research communications
Crystal structures and Hirshfeld surfaces of two 1,3-benzoxathiol-2-one derivatives
aUniversidade Federal Fluminense, Instituto de Química, Programa de Pós-Graduação em Química, Rua Outeiro de São João Batista s/no, Centro, Niterói, 24020-141, RJ, Brazil, bInstituto de Tecnologia em Fármacos – Farmanguinhos, Fiocruz. R. Sizenando, Nabuco, 100, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil, and cDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk
The crystal structures of 6-methoxy-1,3-benzoxathiol-2-one, C9H8O3S, (I), and 2-oxo-1,3-benzoxathiol-6-yl acetate, C9H6O4S, (II), are described. Compound (I) is almost planar (r.m.s. deviation for the non-H atoms = 0.011 Å), whereas (II) shows a substantial twist between the fused-ring system and the acetate substituent [dihedral angle = 74.42 (3)°]. For both structures, the bond distances in the heterocyclic ring suggest that little if any conjugation occurs. In the crystal of (I), C—H⋯O hydrogen bonds link the molecules into [1-11] chains incorporating alternating R22(8) and R22(12) inversion dimers. The extended structure of (II) features C(7) [201] chains linked by C—H⋯O hydrogen bonds, with further C—H⋯O bonds and weak π–π stacking interactions connecting the chains into a three-dimensional network. Hirshfeld fingerprint analyses for (I) and (II) are presented and discussed.
Keywords: crystal structure; benzoxathiol-2-one; hydrogen bonds; Hirshfeld surface.
1. Chemical context
1,3-Benzoxathiol-2-one and its derivatives have various biological properties including antibacterial, antimycotic, antioxidant, antitumor and anti-inflammatory activities (Vellasco Júnior et al., 2011; Chazin et al., 2015). They also act as inhibitors of carbonic anhydrase II (Barrese et al., 2008) and monoamine oxidase (Mostert et al., 2016). The first synthesized 1,3-benzoxathiol-2-one, 6-hydroxy-1,3-benzoxathiol-2-one C7H4O3S, also known as tioxolone or thioxolone, has been used for many years in the treatment of acne and other skin diseases (e.g. psoriasis) (Berg & Fiedler, 1959).
A recent study reported the syntheses and antifungal activities of some derivatives of tioxolone (Terra et al., 2018). In the present article we report the crystal structures and Hirshfeld surface analyses of two compounds with different substituents at the 6-position of the ring system obtained in that study, viz. 6-methoxy-1,3-benzoxathiol-2-one, C9H8O3S, (I), and 2-oxo-1,3-benzoxathiol-6-yl acetate, C9H8O3S, (II)..
2. Structural commentary
Compound (I) crystallizes in P with one molecule in the (Fig. 1), which is almost planar (r.m.s. deviation for the non-hydrogen atoms = 0.011 Å): the ethoxy side chain adopts an extended conformation [C6—O3—C8—C9 = 179.82 (12)°]. Within the oxathiol-2-one ring system, the C1—O1, C1=O2 and C1—S1 bond lengths are 1.3732 (18), 1.1905 (19) and 1.7766 (16)Å, respectively, and the O1—C1—S1 and C1—S1—C3 bond angles are 111.07 (11) and 90.62 (7)°, respectively. These distance data suggest that there is little if any conjugation (i.e. partial double-bond character) involving the C1—O1 and C1—S1 bonds with the C1=O2 group.
A single molecule of compound (II) makes up the in P21/c (Fig. 2). The ring system is almost planar (r.m.s. deviation for C1–C7/O1/S1 = 0.032 Å) but there is a substantial twist about the C6—O3 bond, as indicated by the dihedral angle between the ring system and the acetate group of 74.42 (3)°. Key geometrical data for the heterocyclic ring are C1—O1 = 1.3864 (15), C1=O2 = 1.1936 (15), C1—S1 = 1.7709 (13) Å, O1—C1—S1 = 111.57 (8) and C1—S1—C3 = 90.43 (6)°. These data are similar to the equivalent values for (I) and again indicate a lack of significant electronic delocalization within the oxathiol-2-one ring system.
3. Supramolecular features
In the crystal of (I), the molecules are linked by C—H⋯O hydrogen bonds (Table 1). The C5—H5⋯O3i [symmetry code: (i) −x, 1 − y, −z] link generates inversion dimers featuring R22(8) loops. Based on its length, the C7—H7⋯O2ii [symmetry code: (ii) 1 − x, −y, 1 − z] bond is much weaker, but if it is considered significant, it generates a second inversion dimer [with an R22(12) graph-set symbol], which links the dimers into [11] chains (Fig. 3). No C—H⋯π interactions could be identified in the crystal of (I) and any aromatic π–π stacking must be extremely weak, as the shortest centroid–centroid separation is 3.9149 (10) Å.
|
In the crystal of (II), C4—H4⋯O4i [symmetry code: (i) x − 1, − y, z − ] hydrogen bonds (Table 2) link the molecules into C(7) chains propagating in [201], with adjacent molecules in the chain related by c-glide symmetry (plus translation) (Fig. 4). The C9—H9C⋯O2ii [symmetry code: (ii) 1 − x, −y, 1 − z] bonds arising from the methyl group generate inversion dimers [R22(16) loops], which connect the chains into a three-dimensional network. There are no C—H⋯π bonds in the crystal of (II) but the packing is consolidated by weak aromatic π–π stacking between inversion-related C2–C7 benzene rings with a centroid–centroid separation of 3.7220 (8) Å.
4. Hirshfeld analyses
Hirshfeld surface fingerprint plots for (I) (Fig. 5), (II) (Fig. 6) and tioxolone (refcode: EVOQEL), which features classical O—H⋯O hydrogen bonds (Byres & Cox, 2004) (Fig. 7) were calculated with CrystalExplorer17 (Turner et al., 2017). The plot for EVOQEL has very pronounced `wingtip' features that correspond to the short, classical O—H⋯O hydrogen bond found in this structure (compare: McKinnon et al., 2007). In (I) and (II), the wingtips associated with the longer and presumably weaker C—H⋯O bonds are far less pronounced.
When the fingerprint plots are decomposed into the separate types of contacts (McKinnon et al., 2007), some interesting differences arise (Table 3): as a percentage of surface interactions, H⋯H contacts (i.e. van der Waals interactions) are far more prominent in (I) than in (II), which is comparable with EVOQEL, whereas C⋯H/H⋯C contacts are similar for the three structures. The O⋯H/H⋯O contacts are the most important contributors in all three structures, and in (II) they actually contribute a higher percentage to the surface than in EVOQEL, despite the fact that EVOQEL features both O—H⋯O and C—H⋯O hydrogen bonds and only one of its hydrogen atoms is not involved in such bonds (Byres & Cox, 2004). The C⋯C contacts (associated with aromatic π–π stacking) contribute a small percentage in (I) and (II) and about twice the amount in EVOQEL where the shortest centroid–centroid separation is 3.508 (2) Å. Despite the small percentage for (II), the Hirshfeld surface (Fig. 8) clearly shows red spots associated with these contacts. The S⋯H/H⋯S contacts are similar in the three structures, and not insignificant at ∼10% of the surfaces, but they can hardly represent directional C—H⋯S hydrogen bonds, as the shortest H⋯S separations (3.21, 3.11 and 3.28 Å in (I), (II) and EVOQEL, respectively) are much longer than the van der Waals contact distance (Bondi, 1964) of 3.00 Å for H and S. Finally, S⋯O/O⋯S contacts have very different contributions in the three structures: negligible in (I), but clearly present in (II) and EVOQEL. This seems to correlate with the shortest S⋯O contact distances of 3.623 (2), 3.2742 (10) and 3.341 (2) Å for (I), (II) and EVOQEL, respectively: the distance in (II) is actually slightly shorter than the van der Waals contact distance of 3.32Å for sulfur and oxygen,
|
5. Database survey
A survey of of the Cambridge Structural Database (Groom et al., 2016: updated to September 2017) for the benzoxathiol-2-one fused ring system (any substituents) yielded just three matches, viz. 6-hydroxy-1,3-benzoxathiol-2-one (refcode: EVOQEL; Byres & Cox, 2004); N-(4,7-dimethyl-2-oxo-benzo[1,3]oxathiol-5-yl)-4-benzenesulfonamide (NAJQOG; Avdeenko et al., 2009); 7-phenyl-1,3-benzoxathiol-2-one (JOSGUV; Zhao et al., 2014). To this list may be added the structure of 6-methoxy-5-nitrobenzo[d][1,3]oxathiol-2-one (CCDC deposition number 1404755) as recently reported by Terra et al. (2017).
6. Synthesis and crystallization
Compounds (I) and (II) were prepared as described previously (Terra et al., 2018) and recrystallized from methanol solution as colourless plates of (I) and colourless blocks of (II).
7. Refinement
Crystal data, data collection and structure . The hydrogen atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl carrier) was applied in all cases. The methyl groups were allowed to rotate, but not to tip, to best fit the electron density.
details are summarized in Table 4Supporting information
https://doi.org/10.1107/S2056989017018072/nk2242sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017018072/nk2242Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989017018072/nk2242IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017018072/nk2242Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989017018072/nk2242IIsup5.cml
For both structures, data collection: CrystalClear (Rigaku, 2014); cell
CrystalClear (Rigaku, 2014); data reduction: CrystalClear (Rigaku, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).C9H8O3S | Z = 2 |
Mr = 196.21 | F(000) = 204 |
Triclinic, P1 | Dx = 1.522 Mg m−3 |
a = 3.9149 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.3237 (12) Å | Cell parameters from 1390 reflections |
c = 11.7003 (14) Å | θ = 1.9–27.5° |
α = 66.526 (6)° | µ = 0.35 mm−1 |
β = 81.110 (9)° | T = 100 K |
γ = 84.349 (9)° | Plate, colourless |
V = 428.18 (10) Å3 | 0.17 × 0.17 × 0.03 mm |
Rigaku Saturn CCD diffractometer | 1540 reflections with I > 2σ(I) |
ω scans | Rint = 0.040 |
Absorption correction: multi-scan (FS_ABSCOR; Rigaku, 2013) | θmax = 26.0°, θmin = 1.9° |
Tmin = 0.714, Tmax = 1.000 | h = −4→4 |
5189 measured reflections | k = −12→12 |
1674 independent reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.094 | w = 1/[σ2(Fo2) + (0.0607P)2 + 0.0766P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
1674 reflections | Δρmax = 0.52 e Å−3 |
119 parameters | Δρmin = −0.20 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.0898 (4) | 0.15148 (16) | 0.62375 (14) | 0.0238 (3) | |
C2 | 0.1487 (4) | 0.21490 (16) | 0.40934 (14) | 0.0221 (3) | |
C3 | −0.0473 (4) | 0.33140 (16) | 0.41485 (14) | 0.0221 (3) | |
C4 | −0.1375 (4) | 0.43830 (16) | 0.30435 (15) | 0.0238 (3) | |
H4 | −0.2733 | 0.5190 | 0.3064 | 0.029* | |
C5 | −0.0252 (4) | 0.42431 (16) | 0.19181 (15) | 0.0245 (3) | |
H5 | −0.0854 | 0.4961 | 0.1157 | 0.029* | |
C6 | 0.1770 (4) | 0.30535 (16) | 0.18846 (14) | 0.0223 (3) | |
C7 | 0.2673 (4) | 0.19732 (16) | 0.29857 (14) | 0.0230 (3) | |
H7 | 0.4028 | 0.1161 | 0.2975 | 0.028* | |
C8 | 0.4817 (4) | 0.18554 (16) | 0.06172 (15) | 0.0240 (3) | |
H8A | 0.3576 | 0.0970 | 0.1095 | 0.029* | |
H8B | 0.7026 | 0.1773 | 0.0959 | 0.029* | |
C9 | 0.5494 (4) | 0.21106 (18) | −0.07580 (15) | 0.0283 (4) | |
H9A | 0.6977 | 0.1336 | −0.0867 | 0.042* | |
H9B | 0.6651 | 0.3005 | −0.1224 | 0.042* | |
H9C | 0.3294 | 0.2157 | −0.1077 | 0.042* | |
O1 | 0.2250 (3) | 0.11453 (11) | 0.52491 (10) | 0.0244 (3) | |
O2 | 0.1322 (3) | 0.07887 (11) | 0.72936 (10) | 0.0282 (3) | |
O3 | 0.2727 (3) | 0.30495 (11) | 0.07165 (10) | 0.0251 (3) | |
S1 | −0.14241 (9) | 0.31705 (4) | 0.57093 (3) | 0.02391 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0236 (8) | 0.0232 (7) | 0.0273 (8) | −0.0042 (6) | −0.0017 (6) | −0.0124 (6) |
C2 | 0.0220 (7) | 0.0193 (7) | 0.0254 (8) | −0.0039 (6) | −0.0056 (6) | −0.0076 (6) |
C3 | 0.0218 (7) | 0.0212 (7) | 0.0264 (8) | −0.0034 (6) | −0.0037 (6) | −0.0117 (6) |
C4 | 0.0228 (7) | 0.0213 (8) | 0.0301 (8) | 0.0010 (6) | −0.0056 (6) | −0.0125 (6) |
C5 | 0.0257 (8) | 0.0216 (7) | 0.0273 (8) | −0.0009 (6) | −0.0069 (6) | −0.0096 (6) |
C6 | 0.0214 (7) | 0.0222 (8) | 0.0258 (7) | −0.0045 (6) | −0.0026 (6) | −0.0112 (6) |
C7 | 0.0223 (7) | 0.0201 (7) | 0.0286 (8) | −0.0013 (6) | −0.0042 (6) | −0.0110 (6) |
C8 | 0.0245 (7) | 0.0216 (7) | 0.0280 (8) | 0.0002 (6) | −0.0040 (6) | −0.0120 (6) |
C9 | 0.0289 (8) | 0.0302 (8) | 0.0288 (8) | −0.0026 (7) | −0.0007 (6) | −0.0153 (7) |
O1 | 0.0290 (6) | 0.0210 (5) | 0.0239 (6) | 0.0013 (4) | −0.0044 (4) | −0.0096 (4) |
O2 | 0.0335 (6) | 0.0260 (6) | 0.0246 (6) | −0.0001 (5) | −0.0037 (5) | −0.0095 (5) |
O3 | 0.0300 (6) | 0.0221 (6) | 0.0247 (6) | 0.0026 (4) | −0.0044 (4) | −0.0112 (5) |
S1 | 0.0252 (2) | 0.0234 (2) | 0.0259 (2) | 0.00092 (16) | −0.00403 (16) | −0.01255 (17) |
C1—O2 | 1.1905 (19) | C5—H5 | 0.9500 |
C1—O1 | 1.3732 (18) | C6—O3 | 1.3617 (18) |
C1—S1 | 1.7766 (16) | C6—C7 | 1.395 (2) |
C2—C3 | 1.380 (2) | C7—H7 | 0.9500 |
C2—C7 | 1.383 (2) | C8—O3 | 1.4452 (18) |
C2—O1 | 1.3926 (18) | C8—C9 | 1.508 (2) |
C3—C4 | 1.394 (2) | C8—H8A | 0.9900 |
C3—S1 | 1.7552 (16) | C8—H8B | 0.9900 |
C4—C5 | 1.381 (2) | C9—H9A | 0.9800 |
C4—H4 | 0.9500 | C9—H9B | 0.9800 |
C5—C6 | 1.405 (2) | C9—H9C | 0.9800 |
O2—C1—O1 | 122.22 (14) | C2—C7—C6 | 116.34 (14) |
O2—C1—S1 | 126.71 (12) | C2—C7—H7 | 121.8 |
O1—C1—S1 | 111.07 (11) | C6—C7—H7 | 121.8 |
C3—C2—C7 | 123.62 (14) | O3—C8—C9 | 107.02 (12) |
C3—C2—O1 | 114.96 (13) | O3—C8—H8A | 110.3 |
C7—C2—O1 | 121.41 (13) | C9—C8—H8A | 110.3 |
C2—C3—C4 | 119.56 (14) | O3—C8—H8B | 110.3 |
C2—C3—S1 | 110.37 (11) | C9—C8—H8B | 110.3 |
C4—C3—S1 | 130.07 (12) | H8A—C8—H8B | 108.6 |
C5—C4—C3 | 118.55 (14) | C8—C9—H9A | 109.5 |
C5—C4—H4 | 120.7 | C8—C9—H9B | 109.5 |
C3—C4—H4 | 120.7 | H9A—C9—H9B | 109.5 |
C4—C5—C6 | 120.85 (14) | C8—C9—H9C | 109.5 |
C4—C5—H5 | 119.6 | H9A—C9—H9C | 109.5 |
C6—C5—H5 | 119.6 | H9B—C9—H9C | 109.5 |
O3—C6—C7 | 123.91 (13) | C1—O1—C2 | 112.97 (12) |
O3—C6—C5 | 115.01 (13) | C6—O3—C8 | 117.75 (12) |
C7—C6—C5 | 121.08 (14) | C3—S1—C1 | 90.62 (7) |
C7—C2—C3—C4 | 0.7 (2) | C5—C6—C7—C2 | −0.4 (2) |
O1—C2—C3—C4 | 179.88 (13) | O2—C1—O1—C2 | −179.25 (14) |
C7—C2—C3—S1 | −179.08 (11) | S1—C1—O1—C2 | 0.23 (15) |
O1—C2—C3—S1 | 0.14 (16) | C3—C2—O1—C1 | −0.24 (18) |
C2—C3—C4—C5 | −0.3 (2) | C7—C2—O1—C1 | 178.99 (12) |
S1—C3—C4—C5 | 179.33 (12) | C7—C6—O3—C8 | −0.3 (2) |
C3—C4—C5—C6 | −0.3 (2) | C5—C6—O3—C8 | 179.90 (13) |
C4—C5—C6—O3 | −179.56 (13) | C9—C8—O3—C6 | 179.82 (12) |
C4—C5—C6—C7 | 0.6 (2) | C2—C3—S1—C1 | −0.01 (11) |
C3—C2—C7—C6 | −0.3 (2) | C4—C3—S1—C1 | −179.71 (15) |
O1—C2—C7—C6 | −179.47 (13) | O2—C1—S1—C3 | 179.32 (15) |
O3—C6—C7—C2 | 179.87 (13) | O1—C1—S1—C3 | −0.13 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O3i | 0.95 | 2.48 | 3.432 (2) | 175 |
C7—H7···O2ii | 0.95 | 2.66 | 3.5983 (19) | 170 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y, −z+1. |
C9H6O4S | F(000) = 432 |
Mr = 210.20 | Dx = 1.579 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 5.6232 (5) Å | Cell parameters from 3355 reflections |
b = 14.5650 (14) Å | θ = 2.3–27.5° |
c = 10.8572 (11) Å | µ = 0.35 mm−1 |
β = 96.045 (2)° | T = 100 K |
V = 884.28 (15) Å3 | Block, colourless |
Z = 4 | 0.26 × 0.11 × 0.08 mm |
Rigaku Saturn CCD diffractometer | 1903 reflections with I > 2σ(I) |
ω scans | Rint = 0.036 |
Absorption correction: multi-scan (FS_ABSCOR; Rigaku, 2013) | θmax = 27.5°, θmin = 2.4° |
Tmin = 0.829, Tmax = 1.000 | h = −7→7 |
11487 measured reflections | k = −18→18 |
2028 independent reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.081 | w = 1/[σ2(Fo2) + (0.0423P)2 + 0.328P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.001 |
2028 reflections | Δρmax = 0.33 e Å−3 |
128 parameters | Δρmin = −0.21 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1830 (2) | 0.03032 (8) | 0.18546 (11) | 0.0210 (2) | |
C2 | 0.1514 (2) | 0.07946 (8) | 0.38446 (11) | 0.0167 (2) | |
C3 | −0.0602 (2) | 0.11624 (8) | 0.32717 (11) | 0.0174 (2) | |
C4 | −0.2186 (2) | 0.16130 (8) | 0.39666 (11) | 0.0194 (2) | |
H4 | −0.3625 | 0.1872 | 0.3580 | 0.023* | |
C5 | −0.1609 (2) | 0.16746 (8) | 0.52441 (11) | 0.0191 (2) | |
H5 | −0.2657 | 0.1979 | 0.5742 | 0.023* | |
C6 | 0.0505 (2) | 0.12894 (8) | 0.57848 (10) | 0.0175 (2) | |
C7 | 0.2139 (2) | 0.08489 (8) | 0.51080 (11) | 0.0175 (2) | |
H7 | 0.3595 | 0.0601 | 0.5491 | 0.021* | |
C8 | 0.2608 (2) | 0.18164 (8) | 0.76657 (11) | 0.0183 (2) | |
C9 | 0.2792 (2) | 0.16577 (9) | 0.90343 (11) | 0.0222 (3) | |
H9A | 0.1197 | 0.1535 | 0.9284 | 0.033* | |
H9B | 0.3465 | 0.2204 | 0.9467 | 0.033* | |
H9C | 0.3833 | 0.1129 | 0.9248 | 0.033* | |
O1 | 0.29007 (15) | 0.03350 (6) | 0.30638 (8) | 0.01950 (19) | |
O2 | 0.27313 (17) | −0.00958 (7) | 0.10631 (8) | 0.0282 (2) | |
O3 | 0.08651 (15) | 0.12684 (6) | 0.70829 (7) | 0.0207 (2) | |
O4 | 0.37694 (17) | 0.23332 (7) | 0.71088 (8) | 0.0275 (2) | |
S1 | −0.09135 (5) | 0.09103 (2) | 0.16863 (3) | 0.02017 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0246 (6) | 0.0209 (6) | 0.0177 (6) | −0.0017 (5) | 0.0030 (4) | 0.0015 (4) |
C2 | 0.0164 (5) | 0.0158 (5) | 0.0181 (6) | −0.0015 (4) | 0.0026 (4) | −0.0003 (4) |
C3 | 0.0194 (5) | 0.0177 (5) | 0.0148 (5) | −0.0023 (4) | −0.0004 (4) | 0.0001 (4) |
C4 | 0.0180 (5) | 0.0194 (6) | 0.0202 (6) | 0.0019 (4) | −0.0009 (4) | 0.0003 (4) |
C5 | 0.0194 (5) | 0.0185 (6) | 0.0196 (6) | −0.0010 (4) | 0.0028 (4) | −0.0020 (4) |
C6 | 0.0208 (5) | 0.0178 (5) | 0.0137 (5) | −0.0055 (4) | 0.0007 (4) | 0.0004 (4) |
C7 | 0.0158 (5) | 0.0182 (6) | 0.0178 (6) | −0.0017 (4) | −0.0008 (4) | 0.0019 (4) |
C8 | 0.0201 (5) | 0.0182 (5) | 0.0163 (5) | 0.0003 (4) | 0.0005 (4) | −0.0020 (4) |
C9 | 0.0287 (6) | 0.0235 (6) | 0.0140 (5) | −0.0009 (5) | 0.0007 (4) | −0.0007 (4) |
O1 | 0.0190 (4) | 0.0230 (4) | 0.0167 (4) | 0.0017 (3) | 0.0025 (3) | −0.0010 (3) |
O2 | 0.0336 (5) | 0.0321 (5) | 0.0200 (5) | 0.0048 (4) | 0.0076 (4) | −0.0030 (4) |
O3 | 0.0239 (4) | 0.0251 (5) | 0.0128 (4) | −0.0076 (3) | 0.0006 (3) | 0.0003 (3) |
O4 | 0.0317 (5) | 0.0327 (5) | 0.0176 (4) | −0.0140 (4) | 0.0008 (4) | −0.0002 (4) |
S1 | 0.02389 (18) | 0.02219 (18) | 0.01374 (17) | 0.00119 (11) | −0.00123 (12) | 0.00007 (10) |
C1—O2 | 1.1936 (15) | C5—H5 | 0.9500 |
C1—O1 | 1.3864 (15) | C6—C7 | 1.3923 (16) |
C1—S1 | 1.7709 (13) | C6—O3 | 1.4030 (13) |
C2—C7 | 1.3820 (17) | C7—H7 | 0.9500 |
C2—O1 | 1.3835 (14) | C8—O4 | 1.2008 (15) |
C2—C3 | 1.3905 (16) | C8—O3 | 1.3665 (14) |
C3—C4 | 1.3908 (16) | C8—C9 | 1.4965 (16) |
C3—S1 | 1.7506 (12) | C9—H9A | 0.9800 |
C4—C5 | 1.3936 (16) | C9—H9B | 0.9800 |
C4—H4 | 0.9500 | C9—H9C | 0.9800 |
C5—C6 | 1.3875 (16) | ||
O2—C1—O1 | 121.54 (12) | C7—C6—O3 | 119.12 (10) |
O2—C1—S1 | 126.88 (10) | C2—C7—C6 | 115.92 (11) |
O1—C1—S1 | 111.57 (8) | C2—C7—H7 | 122.0 |
C7—C2—O1 | 122.33 (10) | C6—C7—H7 | 122.0 |
C7—C2—C3 | 122.57 (11) | O4—C8—O3 | 122.31 (11) |
O1—C2—C3 | 115.05 (10) | O4—C8—C9 | 127.77 (11) |
C2—C3—C4 | 120.37 (11) | O3—C8—C9 | 109.92 (10) |
C2—C3—S1 | 110.57 (9) | C8—C9—H9A | 109.5 |
C4—C3—S1 | 128.97 (9) | C8—C9—H9B | 109.5 |
C3—C4—C5 | 118.37 (11) | H9A—C9—H9B | 109.5 |
C3—C4—H4 | 120.8 | C8—C9—H9C | 109.5 |
C5—C4—H4 | 120.8 | H9A—C9—H9C | 109.5 |
C6—C5—C4 | 119.62 (11) | H9B—C9—H9C | 109.5 |
C6—C5—H5 | 120.2 | C2—O1—C1 | 112.32 (9) |
C4—C5—H5 | 120.2 | C8—O3—C6 | 118.24 (9) |
C5—C6—C7 | 123.14 (11) | C3—S1—C1 | 90.43 (6) |
C5—C6—O3 | 117.42 (10) | ||
C7—C2—C3—C4 | 0.48 (18) | C7—C2—O1—C1 | 174.88 (10) |
O1—C2—C3—C4 | 177.81 (10) | C3—C2—O1—C1 | −2.46 (14) |
C7—C2—C3—S1 | −176.35 (9) | O2—C1—O1—C2 | −177.20 (11) |
O1—C2—C3—S1 | 0.98 (13) | S1—C1—O1—C2 | 2.77 (12) |
C2—C3—C4—C5 | −0.77 (18) | O4—C8—O3—C6 | 2.67 (17) |
S1—C3—C4—C5 | 175.41 (9) | C9—C8—O3—C6 | −177.05 (10) |
C3—C4—C5—C6 | −0.02 (17) | C5—C6—O3—C8 | −111.17 (12) |
C4—C5—C6—C7 | 1.17 (18) | C7—C6—O3—C8 | 75.10 (14) |
C4—C5—C6—O3 | −172.28 (10) | C2—C3—S1—C1 | 0.52 (9) |
O1—C2—C7—C6 | −176.54 (10) | C4—C3—S1—C1 | −175.96 (12) |
C3—C2—C7—C6 | 0.60 (17) | O2—C1—S1—C3 | 178.09 (12) |
C5—C6—C7—C2 | −1.43 (17) | O1—C1—S1—C3 | −1.88 (9) |
O3—C6—C7—C2 | 171.91 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O4i | 0.95 | 2.35 | 3.2606 (15) | 159 |
C9—H9C···O2ii | 0.98 | 2.50 | 3.4030 (16) | 153 |
Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) −x+1, −y, −z+1. |
Contact type | (I) | (II) | EVOQEL |
H···H | 28.7 | 14.8 | 13.5 |
O···H/H···O | 30.1 | 39.5 | 36.0 |
C···H/H···C | 11.3 | 13.4 | 8.6 |
S···H/H···S | 11.1 | 10.8 | 8.8 |
C···C | 5.9 | 4.4 | 10.4 |
S···O/O···S | 1.5 | 7.0 | 10.1 |
Acknowledgements
We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collections.
References
Avdeenko, A. P., Pirozhenko, V. V., Konovalov, S. A., Roman'kov, D. A., Palamarchuk, G. V. & Shishkin, O. V. (2009). Russ. J. Org. Chem. 45, 408–416. CrossRef CAS Google Scholar
Barrese, A. A. III, Genis, C., Fisher, S. Z., Orwenyo, J. N., Kumara, M. T., Dutta, S. K., Phillips, E., Kiddle, J. J., Tu, C., Silverman, D. N., Govindasamy, L., Agbandje-McKenna, M., McKenna, R. & Tripp, B. C. (2008). Biochemistry, 47, 3174–3184. PubMed CAS Google Scholar
Berg, A. H. & Fiedler, H. (1959). US Patent 2,886,488. Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Byres, M. & Cox, P. J. (2004). Acta Cryst. C60, o395–o396. CrossRef CAS IUCr Journals Google Scholar
Chazin, E. L., Sanches, P. S., Lindgren, E. B., Vellasco Júnior, W. T., Pinto, L. C., Burbano, R. M. R., Yoneda, J. D., Leal, K. Z., Gomes, C. R. B., Wardell, J. L., Wardell, S. M. S. V., Montenegro, R. C. & Vasconcelos, T. R. A. (2015). Molecules, 20, 1968–1983. CrossRef PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. Google Scholar
Mostert, S., Petzer, A. & Petzer, J. P. (2016). Bioorg. Med. Chem. Lett. 26, 1200–1204. CrossRef CAS PubMed Google Scholar
Rigaku (2013). PS_ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2014). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Terra, L., Chazin, E. de L., Sanches, P. de S., Saito, M., de Souza, M. V. N., Gomes, C. R. B., Wardell, J. L., Wardell, S. M. S. V., Sathler, P. C., Silva, G. C. C., Lione, V. O., Kalil1, M., Joffily, A., Castro1, H. C. & Vasconcelos, T. R. A. (2018). Med. Chem. (Bentham) 14, 1–7 Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Nedlands, Western Australia; https://hirshfeldsurface.net. Google Scholar
Vellasco, W. T., Gomes, C. F. B. & Vasconcelos, T. R. A. (2011). Mini-Rev. Org. Chem. 8, 103–109. CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhao, Y., Xie, Y., Xia, C. & Huang, H. (2014). Adv. Synth. Catal. 356, 2471–2476. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.