research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{μ-2,2′-[(3,4-di­thia­hexane-1,6-di­yl)bis­­(nitrilo­methanylyl­­idene)]bis­­(4-bromo­phenolato)-κ4O,N,N′,O′}dicopper(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine
*Correspondence e-mail: rusanova.j@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 11 November 2017; accepted 12 December 2017; online 1 January 2018)

The crystal structure of the title compound, [Cu2(C18H12Br2N4O2S2)2], consists of binuclear complex units which lie across inversion centres and are connected by weak Cu—O coordination bonds forming chains along the b axis. The CuII ion is five-coordinated by two N atoms and two O atoms of the chelating ligand and one symmetry-related O atom forming a square-pyramidal coordination geometry. In the crystal, short S⋯Br contacts connect neighbouring chains into a two-dimensional network parallel to (101).

1. Chemical context

Schiff bases and their metal complexes represent one of the most widely used classes of compound because of their synthetic flexibility and wide range of applications (Mitra et al., 1997[Mitra, A., Banerjee, T., Roychowdhury, P., Chaudhuri, S., Bera, P. & Saha, N. (1997). Polyhedron, 16, 3735-3742.]; Bera et al., 1998[Bera, P., Butcher, R. J. & Saha, N. (1998). Chem. Lett. 27, 559-560.]; Prabhakaran et al., 2004[Prabhakaran, R., Geetha, A., Thilagavathi, M., Karvembu, R., Krishnan, V., Bertagnolli, H. & Natarajan, K. (2004). J. Inorg. Biochem. 98, 2131-2140.]). Such complexes having sulfur-containing ligands are of considerable inter­est because of their diverse coordination modes and bridging ability. The formation and cleavage of di­sulfide bonds are known to be important for the biological activity of several sulfur-containing peptides and proteins (Gilbert et al., 1999[Gilbert, B. C., Silvester, S., Walton, P. H. & Whitwood, A. C. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 1891-1895.]; Jacob et al., 2003[Jacob, C., Giles, G. L., Giles, N. M. & Sies, H. (2003). Angew. Chem. Int. Ed. 42, 4742-4758.]).

[Scheme 1]

In this study we have continued our investigations in the field of direct synthesis, which is an efficient method to obtain novel polynuclear complexes (Babich & Kokozay, 1997[Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 1487-1490.]; Vinogradova et al., 2001[Vinogradova, E. A., Vassilyeva, O. Y., Kokozay, V. N., Squattrito, P. J., Reedijk, J., Van Albada, G. A., Linert, W., Tiwary, S. K. & Raithby, P. R. (2001). New J. Chem. 25, 949-953.]; Nesterova et al., 2008[Nesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Jezierska, J., Linert, W. & Ozarowski, A. (2008). Dalton Trans. pp. 1431-1436.]). The title compound was prepared by direct synthesis starting from zero-valent Cu with a Schiff-base ligand, the product of condensation between 5-bromsalicyl­aldehyde and cyste­amine, formed in situ in a methanol/di­methyl­formamide (DMF) mixture.

2. Structural commentary

In the title compound, binuclear complex units lie across an inversion centre (Fig. 1[link]). The coordination geometry around the CuII ion is comparable to that found in copper complexes reported earlier (CSD refcode FEDCIB; Dhar et al., 2005[Dhar, S., Nethaji, M. & Chakravarty, A. R. (2005). Dalton Trans. pp. 344-348.]; Rusanova & Bederak, 2017[Rusanova, J. A. & Bederak, D. (2017). Acta Cryst. E73, 1797-1800.]). Despite the close structural similarity, neighboring centrosymmetric binuclear fragments are connected by additional weak Cu⋯O (2 − x, 1 − y, 2 − z) coordination bonds with the oxygen atoms of the ligand [2.520 (3) Å] and organized in chains along the b-axis direction (Fig. 2[link]). Thus, each CuII ion is five-coordinated by two nitro­gen atoms (N1, N2), two oxygen atoms (O1, O2) and one symmetry-related O atom [O1 (2 − x, 1 − y, 2 − z)], forming a distorted square-pyramidal geometry.

[Figure 1]
Figure 1
The mol­ecular structure of the binuclear complex unit of the title compound, showing 50% probability displacement ellipsoids. Unlabelled atoms are related to labelled ones by the symmetry operation (2 − x, −y, 2 − z).
[Figure 2]
Figure 2
The crystal packing of the title compound viewed along the a axis. Short S⋯Br contacts are shown as dashed lines. H atoms are not shown.

The chelating fragments coordinated to the CuII ions are twisted relative to each other, as defined by the dihedral angle of 28.9 (2)° formed between the mean planes of atoms O1/N1/C1/C6/C7 and O2/N2/C8/C13/C14. The thio­sulfonate moiety is not involved in any metal–ligand inter­actions.

The separation between the two symmetry-related CuII ions within the binuclear fragment is 5.2161 (11) Å and between neighboring fragments is 3.4458 (11) Å. In general, all bonding parameters and the dimensions of the angles in the title complex are in good agreement with those encountered in related complexes (Dhar et al., 2005[Dhar, S., Nethaji, M. & Chakravarty, A. R. (2005). Dalton Trans. pp. 344-348.]; Zhang et al., 2010[Zhang, S.-H., Wang, Y., Feng, C. & Li, G. Z. (2010). J. Coord. Chem. 63, 3697-3705.]).

3. Supra­molecular features

In the crystal, short S⋯Br(−[{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z) contacts with a distance of 3.5108 (13) Å connect neighboring chains, forming a two-dimensional network parallel to (101) (Fig. 3[link]).

[Figure 3]
Figure 3
The crystal packing of the title compound viewed along the b axis. Short S⋯Br contacts are shown as dashed lines. H atoms are not shown.

In contrast to the previously reported complex (Rusanova & Bederak, 2017[Rusanova, J. A. & Bederak, D. (2017). Acta Cryst. E73, 1797-1800.]), there are no hydrogen-bond or π-π stacking inter­actions in the title complex. In terms of C—H⋯Br inter­actions, the inter­molecular C16—H16B⋯Br2(x + 1, y, z) distance of 3.03 Å and C17—H17B⋯S1(−[{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z) distance of 2.95 Å are almost equal to the sum of the van der Waals radii for the atoms involved and may be worthy of note.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38; last update November 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for related complexes with an amino­ethane­thiol group gave 165 hits, including two closely related structures with a di­sulfide moiety, viz. bis­[(μ2-sulfato)(6-salicyl­idene­amino-3,4-di­thia­hexyl­ammonium]­copper(II) and bis­(μ2-N,N′-(3,4-di­thia­hexane-1,6-di­yl)bis­(salicylideneiminato)-N,N′,O,O′)dicopper(II) (Dhar et al., 2004[Dhar, S., Nethaji, M. & Chakravarty, A. R. (2004). Dalton Trans. pp. 4180-4184.], 2005[Dhar, S., Nethaji, M. & Chakravarty, A. R. (2005). Dalton Trans. pp. 344-348.]). The length of the S⋯Br contact in the title compound is in good agreement with those in related complexes (CSD refcodes WEMCAT and QELVIN; Salivon et al., 2006[Salivon, N. F., Filinchuk, Y. E. & Olijnyk, V. V. (2006). Z. Anorg. Allg. Chem. 632, 1610-1613.], 2007[Salivon, N. F., Olijnik, V. V. & Shkurenko, A. A. (2007). Russ. J. Coord. Chem. 33, 908-913.]; CSD refcode PODDAO; Xia et al., 2008[Xia, J.-H., Liu, Z. & Jin, L.-X. (2008). Chin. J. Inorg. Chem. 5, 823-826.])

5. Synthesis and crystallization

A solution of KOH (0.12 g, 2 mmol) in a minimum amount of methanol was added to a solution of amino­ethane­thiol hydro­chloride (0.23g, 2 mmol) in methanol (5 ml) and stirred on an ice bath for 10 min. The white precipitate of solid KCl was removed by filtration and 5-bromsalicyl­aldehyde (0.402 g, 2 mmol) in di­methyl­formamide (10 ml) were added to the filtrate and stirred magnetically for 50 min. Copper powder (0.064 g, 1 mmol) were added to the yellow solution of the Schiff base formed in situ, and the resulting deep green–brown solution was stirred magnetically and heated in air at 323–333 K for 2 h, resulting in a dark-green precipitate. Crystals suitable for crystallographic study were grown from a saturated solution in DMF after successive addition of CH2Cl2. The crystals were filtered off, washed with dry i-PrOH and finally dried at room temperature (yield: 20%).

The IR spectrum of the title compound (as KBr pellets) is consistent with the above structural data. In the range 4000–400 cm−1 it shows all characteristic functional groups peaks: ν(CH) due to aromatic =C—H stretching at 3000–3100cm−1, the aromatic ring vibrations in the 1600–1400 cm−1 region, weak S–S absorptions at 500–540 cm−1 as well absorbance at 1630 cm−1 assigned to the azomethine ν(C=N) group. Analysis calculated for C36H32Br4Cu2N4O4S4: C37.28, H 2.78, N 4.83, S 11.06%; found: C 37.32, H 3.01, N 4.70, S 11.10%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All hydrogen atoms were placed at calculated positions (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Table 1
Experimental details

Crystal data
Chemical formula [Cu2(C18H16Br2N2O2S2)2]
Mr 1159.61
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 12.3596 (5), 8.3442 (3), 19.5002 (7)
β (°) 95.156 (2)
V3) 2002.94 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 5.31
Crystal size (mm) 0.45 × 0.10 × 0.06
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan SADABS
Tmin, Tmax 0.36, 0.74
No. of measured, independent and observed [I > 2σ(I)] reflections 18553, 3939, 2644
Rint 0.075
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.098, 1.05
No. of reflections 3939
No. of parameters 244
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.82, −0.66
Computer programs: SMART and SAINT (Bruker, 2008[Bruker (2008). APEX2, SMART, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis{µ-2,2'-[(3,4-dithiahexane-1,6-diyl)bis(nitrilomethanylylidene)]bis(4-bromophenolato)-κ4O,N,N',O'}dicopper(II) top
Crystal data top
[Cu2(C18H16Br2N2O2S2)2]F(000) = 1140
Mr = 1159.61Dx = 1.923 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.3596 (5) ÅCell parameters from 2534 reflections
b = 8.3442 (3) Åθ = 2.7–23.6°
c = 19.5002 (7) ŵ = 5.31 mm1
β = 95.156 (2)°T = 296 K
V = 2002.94 (13) Å3Needle, green
Z = 20.45 × 0.10 × 0.06 mm
Data collection top
Bruker SMART APEXII
diffractometer
3939 independent reflections
Radiation source: sealed tube2644 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
phi and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
sadabs
h = 158
Tmin = 0.36, Tmax = 0.74k = 1010
18553 measured reflectionsl = 2324
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0426P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.004
3939 reflectionsΔρmax = 0.82 e Å3
244 parametersΔρmin = 0.66 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
BR11.46222 (5)0.24549 (7)0.82836 (3)0.04443 (19)
BR20.40450 (5)0.21977 (8)1.11957 (3)0.0456 (2)
CU10.95419 (5)0.30506 (7)1.00084 (3)0.01799 (16)
N11.0809 (3)0.1638 (4)1.03365 (18)0.0184 (9)
N20.8169 (3)0.3643 (4)0.94366 (18)0.0174 (9)
O11.0408 (2)0.4239 (3)0.94197 (15)0.0184 (7)
O20.8768 (3)0.2123 (4)1.07014 (16)0.0239 (8)
S11.10722 (11)0.01078 (14)1.23102 (6)0.0231 (3)
S21.21861 (10)0.17845 (15)1.20755 (6)0.0229 (3)
C11.1308 (4)0.3764 (5)0.9170 (2)0.0187 (11)
C21.1648 (4)0.4542 (5)0.8585 (2)0.0241 (12)
H21.1208050.5331370.8369400.029*
C31.2610 (4)0.4166 (6)0.8324 (2)0.0279 (13)
H31.2820290.4709190.7941350.033*
C41.3278 (4)0.2961 (6)0.8634 (3)0.0265 (12)
C51.2960 (4)0.2146 (6)0.9191 (3)0.0261 (12)
H51.3400170.1339160.9392190.031*
C61.1973 (4)0.2517 (5)0.9464 (2)0.0205 (11)
C71.1680 (4)0.1571 (5)1.0031 (2)0.0184 (11)
H71.2187600.0811471.0198490.022*
C80.7732 (4)0.2183 (5)1.0778 (2)0.0193 (11)
C90.7380 (4)0.1630 (6)1.1407 (2)0.0260 (12)
H90.7888490.1236491.1746090.031*
C100.6303 (4)0.1663 (6)1.1528 (3)0.0247 (12)
H100.6089000.1318991.1949010.030*
C110.5537 (4)0.2208 (6)1.1021 (3)0.0282 (12)
C120.5833 (4)0.2746 (6)1.0406 (3)0.0287 (13)
H120.5306350.3114941.0072450.034*
C130.6938 (4)0.2746 (5)1.0273 (2)0.0214 (11)
C140.7216 (4)0.3439 (5)0.9635 (2)0.0206 (11)
H140.6637840.3777190.9331020.025*
C151.0733 (4)0.0487 (5)1.0908 (2)0.0191 (11)
H15A1.1216810.0409611.0850980.023*
H15B0.9997700.0075381.0894950.023*
C161.1034 (4)0.1278 (6)1.1595 (2)0.0222 (12)
H16A1.0511640.2116121.1664820.027*
H16B1.1741990.1776721.1588040.027*
C170.8220 (4)0.4465 (5)0.8773 (2)0.0219 (11)
H17A0.8653620.5428170.8846740.026*
H17B0.7491530.4788790.8601400.026*
C180.8697 (4)0.3449 (5)0.8229 (2)0.0212 (11)
H18A0.9390360.3021110.8419060.025*
H18B0.8830660.4124050.7841010.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
BR10.0376 (4)0.0474 (4)0.0522 (4)0.0041 (3)0.0256 (3)0.0010 (3)
BR20.0234 (3)0.0744 (5)0.0400 (4)0.0008 (3)0.0092 (3)0.0080 (3)
CU10.0192 (3)0.0175 (3)0.0170 (3)0.0009 (3)0.0002 (2)0.0026 (3)
N10.028 (2)0.017 (2)0.010 (2)0.0013 (18)0.0003 (18)0.0023 (16)
N20.024 (2)0.015 (2)0.013 (2)0.0012 (17)0.0001 (18)0.0034 (16)
O10.0209 (19)0.0170 (18)0.0174 (17)0.0007 (14)0.0019 (15)0.0013 (14)
O20.0197 (19)0.029 (2)0.0229 (18)0.0018 (15)0.0025 (15)0.0086 (15)
S10.0316 (7)0.0187 (7)0.0190 (7)0.0033 (6)0.0029 (6)0.0010 (5)
S20.0253 (7)0.0192 (7)0.0229 (7)0.0026 (6)0.0044 (6)0.0016 (6)
C10.022 (3)0.018 (3)0.015 (3)0.001 (2)0.002 (2)0.004 (2)
C20.037 (3)0.018 (3)0.018 (3)0.007 (2)0.004 (2)0.002 (2)
C30.040 (3)0.026 (3)0.020 (3)0.009 (3)0.010 (3)0.003 (2)
C40.029 (3)0.027 (3)0.025 (3)0.003 (2)0.010 (2)0.006 (2)
C50.027 (3)0.020 (3)0.031 (3)0.001 (2)0.005 (2)0.003 (2)
C60.020 (3)0.022 (3)0.020 (3)0.004 (2)0.003 (2)0.007 (2)
C70.017 (3)0.019 (3)0.018 (3)0.004 (2)0.002 (2)0.000 (2)
C80.021 (3)0.014 (3)0.024 (3)0.000 (2)0.004 (2)0.006 (2)
C90.029 (3)0.027 (3)0.022 (3)0.003 (2)0.001 (2)0.004 (2)
C100.023 (3)0.026 (3)0.026 (3)0.006 (2)0.008 (2)0.001 (2)
C110.024 (3)0.033 (3)0.029 (3)0.002 (2)0.009 (2)0.006 (2)
C120.021 (3)0.033 (3)0.030 (3)0.001 (2)0.003 (2)0.003 (2)
C130.021 (3)0.021 (3)0.022 (3)0.002 (2)0.002 (2)0.002 (2)
C140.018 (3)0.019 (3)0.023 (3)0.006 (2)0.005 (2)0.002 (2)
C150.014 (3)0.017 (3)0.026 (3)0.002 (2)0.002 (2)0.002 (2)
C160.026 (3)0.021 (3)0.019 (3)0.002 (2)0.002 (2)0.003 (2)
C170.029 (3)0.021 (3)0.015 (3)0.004 (2)0.004 (2)0.003 (2)
C180.024 (3)0.022 (3)0.018 (3)0.004 (2)0.001 (2)0.004 (2)
Geometric parameters (Å, º) top
BR1—C41.900 (5)C6—C71.433 (6)
BR2—C111.905 (5)C7—H70.9300
CU1—O21.890 (3)C8—C131.408 (6)
CU1—O11.915 (3)C8—C91.415 (6)
CU1—N22.006 (4)C9—C101.372 (6)
CU1—N12.018 (4)C9—H90.9300
CU1—O1i2.520 (3)C10—C111.382 (7)
N1—C71.277 (5)C10—H100.9300
N1—C151.480 (5)C11—C121.362 (7)
N2—C141.284 (5)C12—C131.413 (6)
N2—C171.471 (5)C12—H120.9300
O1—C11.315 (5)C13—C141.441 (6)
O2—C81.304 (5)C14—H140.9300
S1—C161.808 (5)C15—C161.511 (6)
S1—S22.0435 (17)C15—H15A0.9700
S2—C18ii1.832 (5)C15—H15B0.9700
C1—C21.410 (6)C16—H16A0.9700
C1—C61.415 (6)C16—H16B0.9700
C2—C31.371 (6)C17—C181.517 (6)
C2—H20.9300C17—H17A0.9700
C3—C41.403 (7)C17—H17B0.9700
C3—H30.9300C18—S2ii1.832 (5)
C4—C51.369 (7)C18—H18A0.9700
C5—C61.407 (6)C18—H18B0.9700
C5—H50.9300
O2—CU1—O1170.63 (14)C13—C8—C9117.8 (4)
O2—CU1—N292.36 (15)C10—C9—C8121.4 (5)
O1—CU1—N291.68 (14)C10—C9—H9119.3
O2—CU1—N187.85 (14)C8—C9—H9119.3
O1—CU1—N191.88 (14)C9—C10—C11119.7 (5)
N2—CU1—N1156.01 (14)C9—C10—H10120.1
O2—CU1—O1i92.59 (12)C11—C10—H10120.1
O1—CU1—O1i78.91 (12)C12—C11—C10121.2 (5)
N2—CU1—O1i90.61 (12)C12—C11—BR2120.0 (4)
N1—CU1—O1i113.35 (13)C10—C11—BR2118.8 (4)
C7—N1—C15115.8 (4)C11—C12—C13120.2 (5)
C7—N1—CU1122.7 (3)C11—C12—H12119.9
C15—N1—CU1121.2 (3)C13—C12—H12119.9
C14—N2—C17116.0 (4)C8—C13—C12119.7 (4)
C14—N2—CU1123.6 (3)C8—C13—C14122.2 (4)
C17—N2—CU1120.2 (3)C12—C13—C14117.9 (4)
C1—O1—CU1127.1 (3)N2—C14—C13127.6 (4)
C8—O2—CU1129.2 (3)N2—C14—H14116.2
C16—S1—S2103.67 (16)C13—C14—H14116.2
C18ii—S2—S1101.41 (16)N1—C15—C16110.9 (4)
O1—C1—C2119.0 (4)N1—C15—H15A109.5
O1—C1—C6123.5 (4)C16—C15—H15A109.5
C2—C1—C6117.5 (4)N1—C15—H15B109.5
C3—C2—C1121.8 (5)C16—C15—H15B109.5
C3—C2—H2119.1H15A—C15—H15B108.0
C1—C2—H2119.1C15—C16—S1113.1 (3)
C2—C3—C4120.0 (4)C15—C16—H16A109.0
C2—C3—H3120.0S1—C16—H16A109.0
C4—C3—H3120.0C15—C16—H16B109.0
C5—C4—C3119.9 (5)S1—C16—H16B109.0
C5—C4—BR1119.9 (4)H16A—C16—H16B107.8
C3—C4—BR1120.2 (4)N2—C17—C18113.8 (4)
C4—C5—C6120.7 (5)N2—C17—H17A108.8
C4—C5—H5119.7C18—C17—H17A108.8
C6—C5—H5119.7N2—C17—H17B108.8
C5—C6—C1120.1 (4)C18—C17—H17B108.8
C5—C6—C7117.3 (4)H17A—C17—H17B107.7
C1—C6—C7122.7 (4)C17—C18—S2ii113.1 (3)
N1—C7—C6128.2 (4)C17—C18—H18A109.0
N1—C7—H7115.9S2ii—C18—H18A109.0
C6—C7—H7115.9C17—C18—H18B109.0
O2—C8—C13124.2 (4)S2ii—C18—H18B109.0
O2—C8—C9118.0 (4)H18A—C18—H18B107.8
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+2, y, z+2.
 

References

First citationBabich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 1487–1490.  CSD CrossRef CAS Web of Science Google Scholar
First citationBera, P., Butcher, R. J. & Saha, N. (1998). Chem. Lett. 27, 559–560.  CSD CrossRef Google Scholar
First citationBruker (2008). APEX2, SMART, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDhar, S., Nethaji, M. & Chakravarty, A. R. (2004). Dalton Trans. pp. 4180–4184.  Web of Science CSD CrossRef Google Scholar
First citationDhar, S., Nethaji, M. & Chakravarty, A. R. (2005). Dalton Trans. pp. 344–348.  Web of Science CSD CrossRef Google Scholar
First citationGilbert, B. C., Silvester, S., Walton, P. H. & Whitwood, A. C. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 1891–1895.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJacob, C., Giles, G. L., Giles, N. M. & Sies, H. (2003). Angew. Chem. Int. Ed. 42, 4742–4758.  Web of Science CrossRef CAS Google Scholar
First citationMitra, A., Banerjee, T., Roychowdhury, P., Chaudhuri, S., Bera, P. & Saha, N. (1997). Polyhedron, 16, 3735–3742.  CSD CrossRef CAS Google Scholar
First citationNesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Jezierska, J., Linert, W. & Ozarowski, A. (2008). Dalton Trans. pp. 1431–1436.  Web of Science CSD CrossRef PubMed Google Scholar
First citationPrabhakaran, R., Geetha, A., Thilagavathi, M., Karvembu, R., Krishnan, V., Bertagnolli, H. & Natarajan, K. (2004). J. Inorg. Biochem. 98, 2131–2140.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRusanova, J. A. & Bederak, D. (2017). Acta Cryst. E73, 1797–1800.  CSD CrossRef IUCr Journals Google Scholar
First citationSalivon, N. F., Filinchuk, Y. E. & Olijnyk, V. V. (2006). Z. Anorg. Allg. Chem. 632, 1610–1613.  Web of Science CSD CrossRef CAS Google Scholar
First citationSalivon, N. F., Olijnik, V. V. & Shkurenko, A. A. (2007). Russ. J. Coord. Chem. 33, 908–913.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVinogradova, E. A., Vassilyeva, O. Y., Kokozay, V. N., Squattrito, P. J., Reedijk, J., Van Albada, G. A., Linert, W., Tiwary, S. K. & Raithby, P. R. (2001). New J. Chem. 25, 949–953.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, J.-H., Liu, Z. & Jin, L.-X. (2008). Chin. J. Inorg. Chem. 5, 823–826.  Google Scholar
First citationZhang, S.-H., Wang, Y., Feng, C. & Li, G. Z. (2010). J. Coord. Chem. 63, 3697–3705.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds