (13) | 0.0017 (8) | −0.0070 (9) | −0.0045 (9) |
C9 | 0.0337 (11) | 0.0287 (11) | 0.0416 (12) | 0.0044 (8) | −0.0113 (9) | −0.0002 (9) |
C10 | 0.0326 (11) | 0.0226 (10) | 0.0336 (11) | −0.0011 (8) | −0.0119 (9) | −0.0037 (8) |
N1 | 0.0332 (9) | 0.0177 (8) | 0.0360 (9) | 0.0000 (7) | −0.0054 (7) | −0.0009 (7) |
N2 | 0.0294 (9) | 0.0193 (8) | 0.0317 (9) | −0.0009 (7) | 0.0013 (7) | −0.0006 (7) |
O1 | 0.0330 (8) | 0.0327 (9) | 0.0461 (9) | 0.0019 (6) | −0.0032 (6) | 0.0111 (7) |
O2 | 0.0423 (8) | 0.0211 (7) | 0.0360 (8) | 0.0020 (6) | −0.0053 (6) | 0.0013 (6) |
Zn1—O1i | 1.9563 (16) | C6—N1 | 1.386 (3) |
Zn1—N1ii | 1.9624 (18) | C7—N2 | 1.342 (2) |
Zn1—N2 | 1.9661 (16) | C7—N1 | 1.342 (2) |
Zn1—O2ii | 2.0208 (17) | C7—C8 | 1.496 (3) |
C1—C2 | 1.392 (3) | C8—C9 | 1.530 (3) |
C1—N2 | 1.398 (2) | C8—H8A | 0.9700 |
C1—C6 | 1.399 (3) | C8—H8B | 0.9700 |
C2—C3 | 1.374 (3) | C9—C10 | 1.515 (3) |
C2—H2 | 0.9300 | C9—H9A | 0.9700 |
C3—C4 | 1.393 (4) | C9—H9B | 0.9700 |
C3—H3 | 0.9300 | C10—O1 | 1.259 (3) |
C4—C5 | 1.375 (3) | C10—O2 | 1.260 (2) |
C4—H4 | 0.9300 | N1—Zn1iii | 1.9624 (18) |
C5—C6 | 1.393 (3) | O1—Zn1iv | 1.9563 (16) |
C5—H5 | 0.9300 | O2—Zn1iii | 2.0207 (17) |
O1i—Zn1—N1ii | 118.50 (7) | N2—C7—C8 | 124.22 (17) |
O1i—Zn1—N2 | 106.84 (7) | N1—C7—C8 | 121.86 (16) |
N1ii—Zn1—N2 | 120.28 (7) | C7—C8—C9 | 111.96 (17) |
O1i—Zn1—O2ii | 105.15 (6) | C7—C8—H8A | 109.2 |
N1ii—Zn1—O2ii | 99.22 (6) | C9—C8—H8A | 109.2 |
N2—Zn1—O2ii | 104.42 (6) | C7—C8—H8B | 109.2 |
C2—C1—N2 | 131.70 (19) | C9—C8—H8B | 109.2 |
C2—C1—C6 | 120.56 (19) | H8A—C8—H8B | 107.9 |
N2—C1—C6 | 107.74 (16) | C10—C9—C8 | 113.88 (16) |
C3—C2—C1 | 117.4 (2) | C10—C9—H9A | 108.8 |
C3—C2—H2 | 121.3 | C8—C9—H9A | 108.8 |
C1—C2—H2 | 121.3 | C10—C9—H9B | 108.8 |
C2—C3—C4 | 121.8 (2) | C8—C9—H9B | 108.8 |
C2—C3—H3 | 119.1 | H9A—C9—H9B | 107.7 |
C4—C3—H3 | 119.1 | O1—C10—O2 | 123.33 (19) |
C5—C4—C3 | 121.7 (2) | O1—C10—C9 | 116.77 (18) |
C5—C4—H4 | 119.1 | O2—C10—C9 | 119.89 (19) |
C3—C4—H4 | 119.1 | C7—N1—C6 | 105.65 (16) |
C4—C5—C6 | 116.7 (2) | C7—N1—Zn1iii | 123.27 (13) |
C4—C5—H5 | 121.6 | C6—N1—Zn1iii | 130.11 (13) |
C6—C5—H5 | 121.6 | C7—N2—C1 | 105.11 (15) |
N1—C6—C5 | 130.48 (19) | C7—N2—Zn1 | 126.10 (13) |
N1—C6—C1 | 107.75 (17) | C1—N2—Zn1 | 128.46 (13) |
C5—C6—C1 | 121.75 (18) | C10—O1—Zn1iv | 117.83 (13) |
N2—C7—N1 | 113.75 (17) | C10—O2—Zn1iii | 124.96 (13) |
N2—C1—C2—C3 | −178.1 (2) | N2—C7—N1—Zn1iii | −170.56 (13) |
C6—C1—C2—C3 | 1.8 (3) | C8—C7—N1—Zn1iii | 4.9 (3) |
C1—C2—C3—C4 | 0.0 (4) | C5—C6—N1—C7 | −177.4 (2) |
C2—C3—C4—C5 | −1.8 (4) | C1—C6—N1—C7 | 0.7 (2) |
C3—C4—C5—C6 | 1.6 (4) | C5—C6—N1—Zn1iii | −8.6 (3) |
C4—C5—C6—N1 | 178.1 (2) | C1—C6—N1—Zn1iii | 169.47 (14) |
C4—C5—C6—C1 | 0.2 (3) | N1—C7—N2—C1 | 0.6 (2) |
C2—C1—C6—N1 | 179.73 (18) | C8—C7—N2—C1 | −174.75 (18) |
N2—C1—C6—N1 | −0.4 (2) | N1—C7—N2—Zn1 | 174.49 (13) |
C2—C1—C6—C5 | −2.0 (3) | C8—C7—N2—Zn1 | −0.8 (3) |
N2—C1—C6—C5 | 177.93 (18) | C2—C1—N2—C7 | 179.8 (2) |
N2—C7—C8—C9 | 90.4 (2) | C6—C1—N2—C7 | −0.1 (2) |
N1—C7—C8—C9 | −84.6 (2) | C2—C1—N2—Zn1 | 6.1 (3) |
C7—C8—C9—C10 | 61.3 (2) | C6—C1—N2—Zn1 | −173.81 (13) |
C8—C9—C10—O1 | −144.39 (18) | O2—C10—O1—Zn1iv | −19.8 (3) |
C8—C9—C10—O2 | 36.4 (3) | C9—C10—O1—Zn1iv | 160.95 (13) |
N2—C7—N1—C6 | −0.8 (2) | O1—C10—O2—Zn1iii | 108.7 (2) |
C8—C7—N1—C6 | 174.63 (18) | C9—C10—O2—Zn1iii | −72.1 (2) |
Symmetry codes: (i) x−1/2, −y+1/2, −z; (ii) −x+3/2, y+1/2, z; (iii) −x+3/2, y−1/2, z; (iv) x+1/2, −y+1/2, −z. |
[Cd(C10H8N2O2)2] | F(000) = 984 |
Mr = 490.79 | Dx = 1.741 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.6708 (6) Å | Cell parameters from 2660 reflections |
b = 8.0253 (3) Å | θ = 3.0–27.4° |
c = 17.3834 (7) Å | µ = 1.20 mm−1 |
β = 100.972 (4)° | T = 293 K |
V = 1872.31 (13) Å3 | Prism, brown |
Z = 4 | 0.28 × 0.25 × 0.19 mm |
Bruker SMART CCD area-detector diffractometer | 2685 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.029 |
phi and ω scans | θmax = 25.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −16→15 |
Tmin = 0.923, Tmax = 1.000 | k = −9→6 |
6654 measured reflections | l = −20→14 |
3289 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.064 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0234P)2] where P = (Fo2 + 2Fc2)/3 |
3289 reflections | (Δ/σ)max < 0.001 |
262 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.48 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.22103 (2) | 0.06562 (3) | 0.41588 (2) | 0.02433 (9) | |
C1 | 0.4463 (3) | 1.0429 (4) | 0.37316 (19) | 0.0254 (8) | |
C2 | 0.4459 (3) | 1.1926 (4) | 0.33279 (19) | 0.0343 (9) | |
H2 | 0.3890 | 1.2587 | 0.3224 | 0.041* | |
C3 | 0.5321 (3) | 1.2403 (5) | 0.3087 (2) | 0.0442 (11) | |
H3 | 0.5337 | 1.3410 | 0.2825 | 0.053* | |
C4 | 0.6164 (3) | 1.1402 (5) | 0.3229 (2) | 0.0503 (11) | |
H4 | 0.6734 | 1.1750 | 0.3056 | 0.060* | |
C5 | 0.6179 (3) | 0.9902 (5) | 0.3622 (2) | 0.0444 (10) | |
H5 | 0.6740 | 0.9224 | 0.3710 | 0.053* | |
C6 | 0.5323 (3) | 0.9465 (4) | 0.3874 (2) | 0.0298 (8) | |
C7 | 0.4118 (3) | 0.8209 (4) | 0.43435 (18) | 0.0263 (8) | |
C8 | 0.3603 (3) | 0.6815 (4) | 0.46664 (19) | 0.0305 (8) | |
H8A | 0.3197 | 0.7255 | 0.5020 | 0.037* | |
H8B | 0.4094 | 0.6069 | 0.4962 | 0.037* | |
C9 | 0.2949 (3) | 0.5857 (4) | 0.4010 (2) | 0.0404 (10) | |
H9A | 0.3250 | 0.5925 | 0.3548 | 0.048* | |
H9B | 0.2308 | 0.6413 | 0.3886 | 0.048* | |
C10 | 0.2768 (3) | 0.4031 (4) | 0.4167 (2) | 0.0261 (8) | |
C11 | 0.0502 (3) | −0.0701 (4) | 0.18100 (19) | 0.0274 (8) | |
C12 | 0.0484 (3) | −0.0730 (4) | 0.1006 (2) | 0.0373 (9) | |
H12 | −0.0082 | −0.1041 | 0.0648 | 0.045* | |
C13 | 0.1354 (3) | −0.0273 (4) | 0.0773 (2) | 0.0390 (10) | |
H13 | 0.1371 | −0.0271 | 0.0241 | 0.047* | |
C14 | 0.2200 (3) | 0.0185 (5) | 0.1299 (2) | 0.0397 (10) | |
H14 | 0.2769 | 0.0493 | 0.1113 | 0.048* | |
C15 | 0.2218 (3) | 0.0193 (4) | 0.2096 (2) | 0.0336 (9) | |
H15 | 0.2790 | 0.0490 | 0.2452 | 0.040* | |
C16 | 0.1354 (3) | −0.0256 (4) | 0.23458 (19) | 0.0237 (8) | |
C17 | 0.0228 (3) | −0.0925 (4) | 0.30217 (19) | 0.0272 (8) | |
C18 | −0.0301 (3) | −0.1297 (4) | 0.3673 (2) | 0.0333 (9) | |
H18A | 0.0190 | −0.1575 | 0.4136 | 0.040* | |
H18B | −0.0717 | −0.2271 | 0.3534 | 0.040* | |
C19 | −0.0936 (3) | 0.0092 (5) | 0.3873 (2) | 0.0433 (10) | |
H19A | −0.1486 | 0.0260 | 0.3436 | 0.052* | |
H19B | −0.0544 | 0.1107 | 0.3937 | 0.052* | |
C20 | −0.1353 (3) | −0.0190 (5) | 0.4602 (2) | 0.0317 (9) | |
O1 | 0.21406 (17) | 0.3287 (3) | 0.36487 (13) | 0.0316 (6) | |
O2 | 0.32390 (18) | 0.3331 (3) | 0.47586 (13) | 0.0309 (6) | |
O3 | −0.1888 (2) | 0.0912 (3) | 0.48158 (15) | 0.0504 (8) | |
O4 | −0.1163 (2) | −0.1496 (3) | 0.49775 (14) | 0.0448 (7) | |
N1 | 0.3712 (2) | 0.9617 (3) | 0.40401 (15) | 0.0242 (7) | |
N2 | 0.5075 (2) | 0.8066 (3) | 0.42631 (16) | 0.0313 (7) | |
H2A | 0.5466 | 0.7247 | 0.4426 | 0.038* | |
N3 | 0.1154 (2) | −0.0401 (3) | 0.31043 (16) | 0.0277 (7) | |
N4 | −0.0197 (2) | −0.1100 (3) | 0.22566 (16) | 0.0323 (7) | |
H4A | −0.0800 | −0.1408 | 0.2079 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.02465 (15) | 0.02141 (14) | 0.02708 (15) | 0.00049 (12) | 0.00527 (10) | 0.00198 (12) |
C1 | 0.026 (2) | 0.0254 (19) | 0.0239 (17) | −0.0039 (16) | 0.0022 (15) | −0.0025 (17) |
C2 | 0.037 (2) | 0.029 (2) | 0.037 (2) | −0.0006 (18) | 0.0046 (17) | 0.0021 (19) |
C3 | 0.051 (3) | 0.040 (2) | 0.042 (2) | −0.015 (2) | 0.010 (2) | 0.009 (2) |
C4 | 0.039 (3) | 0.061 (3) | 0.054 (3) | −0.016 (2) | 0.015 (2) | 0.002 (3) |
C5 | 0.026 (2) | 0.048 (2) | 0.059 (3) | −0.005 (2) | 0.005 (2) | −0.005 (2) |
C6 | 0.027 (2) | 0.032 (2) | 0.0278 (19) | −0.0043 (17) | −0.0002 (16) | −0.0042 (18) |
C7 | 0.029 (2) | 0.0229 (18) | 0.0250 (18) | 0.0007 (16) | 0.0010 (15) | −0.0038 (16) |
C8 | 0.035 (2) | 0.0219 (18) | 0.034 (2) | 0.0000 (17) | 0.0061 (17) | 0.0028 (17) |
C9 | 0.044 (3) | 0.0257 (19) | 0.045 (2) | −0.0080 (18) | −0.0073 (19) | 0.009 (2) |
C10 | 0.022 (2) | 0.0234 (18) | 0.035 (2) | 0.0023 (16) | 0.0105 (16) | 0.0010 (18) |
C11 | 0.031 (2) | 0.0212 (18) | 0.0298 (19) | −0.0004 (17) | 0.0061 (16) | −0.0025 (17) |
C12 | 0.051 (3) | 0.030 (2) | 0.027 (2) | 0.0007 (19) | −0.0016 (18) | −0.0008 (18) |
C13 | 0.052 (3) | 0.040 (2) | 0.027 (2) | 0.010 (2) | 0.0142 (19) | 0.0035 (19) |
C14 | 0.037 (2) | 0.045 (2) | 0.042 (2) | 0.005 (2) | 0.0196 (19) | 0.002 (2) |
C15 | 0.027 (2) | 0.040 (2) | 0.034 (2) | 0.0014 (18) | 0.0064 (17) | 0.0027 (19) |
C16 | 0.025 (2) | 0.0212 (18) | 0.0250 (18) | 0.0012 (15) | 0.0043 (15) | −0.0018 (16) |
C17 | 0.033 (2) | 0.0193 (18) | 0.0300 (19) | −0.0023 (16) | 0.0080 (16) | −0.0010 (16) |
C18 | 0.032 (2) | 0.0331 (19) | 0.038 (2) | −0.0099 (18) | 0.0142 (17) | −0.0029 (19) |
C19 | 0.047 (3) | 0.047 (2) | 0.039 (2) | 0.013 (2) | 0.016 (2) | 0.015 (2) |
C20 | 0.024 (2) | 0.038 (2) | 0.033 (2) | −0.0041 (18) | 0.0044 (17) | −0.003 (2) |
O1 | 0.0296 (15) | 0.0226 (12) | 0.0384 (14) | −0.0051 (11) | −0.0042 (11) | 0.0023 (12) |
O2 | 0.0314 (15) | 0.0244 (13) | 0.0347 (13) | 0.0038 (11) | 0.0008 (11) | 0.0087 (12) |
O3 | 0.055 (2) | 0.0548 (17) | 0.0489 (16) | 0.0248 (15) | 0.0285 (15) | 0.0199 (15) |
O4 | 0.063 (2) | 0.0349 (15) | 0.0430 (16) | 0.0055 (14) | 0.0273 (14) | 0.0078 (14) |
N1 | 0.0207 (16) | 0.0187 (14) | 0.0324 (16) | −0.0001 (12) | 0.0034 (12) | 0.0043 (13) |
N2 | 0.0227 (17) | 0.0265 (15) | 0.0426 (17) | 0.0053 (14) | 0.0004 (14) | 0.0050 (15) |
N3 | 0.0290 (18) | 0.0281 (16) | 0.0269 (16) | −0.0065 (14) | 0.0073 (13) | −0.0028 (14) |
N4 | 0.0273 (18) | 0.0346 (17) | 0.0331 (17) | −0.0078 (14) | 0.0012 (14) | −0.0014 (16) |
Cd1—N1i | 2.262 (3) | C10—O1 | 1.269 (4) |
Cd1—N3 | 2.271 (3) | C11—N4 | 1.378 (4) |
Cd1—O1 | 2.285 (2) | C11—C12 | 1.393 (5) |
Cd1—O3ii | 2.293 (2) | C11—C16 | 1.393 (4) |
Cd1—O4ii | 2.362 (2) | C12—C13 | 1.377 (5) |
Cd1—O2 | 2.667 (2) | C12—H12 | 0.9300 |
Cd1—C20ii | 2.667 (4) | C13—C14 | 1.382 (5) |
Cd1—C10 | 2.813 (3) | C13—H13 | 0.9300 |
C1—C6 | 1.389 (5) | C14—C15 | 1.382 (5) |
C1—C2 | 1.391 (4) | C14—H14 | 0.9300 |
C1—N1 | 1.406 (4) | C15—C16 | 1.382 (5) |
C2—C3 | 1.377 (5) | C15—H15 | 0.9300 |
C2—H2 | 0.9300 | C16—N3 | 1.401 (4) |
C3—C4 | 1.389 (5) | C17—N3 | 1.316 (4) |
C3—H3 | 0.9300 | C17—N4 | 1.354 (4) |
C4—C5 | 1.382 (5) | C17—C18 | 1.485 (4) |
C4—H4 | 0.9300 | C18—C19 | 1.495 (5) |
C5—C6 | 1.371 (5) | C18—H18A | 0.9700 |
C5—H5 | 0.9300 | C18—H18B | 0.9700 |
C6—N2 | 1.386 (4) | C19—C20 | 1.503 (5) |
C7—N1 | 1.323 (4) | C19—H19A | 0.9700 |
C7—N2 | 1.346 (4) | C19—H19B | 0.9700 |
C7—C8 | 1.487 (4) | C20—O4 | 1.236 (4) |
C8—C9 | 1.518 (4) | C20—O3 | 1.249 (4) |
C8—H8A | 0.9700 | C20—Cd1ii | 2.667 (4) |
C8—H8B | 0.9700 | O3—Cd1ii | 2.293 (2) |
C9—C10 | 1.520 (4) | O4—Cd1ii | 2.362 (2) |
C9—H9A | 0.9700 | N1—Cd1iii | 2.262 (3) |
C9—H9B | 0.9700 | N2—H2A | 0.8600 |
C10—O2 | 1.239 (4) | N4—H4A | 0.8600 |
N1i—Cd1—N3 | 103.73 (10) | O2—C10—O1 | 123.4 (3) |
N1i—Cd1—O1 | 106.08 (9) | O2—C10—C9 | 120.6 (3) |
N3—Cd1—O1 | 93.38 (9) | O1—C10—C9 | 115.9 (3) |
N1i—Cd1—O3ii | 100.41 (9) | O2—C10—Cd1 | 70.45 (18) |
N3—Cd1—O3ii | 103.63 (10) | O1—C10—Cd1 | 52.94 (15) |
O1—Cd1—O3ii | 144.01 (9) | C9—C10—Cd1 | 168.8 (2) |
N1i—Cd1—O4ii | 146.52 (9) | N4—C11—C12 | 132.8 (3) |
N3—Cd1—O4ii | 104.51 (10) | N4—C11—C16 | 105.3 (3) |
O1—Cd1—O4ii | 89.85 (8) | C12—C11—C16 | 121.8 (3) |
O3ii—Cd1—O4ii | 55.44 (9) | C13—C12—C11 | 116.2 (4) |
N1i—Cd1—O2 | 84.96 (8) | C13—C12—H12 | 121.9 |
N3—Cd1—O2 | 145.40 (8) | C11—C12—H12 | 121.9 |
O1—Cd1—O2 | 52.26 (7) | C12—C13—C14 | 122.5 (4) |
O3ii—Cd1—O2 | 107.64 (9) | C12—C13—H13 | 118.8 |
O4ii—Cd1—O2 | 81.96 (8) | C14—C13—H13 | 118.8 |
N1i—Cd1—C20ii | 124.62 (11) | C15—C14—C13 | 121.2 (4) |
N3—Cd1—C20ii | 106.84 (10) | C15—C14—H14 | 119.4 |
O1—Cd1—C20ii | 116.79 (10) | C13—C14—H14 | 119.4 |
O3ii—Cd1—C20ii | 27.87 (10) | C16—C15—C14 | 117.4 (4) |
O4ii—Cd1—C20ii | 27.60 (9) | C16—C15—H15 | 121.3 |
O2—Cd1—C20ii | 94.44 (9) | C14—C15—H15 | 121.3 |
N1i—Cd1—C10 | 96.06 (9) | C15—C16—C11 | 120.9 (3) |
N3—Cd1—C10 | 119.59 (10) | C15—C16—N3 | 130.4 (3) |
O1—Cd1—C10 | 26.30 (8) | C11—C16—N3 | 108.6 (3) |
O3ii—Cd1—C10 | 128.08 (10) | N3—C17—N4 | 111.4 (3) |
O4ii—Cd1—C10 | 85.33 (9) | N3—C17—C18 | 125.4 (3) |
O2—Cd1—C10 | 25.96 (8) | N4—C17—C18 | 123.3 (3) |
C20ii—Cd1—C10 | 106.94 (11) | C17—C18—C19 | 114.6 (3) |
C6—C1—C2 | 119.6 (3) | C17—C18—H18A | 108.6 |
C6—C1—N1 | 109.1 (3) | C19—C18—H18A | 108.6 |
C2—C1—N1 | 131.3 (3) | C17—C18—H18B | 108.6 |
C3—C2—C1 | 118.2 (4) | C19—C18—H18B | 108.6 |
C3—C2—H2 | 120.9 | H18A—C18—H18B | 107.6 |
C1—C2—H2 | 120.9 | C18—C19—C20 | 114.4 (3) |
C2—C3—C4 | 120.9 (4) | C18—C19—H19A | 108.7 |
C2—C3—H3 | 119.5 | C20—C19—H19A | 108.7 |
C4—C3—H3 | 119.5 | C18—C19—H19B | 108.7 |
C5—C4—C3 | 121.7 (4) | C20—C19—H19B | 108.7 |
C5—C4—H4 | 119.2 | H19A—C19—H19B | 107.6 |
C3—C4—H4 | 119.2 | O4—C20—O3 | 121.3 (3) |
C6—C5—C4 | 116.6 (4) | O4—C20—C19 | 119.9 (3) |
C6—C5—H5 | 121.7 | O3—C20—C19 | 118.8 (3) |
C4—C5—H5 | 121.7 | O4—C20—Cd1ii | 62.30 (19) |
C5—C6—N2 | 131.8 (4) | O3—C20—Cd1ii | 59.13 (18) |
C5—C6—C1 | 123.0 (4) | C19—C20—Cd1ii | 176.2 (3) |
N2—C6—C1 | 105.2 (3) | C10—O1—Cd1 | 100.76 (19) |
N1—C7—N2 | 111.9 (3) | C10—O2—Cd1 | 83.59 (19) |
N1—C7—C8 | 126.8 (3) | C20—O3—Cd1ii | 93.0 (2) |
N2—C7—C8 | 120.9 (3) | C20—O4—Cd1ii | 90.1 (2) |
C7—C8—C9 | 110.5 (3) | C7—N1—C1 | 105.5 (3) |
C7—C8—H8A | 109.5 | C7—N1—Cd1iii | 126.7 (2) |
C9—C8—H8A | 109.5 | C1—N1—Cd1iii | 127.2 (2) |
C7—C8—H8B | 109.5 | C7—N2—C6 | 108.3 (3) |
C9—C8—H8B | 109.5 | C7—N2—H2A | 125.9 |
H8A—C8—H8B | 108.1 | C6—N2—H2A | 125.9 |
C8—C9—C10 | 116.5 (3) | C17—N3—C16 | 106.3 (3) |
C8—C9—H9A | 108.2 | C17—N3—Cd1 | 131.2 (2) |
C10—C9—H9A | 108.2 | C16—N3—Cd1 | 121.4 (2) |
C8—C9—H9B | 108.2 | C17—N4—C11 | 108.4 (3) |
C10—C9—H9B | 108.2 | C17—N4—H4A | 125.8 |
H9A—C9—H9B | 107.3 | C11—N4—H4A | 125.8 |
Symmetry codes: (i) x, y−1, z; (ii) −x, −y, −z+1; (iii) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O2iv | 0.86 | 2.10 | 2.823 (4) | 141 |
N4—H4A···O1v | 0.86 | 2.03 | 2.862 (4) | 161 |
Symmetry codes: (iv) −x+1, −y+1, −z+1; (v) −x, y−1/2, −z+1/2. |
Funding information
Financial support by the Key Discipline Project of Hunan Province, the Open Fund of Key Laboratory of Functional Organometallic Materials of Hunan Province College, Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province and the Scientific Research Fund of Hunan Provincial Education Department (16B037) and Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education (CHCL16002) are gratefully acknowledged.
References
Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2012). APEX2, SADABS, SMART and SAINT. Bruker AXS inc., Madison, Wisconsin, USA. Google Scholar
Cao, T. T., Peng, Y. Q., Liu, T., Wang, S. N., Dou, J. M., Li, Y. W., Zhou, C. H., Li, D. C. & Bai, J. F. (2014). CrystEngComm, 16, 10658–10673. CSD CrossRef CAS Google Scholar
Castellanos, S., Goulet-Hanssens, A., Zhao, F. L., Dikhtiarenko, A., Pustovarenko, A., Hecht, S., Gascon, J., Kapteijn, F. & Bléger, D. (2016). Chem. Eur. J. 22, 746–752. CrossRef CAS PubMed Google Scholar
Delval, F., Spyratou, A., Verdan, S., Bernardinelli, G. & Williams, A. F. (2008). New J. Chem. 32, 1394–1402. CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duerinck, T. & Denayer, J. F. M. (2015). Chem. Eng. Sci. 124, 179–187. CrossRef CAS Google Scholar
Fernández, B., Gómez-Vílchez, A., Sánchez-González, C., Bayón, J., San Sebastián, E., Gómez-Ruiz, S., López-Chaves, C., Aranda, P., Llopis, J. & Rodríguez-Diéguez, A. (2016). New J. Chem. 40, 5387–5393. Google Scholar
Hu, Y. J., Yang, J., Liu, Y. Y., Song, S. Y. & Ma, J. F. (2015). Cryst. Growth Des. 15, 3822–3831. CSD CrossRef CAS Google Scholar
Jurcic, M., Peveler, W. J., Savory, C. N., Scanlon, D. O., Kenyon, A. J. & Parkin, I. P. (2015). J. Mater. Chem. A, 3, 6351–6359. CSD CrossRef CAS Google Scholar
Karmakar, A., Martins, L., Hazra, S., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2016a). Cryst. Growth Des. 16, 1837–1849. CSD CrossRef CAS Google Scholar
Karmakar, A., Rúbio, G., Guedes da Silva, M. F. C., Ribeiro, A. P. C. & Pombeiro, A. J. L. (2016b). RSC Adv. 6, 89007–89018. CSD CrossRef CAS Google Scholar
Kumar, P., Deep, A. & Kim, K. H. (2015). TrAC Trends Anal. Chem. 73, 39–53. CrossRef CAS Google Scholar
Liang, F.-L., Ma, D.-Y. & Qin, L. (2016). Acta Cryst. C72, 373–378. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, X. B., Lin, H., Xiao, Z. Y., Fan, W. D., Huang, A., Wang, R. M., Zhang, L. L. & Sun, D. F. (2016). Dalton Trans. 45, 3743–3749. Web of Science CSD CrossRef CAS PubMed Google Scholar
Liu, Z., Zheng, S. & Feng, S. (2015). Acta Cryst. E71, m5–m6. CSD CrossRef IUCr Journals Google Scholar
Machura, B., Wolff, M., Benoist, E., Schachner, J. A., Mösch-Zanetti, N. C., Takao, K. & Ikeda, Y. (2014). Polyhedron, 69, 205–218. CSD CrossRef CAS Google Scholar
Małecki, J. G. & Maroń, A. (2012). Polyhedron, 40, 125–133. Google Scholar
Mohan, B., Yoon, C., Jang, S. & Park, K. H. (2015). ChemCatChem, 7, 405–412. CrossRef CAS Google Scholar
Müller-Buschbaum, K., Beuerle, F. & Feldmann, C. (2015). Microporous Mesoporous Mater. 216, 171–199. Google Scholar
Qiao, C. F., Xia, Z. Q., Wei, Q., Zhou, C. S., Zhang, G. C., Chen, S. P. & Gao, S. L. (2013). J. Coord. Chem. 66, 1202–1210. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wannapaiboon, S., Tu, M., Sumida, K., Khaletskaya, K., Furukawa, S., Kitagawa, S. & Fischer, R. A. (2015). J. Mater. Chem. A, 3, 23385–23394. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, H., Liu, H. Y., Yang, J., Liu, B., Ma, J. F., Liu, Y. Y. & Liu, Y. Y. (2011). Cryst. Growth Des. 11, 2317–2324. CSD CrossRef CAS Google Scholar
Xia, Z. Q., Wei, Q., Yang, Q., Qiao, C. F., Chen, S. P., Xie, G., Zhang, G. C., Zhou, C. S. & Gao, S. L. (2013). CrystEngComm, 15, 86–99. CSD CrossRef CAS Google Scholar
Xiao, Y. J., Liu, F. H., Zhao, L. & Su, Z. M. (2015). Inorg. Chem. Commun. 59, 32–35. CSD CrossRef CAS Google Scholar
Ying, S.-M., Ru, J.-J. & Luo, W.-K. (2015). Acta Cryst. C71, 618–622. CSD CrossRef IUCr Journals Google Scholar
Yu, Q., Zeng, Y.-F., Zhao, J.-P., Yang, Q. & Bu, X.-H. (2010). Cryst. Growth Des. 10, 1878–1884. Web of Science CSD CrossRef CAS Google Scholar
Zhang, Y., Du, Z. & Luo, X. (2015). Z. Anorg. Allg. Chem. 641, 2637–2640. CSD CrossRef CAS Google Scholar
Zhang, Z. Y., Yoshikawa, H. & Awaga, K. (2016). Chem. Mater. 28, 1298–1303. CSD CrossRef CAS Google Scholar
Zheng, S. R., Cai, S. L., Tan, J. B., Fan, J. & Zhang, W.-G. (2012). Inorg. Chem. Commun. 21, 100–103. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.