research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Assembly of ZnII and CdII coordination polymers with different dimensionalities based on the semi-flexible 3-(1H-benzimidazol-2-yl)propanoic acid ligand

CROSSMARK_Color_square_no_text.svg

aKey Laboratory of Functional Organometallic Materials of General Colleges and Universities in Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, People's Republic of China
*Correspondence e-mail: w.w.fu@hynu.edu.cn

Edited by A. J. Lough, University of Toronto, Canada (Received 3 October 2017; accepted 7 December 2017; online 1 January 2018)

Two new coordination polymers, namely, poly[[μ3-3-(1H-benzimidazol-2-yl)propionato]zinc(II)], [Zn(C10H8N2O2)]n, (1), and poly[bis­[μ2-3-(1H-benzimid­azol-2-yl)propionato]cadmium(II)], [Cd(C10H8N2O2)2]n, (2) have been synthesized from 3-(1H-benzoimidazol-2-yl)propanoic acid ligands through a mixed-ligand synthetic strategy under a solvothermal environment, and studied by single-crystal X-ray diffraction. Complex 1 crystallizes in the ortho­rhom­bic space group Pbca and features a two-dimensional structure formed by a binuclear Zn2O4 core. Complex 2, however, crystallizes in the monoclinic space group P21/c and forms a one-dimensional chain structure. The ZnII and CdII ions have different coordination numbers and the 3-(1H-benzoimidazol-2-yl)propano­ate ligands display different coordination modes. The structures reported here show the importance of the selection of metal ions and suitable ligands.

1. Chemical context

The structures of coordination polymers are strongly influenced by the organic ligands and metal ions and it is important to choose suitable ligands and metal ions under appropriate synthetic conditions to synthesize coordination complexes with inter­esting structures. The exploration of metal–organic frameworks (MOFs) have received much attention because of their intriguing architectures and wide range of potential applications in different fields (Castellanos et al., 2016[Castellanos, S., Goulet-Hanssens, A., Zhao, F. L., Dikhtiarenko, A., Pustovarenko, A., Hecht, S., Gascon, J., Kapteijn, F. & Bléger, D. (2016). Chem. Eur. J. 22, 746-752.]; Zhang et al., 2016[Zhang, Z. Y., Yoshikawa, H. & Awaga, K. (2016). Chem. Mater. 28, 1298-1303.]; Kumar et al., 2015[Kumar, P., Deep, A. & Kim, K. H. (2015). TrAC Trends Anal. Chem. 73, 39-53.]; Liu et al., 2016[Liu, X. B., Lin, H., Xiao, Z. Y., Fan, W. D., Huang, A., Wang, R. M., Zhang, L. L. & Sun, D. F. (2016). Dalton Trans. 45, 3743-3749.]; Müller-Buschbaum et al., 2015[Müller-Buschbaum, K., Beuerle, F. & Feldmann, C. (2015). Microporous Mesoporous Mater. 216, 171-199.]; Duerinck & Denayer, 2015[Duerinck, T. & Denayer, J. F. M. (2015). Chem. Eng. Sci. 124, 179-187.]; Mohan et al., 2015[Mohan, B., Yoon, C., Jang, S. & Park, K. H. (2015). ChemCatChem, 7, 405-412.]). The assembly of ZnII (Jurcic et al., 2015[Jurcic, M., Peveler, W. J., Savory, C. N., Scanlon, D. O., Kenyon, A. J. & Parkin, I. P. (2015). J. Mater. Chem. A, 3, 6351-6359.]; Karmakar et al., 2016a[Karmakar, A., Martins, L., Hazra, S., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2016a). Cryst. Growth Des. 16, 1837-1849.],b[Karmakar, A., Rúbio, G., Guedes da Silva, M. F. C., Ribeiro, A. P. C. & Pombeiro, A. J. L. (2016b). RSC Adv. 6, 89007-89018.]; Liang et al., 2016[Liang, F.-L., Ma, D.-Y. & Qin, L. (2016). Acta Cryst. C72, 373-378.]; Wannapaiboon et al., 2015[Wannapaiboon, S., Tu, M., Sumida, K., Khaletskaya, K., Furukawa, S., Kitagawa, S. & Fischer, R. A. (2015). J. Mater. Chem. A, 3, 23385-23394.]; Ying et al., 2015[Ying, S.-M., Ru, J.-J. & Luo, W.-K. (2015). Acta Cryst. C71, 618-622.]) and CdII (Xiao et al., 2015[Xiao, Y. J., Liu, F. H., Zhao, L. & Su, Z. M. (2015). Inorg. Chem. Commun. 59, 32-35.], Wu et al., 2011[Wu, H., Liu, H. Y., Yang, J., Liu, B., Ma, J. F., Liu, Y. Y. & Liu, Y. Y. (2011). Cryst. Growth Des. 11, 2317-2324.], Hu et al., 2015[Hu, Y. J., Yang, J., Liu, Y. Y., Song, S. Y. & Ma, J. F. (2015). Cryst. Growth Des. 15, 3822-3831.], Cao et al., 2014[Cao, T. T., Peng, Y. Q., Liu, T., Wang, S. N., Dou, J. M., Li, Y. W., Zhou, C. H., Li, D. C. & Bai, J. F. (2014). CrystEngComm, 16, 10658-10673.], Zhang et al., 2015[Zhang, Y., Du, Z. & Luo, X. (2015). Z. Anorg. Allg. Chem. 641, 2637-2640.]) ions with multidentate nitro­gen-containing ligands has produced various MOFs with fascinating structures and luminescent properties. The selection of chelating or bridging organic linkers often favors a structure-specific assembly and the factors that govern the formation of such complexes are complicated and include not only the nature of the ZnII and CdII ions and ligand structure but also anion-directed inter­actions as well as reaction conditions. In order to explore the coordination chemistry of this type of ligand, 3-(1H-benz­imid­azol-2-yl) propanoic acid (H2BIP) was chosen in the present study to construct new coordination polymers. A two-dimensional ZnII polymer and a one-dimensional CdII coord­ination polymer have been obtained.

[Scheme 1]
[Scheme 2]

2. Structural commentary

Complex 1 crystallizes in the ortho­rhom­bic crystal system in the centrosymmetric space group Pbca. The 3-(1H-benzoimdazol-2-yl)propano­nic acid ligand deprotonates completely when bonding to ZnII ions. The asymmetric unit of 1 consists of one ZnII ion and one 3-(1λ2-benzoimidazol-2-yl)propano­ate anion. Geometric parameters are given in Table 1[link]. As shown in Fig. 1[link], the ZnII ion has a tetra­hedral ZnO2N2 environment completed by N2 from one 3-(1λ2-benzoimid­azol-2-yl)propano­ate anion, O2(−x + [{3\over 2}], y + [{1\over 2}], z) and N1(−x + [{3\over 2}], y + [{1\over 2}], z) from the second 3-(1λ2-benzoimidazol-2-yl)propano­ate anion and O1(x − [{1\over 2}], −y + [{1\over 2}], −z) from the third 3-(1λ2-benzoimidazol-2-yl)propano­ate anion. All the Zn—N/O bond distances [Zn—O: 1.9563 (16)–2.0208 (17) and Zn—N: 1.9624 (18)–1.9661 (16) Å] and the bond angles around Zn1 [99.22 (6)–120.28 (7)°] fall into the normal range. Each 3-(1λ2-benzoimidazol-2-yl)propano­ate anion shows a tridentate chelating mode bridging three ZnII ions with the Zn⋯Zn distances of 4.066 (1), 5.870 (2) and 6.965 (2) Å. Zn1 and the symmetry-related Zn1 forming the shortest distance are bridged by O1 and O2 to form a binuclear Zn2 cluster. Adjacent clusters are connected by a Zn—N bond of 1.9661 (16) Å to generate 2D square-grid (4,4) layers (Fig. 2[link]). As there are no classical hydrogen bonds in 1, these layers are packed by normal van der Waals forces into an extended 3D framework (Fig. 3[link]).

Table 1
Selected geometric parameters (Å, °) for 1[link]

Zn1—O1i 1.9563 (16) Zn1—N2 1.9661 (16)
Zn1—N1ii 1.9624 (18) Zn1—O2ii 2.0208 (17)
       
O1i—Zn1—N1ii 118.50 (7) O1i—Zn1—O2ii 105.15 (6)
O1i—Zn1—N2 106.84 (7) N1ii—Zn1—O2ii 99.22 (6)
N1ii—Zn1—N2 120.28 (7) N2—Zn1—O2ii 104.42 (6)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].
[Figure 1]
Figure 1
The asymmetric unit of 1, with additional symmetry-related atoms. The displacement ellipsoids are drawn at the 30% probability level [symmetry codes: (A) −x + [{3\over 2}], y + [{1\over 2}], z; (B) x − [{1\over 2}], −y + [{1\over 2}], −z)].
[Figure 2]
Figure 2
A perspective view of the 4-connected nodes in 1.
[Figure 3]
Figure 3
View of the three-dimensional framework of 1 formed by two-dimensional undulating sheets and van der Waals forces.

Complex 2 crystallizes in the monoclinic crystal system in the centrosymmetic space group P21/c. The 3-(1H-benzo­imid­azol-2-yl)propano­nic acid ligands do not deprotonate completely when bonding to CdII ions. Geometric parameters are given in Table 2[link]. As shown in Fig. 4[link], the CdII ion is five-coordinated by N3 from one 3-(1H-benzoimidazol-2-yl)propano­ate anion, N1(x, y − 1, z) from the second 3-(1H-benzoimidazol-2-yl)propano­ate anion, O1 from the third and O3(−x, −y, −z + 1) and O4(−x, −y, −z + 1) from the fourth. All the Cd—N/O bond distances [Cd—O: 2.285 (2)–2.362 (2) and Cd—N: 2.262 (3)–2.271 (3) Å] and the bond angles around Cd1 [55.44 (9)–146.52 (9)°] fall into the normal range. A distance of 2.667 (2) Å between Cd1 and O2 indicates the existence of a weak inter­action between them. Two HBIP anions connects two CdII ions with one bidentate carboxyl­ate and one N atom forming end-to-end binuclear Cd2 cluster with a distance of 7.274 (1) Å. The other two HBIP anions act as bridges to join two neighboring binuclear Cd2 clusters with one monodentate carboxyl­ate and one N atom to generate 1D ladders along the b-axis direction (Fig. 5[link]). In the crystal, N—H⋯O hydrogen bonds (Table 3[link]) and ππ inter­actions involv­ing the imidazole rings and benzimidazole ring systems with centroid–centroid distances of 3.569 (2) and 3.838 (2) Å connect the 1D ladders along a- and c-axis directions into an extended 3D framework (Fig. 6[link]). Although there are large potential voids within the 1D ladders (7.274 × 8. 025 Å based on the distances of the CdII ions), they are inter­blocked by adjacent ladders.

Table 2
Selected geometric parameters (Å, °) for 2[link]

Cd1—N1i 2.262 (3) Cd1—O3ii 2.293 (2)
Cd1—N3 2.271 (3) Cd1—O4ii 2.362 (2)
Cd1—O1 2.285 (2)    
       
N1i—Cd1—N3 103.73 (10) O1—Cd1—O3ii 144.01 (9)
N1i—Cd1—O1 106.08 (9) N1i—Cd1—O4ii 146.52 (9)
N3—Cd1—O1 93.38 (9) N3—Cd1—O4ii 104.51 (10)
N1i—Cd1—O3ii 100.41 (9) O1—Cd1—O4ii 89.85 (8)
N3—Cd1—O3ii 103.63 (10) O3ii—Cd1—O4ii 55.44 (9)
Symmetry codes: (i) x, y-1, z; (ii) -x, -y, -z+1.

Table 3
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2iii 0.86 2.10 2.823 (4) 141
N4—H4A⋯O1iv 0.86 2.03 2.862 (4) 161
Symmetry codes: (iii) -x+1, -y+1, -z+1; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
The asymmetric unit of 2, with additional symmetry-related atoms. The displacement ellipsoids are drawn at the 30% probability level [symmetry codes: (A) −x, −y, −z + 1; (B) x, y − 1, z].
[Figure 5]
Figure 5
A view of the one-dimensional ladders in 2.
[Figure 6]
Figure 6
A perspective view of the three-dimensional frameworks in 2 formed by one-dimensional ladders and N—H⋯O hydrogen bonds (Table 3[link]). The hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

The structures and the coordination modes of complexes 1 and 2 are quite different, which may be ascribed to a diverse metal coordination habit. The crystal structure of a ZnII complex based on H2BIP is reported for the first time. In a comparison with its counterparts based on similar benzo­imidazole carb­oxy­lic acids ligands, benzimidazole-2-butanoic acid (H2BIB) and 2-(1H-benzimidazol-2-yl­thio)­acetic acid (H2BITA), the same coord­ination modes are found for 1 (μ3-κN,O: κO': kN′ mode, μ3-BIP2−) and [Zn(BIB)]n (μ3-κN,O: κO': kN′ mode, μ3-BIB2−; Zhang et al., 2015[Zhang, Y., Du, Z. & Luo, X. (2015). Z. Anorg. Allg. Chem. 641, 2637-2640.]) and different coordination modes are found for 1 and [Zn2(HBITA)4]·(DMF)2·(H2O)2 (μ2-κN: κO mode, μ2-HBITA and μ1-κN,O mode, μ1-HBITA; Yu et al., 2010[Yu, Q., Zeng, Y.-F., Zhao, J.-P., Yang, Q. & Bu, X.-H. (2010). Cryst. Growth Des. 10, 1878-1884.]), [Zn2(HBITA)4]n (μ2-κN: κO mode, μ2-HBITA; Yu et al., 2010[Yu, Q., Zeng, Y.-F., Zhao, J.-P., Yang, Q. & Bu, X.-H. (2010). Cryst. Growth Des. 10, 1878-1884.]). Different dimensionalities, like 2D for 1, 3D for [Zn(BIB)]n, 0D for [Zn2(HBITA)4]·(DMF)2·(H2O)2 and 2D for [Zn2(HBITA)4]n are also found. CdII complexes based on H2BIP have already been observed with the appropriate Et3N reagent in a EtOH/H2O mixed solvent. By selection of the EtOH/H2O mixed solvent without any basic reagent, complex 2 was obtained with a relatively simple coordination mode (μ2-κN: κO,O′ mode, μ2-HBIP) in comparison with diverse modes in {[Cd5Cl2(HBIP)4(BIP)2]·4DMF}n (μ2-κN,O: κO,O′ mode, μ2-HBIP, μ3-κN,O: κO,O′: κN' mode, μ3-BIP2−, μ3-κN,O: κO,O′: κO' mode, μ3-HBIP; Zheng et al., 2012[Zheng, S. R., Cai, S. L., Tan, J. B., Fan, J. & Zhang, W.-G. (2012). Inorg. Chem. Commun. 21, 100-103.]) and [Cd3(HBIP)2(BIP)2]n (μ3-κN,O: κO,O′: κO' mode, μ3-BIP2−, μ4-κN,O: κO: κO': κO' mode, μ4-HBIP; Zheng et al., 2012[Zheng, S. R., Cai, S. L., Tan, J. B., Fan, J. & Zhang, W.-G. (2012). Inorg. Chem. Commun. 21, 100-103.]). In comparison with its counterpart based on similar benzo­imidazole carb­oxy­lic acids, H2BIB, the same coordination modes are found for 2 and [Cd(HBIB)2]n·(H2O)n (μ2-κN: κO,O′ mode, μ2-HBIB; Zhang et al., 2015[Zhang, Y., Du, Z. & Luo, X. (2015). Z. Anorg. Allg. Chem. 641, 2637-2640.]). Different dimensionalities, such as 1D for 2, 2D for {[Cd5Cl2(HBIP)4(BIP)2]·4DMF}n, 1D for [Cd3(HBIP)2 (BIP)2]n and 2D for [Cd(HBIB)2]n·(H2O)n were also found. The different coord­ination modes and dimensionalities show the important roles of spacer lengths and flexibilities of ligands. The crystal structures reported here and before show that ligands containing both flexible carb­oxy­lic and benzimidazole groups are suitable for the construction of coordination polymers with inter­esting structures, adopting diverse coordination modes. The significant effect of metal ions, spacer length and flexibility of ligands on the structural assemblies of such crystalline materials is critical to the assemblies of MOFs in some particular systems.

4. Database Survey

Complexes with benzimidazole-based carb­oxy­lic acid, for example, 1H-benzimidazole-2-carb­oxy­lic acid (Xia et al., 2013[Xia, Z. Q., Wei, Q., Yang, Q., Qiao, C. F., Chen, S. P., Xie, G., Zhang, G. C., Zhou, C. S. & Gao, S. L. (2013). CrystEngComm, 15, 86-99.]; Qiao et al., 2013[Qiao, C. F., Xia, Z. Q., Wei, Q., Zhou, C. S., Zhang, G. C., Chen, S. P. & Gao, S. L. (2013). J. Coord. Chem. 66, 1202-1210.]; Małecki & Maroń, 2012[Małecki, J. G. & Maroń, A. (2012). Polyhedron, 40, 125-133.]; Machura et al., 2014[Machura, B., Wolff, M., Benoist, E., Schachner, J. A., Mösch-Zanetti, N. C., Takao, K. & Ikeda, Y. (2014). Polyhedron, 69, 205-218.]; Fernández et al., 2016[Fernández, B., Gómez-Vílchez, A., Sánchez-González, C., Bayón, J., San Sebastián, E., Gómez-Ruiz, S., López-Chaves, C., Aranda, P., Llopis, J. & Rodríguez-Diéguez, A. (2016). New J. Chem. 40, 5387-5393.]) and 3-(1H-benzimidazole-2-yl) propanoic acid (Liu et al., 2015[Liu, Z., Zheng, S. & Feng, S. (2015). Acta Cryst. E71, m5-m6.]) have been reported. A limited number of coordination polymers constructed from 3-(1H-benzimidazol-2-yl) propanoic acid (H2BIP) have been reported including [Cd3(HBIP)2(BIP)2]n and [Cd5Cl2(BIP)4 (BIP)2]n (Zheng et al., 2012[Zheng, S. R., Cai, S. L., Tan, J. B., Fan, J. & Zhang, W.-G. (2012). Inorg. Chem. Commun. 21, 100-103.]). [Cd3(HBIP)2(BIP)2]n presents a fascinating one-dimensional structure with helical character, made of four helical chains weaving together in two reverse orientations. [Cd5Cl2(BIP)4(BIP)2] exhibits a distinct (4,4) network and infinite penta­nuclear secondary building units.

5. Synthesis and crystallization

3-(1H-Benzimidazol-2-yl)propanoic acid (H2BIP) was prepared by a literature method (Delval et al., 2008[Delval, F., Spyratou, A., Verdan, S., Bernardinelli, G. & Williams, A. F. (2008). New J. Chem. 32, 1394-1402.]). Other reagents and solvents used in the reactions were purchased from Aladdin-Chemical and used without purification.

5.1. Preparation of 1

H2BIP (0.02 mmol, 0.038 g) and Zn(NO3)2·6H2O (0.2 mmol, 0.060 g) were dissolved in EtOH/H2O (1:1 v/v, 8 ml) mixed solvent. The mixture was sealed in a closed vessel and heated at 413 K for 72 h; the mixture was then cooled slowly to room temperature at a rate of 2 K h−1. Many pale-yellow block-shaped crystals were collected.

5.2. Preparation of 2

H2BIP (0.02 mmol, 0.038 g), Cd(CH3COO)2·2H2O (0.2mmol, 0.053 g) were dissolved in EtOH/H2O (1:1 v/v, 8 ml) mixed solvent. The mixture was sealed in a closed vessel and heated at 413 K for 72 h; the mixture was then cooled slowly to room temperature at a rate of 2 K h−1. Many brown prismatic crystals were collected.

5.3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. H atoms on N atoms were found in the difference-Fourier map and were refined isotrop­ic­ally while restraining the N—H distances to 0.86 Å. Other H atoms were generated geometrically and were allowed to ride on their parent atoms in the riding-model approximation, with C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C)(aromatic) and C—H = 0.97 Å, Uiso(H) = 1.5Ueq(C) for methyl hydrogen atoms.

Table 4
Experimental details

  1 2
Crystal data
Chemical formula [Zn(C10H8N2O2)] [Cd(C10H8N2O2)2]
Mr 253.55 490.79
Crystal system, space group Orthorhombic, Pbca Monoclinic, P21/c
Temperature (K) 296 293
a, b, c (Å) 8.956 (4), 10.697 (5), 20.331 (9) 13.6708 (6), 8.0253 (3), 17.3834 (7)
α, β, γ (°) 90, 90, 90 90, 100.972 (4), 90
V3) 1947.8 (15) 1872.31 (13)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.50 1.20
Crystal size (mm) 0.28 × 0.25 × 0.21 0.28 × 0.25 × 0.19
 
Data collection
Diffractometer Bruker SMART CCD area-detector Bruker SMART CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SADABS, SMART and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SADABS, SMART and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.541, 0.622 0.923, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9832, 1725, 1525 6654, 3289, 2685
Rint 0.046 0.029
(sin θ/λ)max−1) 0.595 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.063, 1.03 0.031, 0.064, 1.06
No. of reflections 1725 3289
No. of parameters 136 262
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.56 0.33, −0.48
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SADABS, SMART and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), DIAMOND (Brandenburg, 2008[Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2012). Cell refinement: SAINT (Bruker, 2012) for (1); SMART (Bruker, 2012) for (2). For both structures, data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXL2014 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Poly[[µ3-3-(1H-benzimidazol-2-yl)propionato]zinc(II)] (1) top
Crystal data top
[Zn(C10H8N2O2)]Dx = 1.729 Mg m3
Mr = 253.55Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 5004 reflections
a = 8.956 (4) Åθ = 3.0–27.6°
b = 10.697 (5) ŵ = 2.50 mm1
c = 20.331 (9) ÅT = 296 K
V = 1947.8 (15) Å3Block, yellow
Z = 80.28 × 0.25 × 0.21 mm
F(000) = 1024
Data collection top
Bruker SMART CCD area-detector
diffractometer
1525 reflections with I > 2σ(I)
phi and ω scansRint = 0.046
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
θmax = 25.0°, θmin = 2.0°
Tmin = 0.541, Tmax = 0.622h = 1010
9832 measured reflectionsk = 1211
1725 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0338P)2 + 0.8648P]
where P = (Fo2 + 2Fc2)/3
1725 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.56 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.61499 (3)0.44565 (2)0.08133 (2)0.02929 (11)
C10.8742 (2)0.31428 (19)0.14864 (9)0.0272 (4)
C20.9402 (3)0.4128 (2)0.18261 (10)0.0361 (5)
H20.89720.49190.18320.043*
C31.0712 (3)0.3886 (2)0.21531 (12)0.0487 (6)
H31.11750.45280.23840.058*
C41.1366 (3)0.2704 (3)0.21484 (13)0.0512 (6)
H41.22680.25840.23660.061*
C51.0711 (3)0.1710 (2)0.18305 (11)0.0402 (5)
H51.11360.09170.18370.048*
C60.9381 (2)0.19494 (18)0.14985 (9)0.0278 (4)
C70.7378 (2)0.18898 (16)0.08956 (9)0.0273 (4)
C80.6243 (2)0.1407 (2)0.04189 (11)0.0326 (5)
H8A0.53290.18860.04640.039*
H8B0.60180.05420.05230.039*
C90.6791 (2)0.14918 (19)0.02923 (10)0.0347 (5)
H9A0.60010.12080.05820.042*
H9B0.69920.23610.03960.042*
C100.8184 (2)0.07312 (18)0.04282 (10)0.0296 (4)
N10.84880 (17)0.11670 (14)0.11236 (9)0.0289 (4)
N20.74575 (17)0.30823 (13)0.10974 (8)0.0268 (4)
O10.91054 (16)0.11866 (15)0.08295 (7)0.0373 (4)
O20.83644 (16)0.03094 (12)0.01494 (7)0.0332 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03268 (17)0.01695 (16)0.03822 (18)0.00017 (8)0.00399 (10)0.00205 (9)
C10.0323 (10)0.0252 (10)0.0240 (10)0.0034 (8)0.0028 (8)0.0001 (8)
C20.0459 (12)0.0284 (11)0.0341 (12)0.0065 (9)0.0030 (10)0.0084 (9)
C30.0548 (14)0.0475 (14)0.0437 (13)0.0116 (12)0.0098 (12)0.0148 (12)
C40.0507 (14)0.0570 (16)0.0460 (14)0.0032 (12)0.0209 (11)0.0069 (13)
C50.0438 (12)0.0384 (12)0.0382 (12)0.0045 (10)0.0119 (10)0.0008 (10)
C60.0329 (10)0.0256 (10)0.0250 (9)0.0030 (8)0.0006 (8)0.0009 (8)
C70.0290 (10)0.0207 (10)0.0323 (10)0.0013 (8)0.0003 (8)0.0000 (8)
C80.0283 (10)0.0235 (10)0.0459 (13)0.0017 (8)0.0070 (9)0.0045 (9)
C90.0337 (11)0.0287 (11)0.0416 (12)0.0044 (8)0.0113 (9)0.0002 (9)
C100.0326 (11)0.0226 (10)0.0336 (11)0.0011 (8)0.0119 (9)0.0037 (8)
N10.0332 (9)0.0177 (8)0.0360 (9)0.0000 (7)0.0054 (7)0.0009 (7)
N20.0294 (9)0.0193 (8)0.0317 (9)0.0009 (7)0.0013 (7)0.0006 (7)
O10.0330 (8)0.0327 (9)0.0461 (9)0.0019 (6)0.0032 (6)0.0111 (7)
O20.0423 (8)0.0211 (7)0.0360 (8)0.0020 (6)0.0053 (6)0.0013 (6)
Geometric parameters (Å, º) top
Zn1—O1i1.9563 (16)C6—N11.386 (3)
Zn1—N1ii1.9624 (18)C7—N21.342 (2)
Zn1—N21.9661 (16)C7—N11.342 (2)
Zn1—O2ii2.0208 (17)C7—C81.496 (3)
C1—C21.392 (3)C8—C91.530 (3)
C1—N21.398 (2)C8—H8A0.9700
C1—C61.399 (3)C8—H8B0.9700
C2—C31.374 (3)C9—C101.515 (3)
C2—H20.9300C9—H9A0.9700
C3—C41.393 (4)C9—H9B0.9700
C3—H30.9300C10—O11.259 (3)
C4—C51.375 (3)C10—O21.260 (2)
C4—H40.9300N1—Zn1iii1.9624 (18)
C5—C61.393 (3)O1—Zn1iv1.9563 (16)
C5—H50.9300O2—Zn1iii2.0207 (17)
O1i—Zn1—N1ii118.50 (7)N2—C7—C8124.22 (17)
O1i—Zn1—N2106.84 (7)N1—C7—C8121.86 (16)
N1ii—Zn1—N2120.28 (7)C7—C8—C9111.96 (17)
O1i—Zn1—O2ii105.15 (6)C7—C8—H8A109.2
N1ii—Zn1—O2ii99.22 (6)C9—C8—H8A109.2
N2—Zn1—O2ii104.42 (6)C7—C8—H8B109.2
C2—C1—N2131.70 (19)C9—C8—H8B109.2
C2—C1—C6120.56 (19)H8A—C8—H8B107.9
N2—C1—C6107.74 (16)C10—C9—C8113.88 (16)
C3—C2—C1117.4 (2)C10—C9—H9A108.8
C3—C2—H2121.3C8—C9—H9A108.8
C1—C2—H2121.3C10—C9—H9B108.8
C2—C3—C4121.8 (2)C8—C9—H9B108.8
C2—C3—H3119.1H9A—C9—H9B107.7
C4—C3—H3119.1O1—C10—O2123.33 (19)
C5—C4—C3121.7 (2)O1—C10—C9116.77 (18)
C5—C4—H4119.1O2—C10—C9119.89 (19)
C3—C4—H4119.1C7—N1—C6105.65 (16)
C4—C5—C6116.7 (2)C7—N1—Zn1iii123.27 (13)
C4—C5—H5121.6C6—N1—Zn1iii130.11 (13)
C6—C5—H5121.6C7—N2—C1105.11 (15)
N1—C6—C5130.48 (19)C7—N2—Zn1126.10 (13)
N1—C6—C1107.75 (17)C1—N2—Zn1128.46 (13)
C5—C6—C1121.75 (18)C10—O1—Zn1iv117.83 (13)
N2—C7—N1113.75 (17)C10—O2—Zn1iii124.96 (13)
N2—C1—C2—C3178.1 (2)N2—C7—N1—Zn1iii170.56 (13)
C6—C1—C2—C31.8 (3)C8—C7—N1—Zn1iii4.9 (3)
C1—C2—C3—C40.0 (4)C5—C6—N1—C7177.4 (2)
C2—C3—C4—C51.8 (4)C1—C6—N1—C70.7 (2)
C3—C4—C5—C61.6 (4)C5—C6—N1—Zn1iii8.6 (3)
C4—C5—C6—N1178.1 (2)C1—C6—N1—Zn1iii169.47 (14)
C4—C5—C6—C10.2 (3)N1—C7—N2—C10.6 (2)
C2—C1—C6—N1179.73 (18)C8—C7—N2—C1174.75 (18)
N2—C1—C6—N10.4 (2)N1—C7—N2—Zn1174.49 (13)
C2—C1—C6—C52.0 (3)C8—C7—N2—Zn10.8 (3)
N2—C1—C6—C5177.93 (18)C2—C1—N2—C7179.8 (2)
N2—C7—C8—C990.4 (2)C6—C1—N2—C70.1 (2)
N1—C7—C8—C984.6 (2)C2—C1—N2—Zn16.1 (3)
C7—C8—C9—C1061.3 (2)C6—C1—N2—Zn1173.81 (13)
C8—C9—C10—O1144.39 (18)O2—C10—O1—Zn1iv19.8 (3)
C8—C9—C10—O236.4 (3)C9—C10—O1—Zn1iv160.95 (13)
N2—C7—N1—C60.8 (2)O1—C10—O2—Zn1iii108.7 (2)
C8—C7—N1—C6174.63 (18)C9—C10—O2—Zn1iii72.1 (2)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+3/2, y+1/2, z; (iii) x+3/2, y1/2, z; (iv) x+1/2, y+1/2, z.
Poly[bis[µ2-3-(1H-benzimidazol-2-yl)propionato]cadmium(II)] (2) top
Crystal data top
[Cd(C10H8N2O2)2]F(000) = 984
Mr = 490.79Dx = 1.741 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.6708 (6) ÅCell parameters from 2660 reflections
b = 8.0253 (3) Åθ = 3.0–27.4°
c = 17.3834 (7) ŵ = 1.20 mm1
β = 100.972 (4)°T = 293 K
V = 1872.31 (13) Å3Prism, brown
Z = 40.28 × 0.25 × 0.19 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2685 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1615
Tmin = 0.923, Tmax = 1.000k = 96
6654 measured reflectionsl = 2014
3289 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0234P)2]
where P = (Fo2 + 2Fc2)/3
3289 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.48 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.22103 (2)0.06562 (3)0.41588 (2)0.02433 (9)
C10.4463 (3)1.0429 (4)0.37316 (19)0.0254 (8)
C20.4459 (3)1.1926 (4)0.33279 (19)0.0343 (9)
H20.38901.25870.32240.041*
C30.5321 (3)1.2403 (5)0.3087 (2)0.0442 (11)
H30.53371.34100.28250.053*
C40.6164 (3)1.1402 (5)0.3229 (2)0.0503 (11)
H40.67341.17500.30560.060*
C50.6179 (3)0.9902 (5)0.3622 (2)0.0444 (10)
H50.67400.92240.37100.053*
C60.5323 (3)0.9465 (4)0.3874 (2)0.0298 (8)
C70.4118 (3)0.8209 (4)0.43435 (18)0.0263 (8)
C80.3603 (3)0.6815 (4)0.46664 (19)0.0305 (8)
H8A0.31970.72550.50200.037*
H8B0.40940.60690.49620.037*
C90.2949 (3)0.5857 (4)0.4010 (2)0.0404 (10)
H9A0.32500.59250.35480.048*
H9B0.23080.64130.38860.048*
C100.2768 (3)0.4031 (4)0.4167 (2)0.0261 (8)
C110.0502 (3)0.0701 (4)0.18100 (19)0.0274 (8)
C120.0484 (3)0.0730 (4)0.1006 (2)0.0373 (9)
H120.00820.10410.06480.045*
C130.1354 (3)0.0273 (4)0.0773 (2)0.0390 (10)
H130.13710.02710.02410.047*
C140.2200 (3)0.0185 (5)0.1299 (2)0.0397 (10)
H140.27690.04930.11130.048*
C150.2218 (3)0.0193 (4)0.2096 (2)0.0336 (9)
H150.27900.04900.24520.040*
C160.1354 (3)0.0256 (4)0.23458 (19)0.0237 (8)
C170.0228 (3)0.0925 (4)0.30217 (19)0.0272 (8)
C180.0301 (3)0.1297 (4)0.3673 (2)0.0333 (9)
H18A0.01900.15750.41360.040*
H18B0.07170.22710.35340.040*
C190.0936 (3)0.0092 (5)0.3873 (2)0.0433 (10)
H19A0.14860.02600.34360.052*
H19B0.05440.11070.39370.052*
C200.1353 (3)0.0190 (5)0.4602 (2)0.0317 (9)
O10.21406 (17)0.3287 (3)0.36487 (13)0.0316 (6)
O20.32390 (18)0.3331 (3)0.47586 (13)0.0309 (6)
O30.1888 (2)0.0912 (3)0.48158 (15)0.0504 (8)
O40.1163 (2)0.1496 (3)0.49775 (14)0.0448 (7)
N10.3712 (2)0.9617 (3)0.40401 (15)0.0242 (7)
N20.5075 (2)0.8066 (3)0.42631 (16)0.0313 (7)
H2A0.54660.72470.44260.038*
N30.1154 (2)0.0401 (3)0.31043 (16)0.0277 (7)
N40.0197 (2)0.1100 (3)0.22566 (16)0.0323 (7)
H4A0.08000.14080.20790.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02465 (15)0.02141 (14)0.02708 (15)0.00049 (12)0.00527 (10)0.00198 (12)
C10.026 (2)0.0254 (19)0.0239 (17)0.0039 (16)0.0022 (15)0.0025 (17)
C20.037 (2)0.029 (2)0.037 (2)0.0006 (18)0.0046 (17)0.0021 (19)
C30.051 (3)0.040 (2)0.042 (2)0.015 (2)0.010 (2)0.009 (2)
C40.039 (3)0.061 (3)0.054 (3)0.016 (2)0.015 (2)0.002 (3)
C50.026 (2)0.048 (2)0.059 (3)0.005 (2)0.005 (2)0.005 (2)
C60.027 (2)0.032 (2)0.0278 (19)0.0043 (17)0.0002 (16)0.0042 (18)
C70.029 (2)0.0229 (18)0.0250 (18)0.0007 (16)0.0010 (15)0.0038 (16)
C80.035 (2)0.0219 (18)0.034 (2)0.0000 (17)0.0061 (17)0.0028 (17)
C90.044 (3)0.0257 (19)0.045 (2)0.0080 (18)0.0073 (19)0.009 (2)
C100.022 (2)0.0234 (18)0.035 (2)0.0023 (16)0.0105 (16)0.0010 (18)
C110.031 (2)0.0212 (18)0.0298 (19)0.0004 (17)0.0061 (16)0.0025 (17)
C120.051 (3)0.030 (2)0.027 (2)0.0007 (19)0.0016 (18)0.0008 (18)
C130.052 (3)0.040 (2)0.027 (2)0.010 (2)0.0142 (19)0.0035 (19)
C140.037 (2)0.045 (2)0.042 (2)0.005 (2)0.0196 (19)0.002 (2)
C150.027 (2)0.040 (2)0.034 (2)0.0014 (18)0.0064 (17)0.0027 (19)
C160.025 (2)0.0212 (18)0.0250 (18)0.0012 (15)0.0043 (15)0.0018 (16)
C170.033 (2)0.0193 (18)0.0300 (19)0.0023 (16)0.0080 (16)0.0010 (16)
C180.032 (2)0.0331 (19)0.038 (2)0.0099 (18)0.0142 (17)0.0029 (19)
C190.047 (3)0.047 (2)0.039 (2)0.013 (2)0.016 (2)0.015 (2)
C200.024 (2)0.038 (2)0.033 (2)0.0041 (18)0.0044 (17)0.003 (2)
O10.0296 (15)0.0226 (12)0.0384 (14)0.0051 (11)0.0042 (11)0.0023 (12)
O20.0314 (15)0.0244 (13)0.0347 (13)0.0038 (11)0.0008 (11)0.0087 (12)
O30.055 (2)0.0548 (17)0.0489 (16)0.0248 (15)0.0285 (15)0.0199 (15)
O40.063 (2)0.0349 (15)0.0430 (16)0.0055 (14)0.0273 (14)0.0078 (14)
N10.0207 (16)0.0187 (14)0.0324 (16)0.0001 (12)0.0034 (12)0.0043 (13)
N20.0227 (17)0.0265 (15)0.0426 (17)0.0053 (14)0.0004 (14)0.0050 (15)
N30.0290 (18)0.0281 (16)0.0269 (16)0.0065 (14)0.0073 (13)0.0028 (14)
N40.0273 (18)0.0346 (17)0.0331 (17)0.0078 (14)0.0012 (14)0.0014 (16)
Geometric parameters (Å, º) top
Cd1—N1i2.262 (3)C10—O11.269 (4)
Cd1—N32.271 (3)C11—N41.378 (4)
Cd1—O12.285 (2)C11—C121.393 (5)
Cd1—O3ii2.293 (2)C11—C161.393 (4)
Cd1—O4ii2.362 (2)C12—C131.377 (5)
Cd1—O22.667 (2)C12—H120.9300
Cd1—C20ii2.667 (4)C13—C141.382 (5)
Cd1—C102.813 (3)C13—H130.9300
C1—C61.389 (5)C14—C151.382 (5)
C1—C21.391 (4)C14—H140.9300
C1—N11.406 (4)C15—C161.382 (5)
C2—C31.377 (5)C15—H150.9300
C2—H20.9300C16—N31.401 (4)
C3—C41.389 (5)C17—N31.316 (4)
C3—H30.9300C17—N41.354 (4)
C4—C51.382 (5)C17—C181.485 (4)
C4—H40.9300C18—C191.495 (5)
C5—C61.371 (5)C18—H18A0.9700
C5—H50.9300C18—H18B0.9700
C6—N21.386 (4)C19—C201.503 (5)
C7—N11.323 (4)C19—H19A0.9700
C7—N21.346 (4)C19—H19B0.9700
C7—C81.487 (4)C20—O41.236 (4)
C8—C91.518 (4)C20—O31.249 (4)
C8—H8A0.9700C20—Cd1ii2.667 (4)
C8—H8B0.9700O3—Cd1ii2.293 (2)
C9—C101.520 (4)O4—Cd1ii2.362 (2)
C9—H9A0.9700N1—Cd1iii2.262 (3)
C9—H9B0.9700N2—H2A0.8600
C10—O21.239 (4)N4—H4A0.8600
N1i—Cd1—N3103.73 (10)O2—C10—O1123.4 (3)
N1i—Cd1—O1106.08 (9)O2—C10—C9120.6 (3)
N3—Cd1—O193.38 (9)O1—C10—C9115.9 (3)
N1i—Cd1—O3ii100.41 (9)O2—C10—Cd170.45 (18)
N3—Cd1—O3ii103.63 (10)O1—C10—Cd152.94 (15)
O1—Cd1—O3ii144.01 (9)C9—C10—Cd1168.8 (2)
N1i—Cd1—O4ii146.52 (9)N4—C11—C12132.8 (3)
N3—Cd1—O4ii104.51 (10)N4—C11—C16105.3 (3)
O1—Cd1—O4ii89.85 (8)C12—C11—C16121.8 (3)
O3ii—Cd1—O4ii55.44 (9)C13—C12—C11116.2 (4)
N1i—Cd1—O284.96 (8)C13—C12—H12121.9
N3—Cd1—O2145.40 (8)C11—C12—H12121.9
O1—Cd1—O252.26 (7)C12—C13—C14122.5 (4)
O3ii—Cd1—O2107.64 (9)C12—C13—H13118.8
O4ii—Cd1—O281.96 (8)C14—C13—H13118.8
N1i—Cd1—C20ii124.62 (11)C15—C14—C13121.2 (4)
N3—Cd1—C20ii106.84 (10)C15—C14—H14119.4
O1—Cd1—C20ii116.79 (10)C13—C14—H14119.4
O3ii—Cd1—C20ii27.87 (10)C16—C15—C14117.4 (4)
O4ii—Cd1—C20ii27.60 (9)C16—C15—H15121.3
O2—Cd1—C20ii94.44 (9)C14—C15—H15121.3
N1i—Cd1—C1096.06 (9)C15—C16—C11120.9 (3)
N3—Cd1—C10119.59 (10)C15—C16—N3130.4 (3)
O1—Cd1—C1026.30 (8)C11—C16—N3108.6 (3)
O3ii—Cd1—C10128.08 (10)N3—C17—N4111.4 (3)
O4ii—Cd1—C1085.33 (9)N3—C17—C18125.4 (3)
O2—Cd1—C1025.96 (8)N4—C17—C18123.3 (3)
C20ii—Cd1—C10106.94 (11)C17—C18—C19114.6 (3)
C6—C1—C2119.6 (3)C17—C18—H18A108.6
C6—C1—N1109.1 (3)C19—C18—H18A108.6
C2—C1—N1131.3 (3)C17—C18—H18B108.6
C3—C2—C1118.2 (4)C19—C18—H18B108.6
C3—C2—H2120.9H18A—C18—H18B107.6
C1—C2—H2120.9C18—C19—C20114.4 (3)
C2—C3—C4120.9 (4)C18—C19—H19A108.7
C2—C3—H3119.5C20—C19—H19A108.7
C4—C3—H3119.5C18—C19—H19B108.7
C5—C4—C3121.7 (4)C20—C19—H19B108.7
C5—C4—H4119.2H19A—C19—H19B107.6
C3—C4—H4119.2O4—C20—O3121.3 (3)
C6—C5—C4116.6 (4)O4—C20—C19119.9 (3)
C6—C5—H5121.7O3—C20—C19118.8 (3)
C4—C5—H5121.7O4—C20—Cd1ii62.30 (19)
C5—C6—N2131.8 (4)O3—C20—Cd1ii59.13 (18)
C5—C6—C1123.0 (4)C19—C20—Cd1ii176.2 (3)
N2—C6—C1105.2 (3)C10—O1—Cd1100.76 (19)
N1—C7—N2111.9 (3)C10—O2—Cd183.59 (19)
N1—C7—C8126.8 (3)C20—O3—Cd1ii93.0 (2)
N2—C7—C8120.9 (3)C20—O4—Cd1ii90.1 (2)
C7—C8—C9110.5 (3)C7—N1—C1105.5 (3)
C7—C8—H8A109.5C7—N1—Cd1iii126.7 (2)
C9—C8—H8A109.5C1—N1—Cd1iii127.2 (2)
C7—C8—H8B109.5C7—N2—C6108.3 (3)
C9—C8—H8B109.5C7—N2—H2A125.9
H8A—C8—H8B108.1C6—N2—H2A125.9
C8—C9—C10116.5 (3)C17—N3—C16106.3 (3)
C8—C9—H9A108.2C17—N3—Cd1131.2 (2)
C10—C9—H9A108.2C16—N3—Cd1121.4 (2)
C8—C9—H9B108.2C17—N4—C11108.4 (3)
C10—C9—H9B108.2C17—N4—H4A125.8
H9A—C9—H9B107.3C11—N4—H4A125.8
Symmetry codes: (i) x, y1, z; (ii) x, y, z+1; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2iv0.862.102.823 (4)141
N4—H4A···O1v0.862.032.862 (4)161
Symmetry codes: (iv) x+1, y+1, z+1; (v) x, y1/2, z+1/2.
 

Funding information

Financial support by the Key Discipline Project of Hunan Province, the Open Fund of Key Laboratory of Functional Organometallic Materials of Hunan Province College, Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province and the Scientific Research Fund of Hunan Provincial Education Department (16B037) and Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education (CHCL16002) are gratefully acknowledged.

References

First citationBrandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2012). APEX2, SADABS, SMART and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, T. T., Peng, Y. Q., Liu, T., Wang, S. N., Dou, J. M., Li, Y. W., Zhou, C. H., Li, D. C. & Bai, J. F. (2014). CrystEngComm, 16, 10658–10673.  CSD CrossRef CAS Google Scholar
First citationCastellanos, S., Goulet-Hanssens, A., Zhao, F. L., Dikhtiarenko, A., Pustovarenko, A., Hecht, S., Gascon, J., Kapteijn, F. & Bléger, D. (2016). Chem. Eur. J. 22, 746–752.  CrossRef CAS PubMed Google Scholar
First citationDelval, F., Spyratou, A., Verdan, S., Bernardinelli, G. & Williams, A. F. (2008). New J. Chem. 32, 1394–1402.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuerinck, T. & Denayer, J. F. M. (2015). Chem. Eng. Sci. 124, 179–187.  CrossRef CAS Google Scholar
First citationFernández, B., Gómez-Vílchez, A., Sánchez-González, C., Bayón, J., San Sebastián, E., Gómez-Ruiz, S., López-Chaves, C., Aranda, P., Llopis, J. & Rodríguez-Diéguez, A. (2016). New J. Chem. 40, 5387–5393.  Google Scholar
First citationHu, Y. J., Yang, J., Liu, Y. Y., Song, S. Y. & Ma, J. F. (2015). Cryst. Growth Des. 15, 3822–3831.  CSD CrossRef CAS Google Scholar
First citationJurcic, M., Peveler, W. J., Savory, C. N., Scanlon, D. O., Kenyon, A. J. & Parkin, I. P. (2015). J. Mater. Chem. A, 3, 6351–6359.  CSD CrossRef CAS Google Scholar
First citationKarmakar, A., Martins, L., Hazra, S., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2016a). Cryst. Growth Des. 16, 1837–1849.  CSD CrossRef CAS Google Scholar
First citationKarmakar, A., Rúbio, G., Guedes da Silva, M. F. C., Ribeiro, A. P. C. & Pombeiro, A. J. L. (2016b). RSC Adv. 6, 89007–89018.  CSD CrossRef CAS Google Scholar
First citationKumar, P., Deep, A. & Kim, K. H. (2015). TrAC Trends Anal. Chem. 73, 39–53.  CrossRef CAS Google Scholar
First citationLiang, F.-L., Ma, D.-Y. & Qin, L. (2016). Acta Cryst. C72, 373–378.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, X. B., Lin, H., Xiao, Z. Y., Fan, W. D., Huang, A., Wang, R. M., Zhang, L. L. & Sun, D. F. (2016). Dalton Trans. 45, 3743–3749.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiu, Z., Zheng, S. & Feng, S. (2015). Acta Cryst. E71, m5–m6.  CSD CrossRef IUCr Journals Google Scholar
First citationMachura, B., Wolff, M., Benoist, E., Schachner, J. A., Mösch-Zanetti, N. C., Takao, K. & Ikeda, Y. (2014). Polyhedron, 69, 205–218.  CSD CrossRef CAS Google Scholar
First citationMałecki, J. G. & Maroń, A. (2012). Polyhedron, 40, 125–133.  Google Scholar
First citationMohan, B., Yoon, C., Jang, S. & Park, K. H. (2015). ChemCatChem, 7, 405–412.  CrossRef CAS Google Scholar
First citationMüller-Buschbaum, K., Beuerle, F. & Feldmann, C. (2015). Microporous Mesoporous Mater. 216, 171–199.  Google Scholar
First citationQiao, C. F., Xia, Z. Q., Wei, Q., Zhou, C. S., Zhang, G. C., Chen, S. P. & Gao, S. L. (2013). J. Coord. Chem. 66, 1202–1210.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWannapaiboon, S., Tu, M., Sumida, K., Khaletskaya, K., Furukawa, S., Kitagawa, S. & Fischer, R. A. (2015). J. Mater. Chem. A, 3, 23385–23394.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, H., Liu, H. Y., Yang, J., Liu, B., Ma, J. F., Liu, Y. Y. & Liu, Y. Y. (2011). Cryst. Growth Des. 11, 2317–2324.  CSD CrossRef CAS Google Scholar
First citationXia, Z. Q., Wei, Q., Yang, Q., Qiao, C. F., Chen, S. P., Xie, G., Zhang, G. C., Zhou, C. S. & Gao, S. L. (2013). CrystEngComm, 15, 86–99.  CSD CrossRef CAS Google Scholar
First citationXiao, Y. J., Liu, F. H., Zhao, L. & Su, Z. M. (2015). Inorg. Chem. Commun. 59, 32–35.  CSD CrossRef CAS Google Scholar
First citationYing, S.-M., Ru, J.-J. & Luo, W.-K. (2015). Acta Cryst. C71, 618–622.  CSD CrossRef IUCr Journals Google Scholar
First citationYu, Q., Zeng, Y.-F., Zhao, J.-P., Yang, Q. & Bu, X.-H. (2010). Cryst. Growth Des. 10, 1878–1884.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Y., Du, Z. & Luo, X. (2015). Z. Anorg. Allg. Chem. 641, 2637–2640.  CSD CrossRef CAS Google Scholar
First citationZhang, Z. Y., Yoshikawa, H. & Awaga, K. (2016). Chem. Mater. 28, 1298–1303.  CSD CrossRef CAS Google Scholar
First citationZheng, S. R., Cai, S. L., Tan, J. B., Fan, J. & Zhang, W.-G. (2012). Inorg. Chem. Commun. 21, 100–103.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds