research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and Hirshfeld surfaces of two 1,3-benzoxa­thiol-2-one derivatives

CROSSMARK_Color_square_no_text.svg

aUniversidade Federal Fluminense, Instituto de Química, Programa de Pós-Graduação em Química, Rua Outeiro de São João Batista s/no, Centro, Niterói, 24020-141, RJ, Brazil, bInstituto de Tecnologia em Fármacos – Farmanguinhos, Fiocruz. R. Sizenando, Nabuco, 100, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil, and cDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

Edited by G. S. Nichol, University of Edinburgh, Scotland (Received 28 September 2017; accepted 18 December 2017; online 1 January 2018)

The crystal structures of 6-meth­oxy-1,3-benzoxa­thiol-2-one, C9H8O3S, (I), and 2-oxo-1,3-benzoxa­thiol-6-yl acetate, C9H6O4S, (II), are described. Compound (I) is almost planar (r.m.s. deviation for the non-H atoms = 0.011 Å), whereas (II) shows a substantial twist between the fused-ring system and the acetate substituent [dihedral angle = 74.42 (3)°]. For both structures, the bond distances in the heterocyclic ring suggest that little if any conjugation occurs. In the crystal of (I), C—H⋯O hydrogen bonds link the mol­ecules into [1-11] chains incorporating alternating R22(8) and R22(12) inversion dimers. The extended structure of (II) features C(7) [201] chains linked by C—H⋯O hydrogen bonds, with further C—H⋯O bonds and weak ππ stacking inter­actions connecting the chains into a three-dimensional network. Hirshfeld fingerprint analyses for (I) and (II) are presented and discussed.

1. Chemical context

1,3-Benzoxa­thiol-2-one and its derivatives have various biological properties including anti­bacterial, anti­mycotic, anti­oxidant, anti­tumor and anti-inflammatory activities (Vellasco Júnior et al., 2011[Vellasco, W. T., Gomes, C. F. B. & Vasconcelos, T. R. A. (2011). Mini-Rev. Org. Chem. 8, 103-109.]; Chazin et al., 2015[Chazin, E. L., Sanches, P. S., Lindgren, E. B., Vellasco Júnior, W. T., Pinto, L. C., Burbano, R. M. R., Yoneda, J. D., Leal, K. Z., Gomes, C. R. B., Wardell, J. L., Wardell, S. M. S. V., Montenegro, R. C. & Vasconcelos, T. R. A. (2015). Molecules, 20, 1968-1983.]). They also act as inhibitors of carbonic anhydrase II (Barrese et al., 2008[Barrese, A. A. III, Genis, C., Fisher, S. Z., Orwenyo, J. N., Kumara, M. T., Dutta, S. K., Phillips, E., Kiddle, J. J., Tu, C., Silverman, D. N., Govindasamy, L., Agbandje-McKenna, M., McKenna, R. & Tripp, B. C. (2008). Biochemistry, 47, 3174-3184.]) and mono­amine oxidase (Mostert et al., 2016[Mostert, S., Petzer, A. & Petzer, J. P. (2016). Bioorg. Med. Chem. Lett. 26, 1200-1204.]). The first synthesized 1,3-benzoxa­thiol-2-one, 6-hy­droxy-1,3-benzoxa­thiol-2-one C7H4O3S, also known as tioxolone or thioxolone, has been used for many years in the treatment of acne and other skin diseases (e.g. psoriasis) (Berg & Fiedler, 1959[Berg, A. H. & Fiedler, H. (1959). US Patent 2,886,488.]).

A recent study reported the syntheses and anti­fungal activities of some derivatives of tioxolone (Terra et al., 2018[Terra, L., Chazin, E. de L., Sanches, P. de S., Saito, M., de Souza, M. V. N., Gomes, C. R. B., Wardell, J. L., Wardell, S. M. S. V., Sathler, P. C., Silva, G. C. C., Lione, V. O., Kalil1, M., Joffily, A., Castro1, H. C. & Vasconcelos, T. R. A. (2018). Med. Chem. (Bentham) 14, 1-7]). In the present article we report the crystal structures and Hirshfeld surface analyses of two compounds with different substituents at the 6-position of the ring system obtained in that study, viz. 6-meth­oxy-1,3-benzoxa­thiol-2-one, C9H8O3S, (I)[link], and 2-oxo-1,3-benzoxa­thiol-6-yl acetate, C9H8O3S, (II).[link].

[Scheme 1]

2. Structural commentary

Compound (I)[link] crystallizes in space group P[\overline{1}] with one mol­ecule in the asymmetric unit (Fig. 1[link]), which is almost planar (r.m.s. deviation for the non-hydrogen atoms = 0.011 Å): the eth­oxy side chain adopts an extended conformation [C6—O3—C8—C9 = 179.82 (12)°]. Within the oxa­thiol-2-one ring system, the C1—O1, C1=O2 and C1—S1 bond lengths are 1.3732 (18), 1.1905 (19) and 1.7766 (16)Å, respectively, and the O1—C1—S1 and C1—S1—C3 bond angles are 111.07 (11) and 90.62 (7)°, respectively. These distance data suggest that there is little if any conjugation (i.e. partial double-bond character) involving the C1—O1 and C1—S1 bonds with the C1=O2 group.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing 50% displacement ellipsoids.

A single mol­ecule of compound (II)[link] makes up the asymmetric unit in space group P21/c (Fig. 2[link]). The ring system is almost planar (r.m.s. deviation for C1–C7/O1/S1 = 0.032 Å) but there is a substantial twist about the C6—O3 bond, as indicated by the dihedral angle between the ring system and the acetate group of 74.42 (3)°. Key geometrical data for the heterocyclic ring are C1—O1 = 1.3864 (15), C1=O2 = 1.1936 (15), C1—S1 = 1.7709 (13) Å, O1—C1—S1 = 111.57 (8) and C1—S1—C3 = 90.43 (6)°. These data are similar to the equivalent values for (I)[link] and again indicate a lack of significant electronic delocalization within the oxa­thiol-2-one ring system.

[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], showing 50% displacement ellipsoids.

3. Supra­molecular features

In the crystal of (I)[link], the mol­ecules are linked by C—H⋯O hydrogen bonds (Table 1[link]). The C5—H5⋯O3i [symmetry code: (i) −x, 1 − y, −z] link generates inversion dimers featuring R22(8) loops. Based on its length, the C7—H7⋯O2ii [symmetry code: (ii) 1 − x, −y, 1 − z] bond is much weaker, but if it is considered significant, it generates a second inversion dimer [with an R22(12) graph-set symbol], which links the dimers into [1[\overline{1}]1] chains (Fig. 3[link]). No C—H⋯π inter­actions could be identified in the crystal of (I)[link] and any aromatic ππ stacking must be extremely weak, as the shortest centroid–centroid separation is 3.9149 (10) Å.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O3i 0.95 2.48 3.432 (2) 175
C7—H7⋯O2ii 0.95 2.66 3.5983 (19) 170
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y, -z+1.
[Figure 3]
Figure 3
Fragment of a [1[\overline{1}]1] hydrogen-bonded chain in (I)[link]; all hydrogen atoms except H5 and H7 have been omitted for clarity. Symmetry codes as in Table 1[link].

In the crystal of (II)[link], C4—H4⋯O4i [symmetry code: (i) x − 1, [1\over2] − y, z − [1\over2]] hydrogen bonds (Table 2[link]) link the mol­ecules into C(7) chains propagating in [201], with adjacent mol­ecules in the chain related by c-glide symmetry (plus translation) (Fig. 4[link]). The C9—H9C⋯O2ii [symmetry code: (ii) 1 − x, −y, 1 − z] bonds arising from the methyl group generate inversion dimers [R22(16) loops], which connect the chains into a three-dimensional network. There are no C—H⋯π bonds in the crystal of (II)[link] but the packing is consolidated by weak aromatic ππ stacking between inversion-related C2–C7 benzene rings with a centroid–centroid separation of 3.7220 (8) Å.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O4i 0.95 2.35 3.2606 (15) 159
C9—H9C⋯O2ii 0.98 2.50 3.4030 (16) 153
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.
[Figure 4]
Figure 4
Fragment of a [201] hydrogen-bonded chain in (II)[link]; all hydrogen atoms except H4 omitted for clarity. Symmetry codes as in Table 2[link]; additionally (iii) x − 2, y, z − 1.

4. Hirshfeld analyses

Hirshfeld surface fingerprint plots for (I)[link] (Fig. 5[link]), (II)[link] (Fig. 6[link]) and tioxolone (refcode: EVOQEL), which features classical O—H⋯O hydrogen bonds (Byres & Cox, 2004[Byres, M. & Cox, P. J. (2004). Acta Cryst. C60, o395-o396.]) (Fig. 7[link]) were calculated with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Nedlands, Western Australia; https://hirshfeldsurface.net.]). The plot for EVOQEL has very pronounced `wingtip' features that correspond to the short, classical O—H⋯O hydrogen bond found in this structure (compare: McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]). In (I)[link] and (II)[link], the wingtips associated with the longer and presumably weaker C—H⋯O bonds are far less pronounced.

[Figure 5]
Figure 5
Hirshfeld fingerprint plot for (I)
[Figure 6]
Figure 6
Hirshfeld fingerprint plot for (II)
[Figure 7]
Figure 7
Hirshfeld fingerprint plot for tioxolone [atomic coordinates from Byres & Cox (2004[Byres, M. & Cox, P. J. (2004). Acta Cryst. C60, o395-o396.])].

When the fingerprint plots are decomposed into the separate types of contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]), some inter­esting differences arise (Table 3[link]): as a percentage of surface inter­actions, H⋯H contacts (i.e. van der Waals inter­actions) are far more prominent in (I)[link] than in (II)[link], which is comparable with EVOQEL, whereas C⋯H/H⋯C contacts are similar for the three structures. The O⋯H/H⋯O contacts are the most important contributors in all three structures, and in (II)[link] they actually contribute a higher percentage to the surface than in EVOQEL, despite the fact that EVOQEL features both O—H⋯O and C—H⋯O hydrogen bonds and only one of its hydrogen atoms is not involved in such bonds (Byres & Cox, 2004[Byres, M. & Cox, P. J. (2004). Acta Cryst. C60, o395-o396.]). The C⋯C contacts (associated with aromatic ππ stacking) contribute a small percentage in (I)[link] and (II)[link] and about twice the amount in EVOQEL where the shortest centroid–centroid separation is 3.508 (2) Å. Despite the small percentage for (II)[link], the Hirshfeld surface (Fig. 8[link]) clearly shows red spots associated with these contacts. The S⋯H/H⋯S contacts are similar in the three structures, and not insignificant at ∼10% of the surfaces, but they can hardly represent directional C—H⋯S hydrogen bonds, as the shortest H⋯S separations (3.21, 3.11 and 3.28 Å in (I)[link], (II)[link] and EVOQEL, respectively) are much longer than the van der Waals contact distance (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) of 3.00 Å for H and S. Finally, S⋯O/O⋯S contacts have very different contributions in the three structures: negligible in (I)[link], but clearly present in (II)[link] and EVOQEL. This seems to correlate with the shortest S⋯O contact distances of 3.623 (2), 3.2742 (10) and 3.341 (2) Å for (I)[link], (II)[link] and EVOQEL, respectively: the distance in (II)[link] is actually slightly shorter than the van der Waals contact distance of 3.32Å for sulfur and oxygen,

Table 3
Hirshfeld contact inter­actions (%)

Contact type (I) (II) EVOQEL
H⋯H 28.7 14.8 13.5
O⋯H/H⋯O 30.1 39.5 36.0
C⋯H/H⋯C 11.3 13.4 8.6
S⋯H/H⋯S 11.1 10.8 8.8
C⋯C 5.9 4.4 10.4
S⋯O/O⋯S 1.5 7.0 10.1
[Figure 8]
Figure 8
Hirshfeld surface plot mapped over dnorm for (II)[link] showing red spots associated with short C⋯C and C⋯O contacts: the slightly smaller spots refer to the former.

5. Database survey

A survey of of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]: updated to September 2017) for the benzoxa­thiol-2-one fused ring system (any substituents) yielded just three matches, viz. 6-hy­droxy-1,3-benzoxa­thiol-2-one (refcode: EVOQEL; Byres & Cox, 2004[Byres, M. & Cox, P. J. (2004). Acta Cryst. C60, o395-o396.]); N-(4,7-dimethyl-2-oxo-benzo[1,3]oxa­thiol-5-yl)-4-benzene­sulfonamide (NAJQOG; Avdeenko et al., 2009[Avdeenko, A. P., Pirozhenko, V. V., Konovalov, S. A., Roman'kov, D. A., Palamarchuk, G. V. & Shishkin, O. V. (2009). Russ. J. Org. Chem. 45, 408-416.]); 7-phenyl-1,3-benzoxa­thiol-2-one (JOSGUV; Zhao et al., 2014[Zhao, Y., Xie, Y., Xia, C. & Huang, H. (2014). Adv. Synth. Catal. 356, 2471-2476.]). To this list may be added the structure of 6-meth­oxy-5-nitro­benzo[d][1,3]oxa­thiol-2-one (CCDC deposition number 1404755) as recently reported by Terra et al. (2017[Terra, L., Chazin, E. de L., Sanches, P. de S., Saito, M., de Souza, M. V. N., Gomes, C. R. B., Wardell, J. L., Wardell, S. M. S. V., Sathler, P. C., Silva, G. C. C., Lione, V. O., Kalil1, M., Joffily, A., Castro1, H. C. & Vasconcelos, T. R. A. (2018). Med. Chem. (Bentham) 14, 1-7]).

6. Synthesis and crystallization

Compounds (I)[link] and (II)[link] were prepared as described previously (Terra et al., 2018[Terra, L., Chazin, E. de L., Sanches, P. de S., Saito, M., de Souza, M. V. N., Gomes, C. R. B., Wardell, J. L., Wardell, S. M. S. V., Sathler, P. C., Silva, G. C. C., Lione, V. O., Kalil1, M., Joffily, A., Castro1, H. C. & Vasconcelos, T. R. A. (2018). Med. Chem. (Bentham) 14, 1-7]) and recrystallized from methanol solution as colourless plates of (I)[link] and colourless blocks of (II)[link].

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The hydrogen atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl carrier) was applied in all cases. The methyl groups were allowed to rotate, but not to tip, to best fit the electron density.

Table 4
Experimental details

  (I) (II)
Crystal data
Chemical formula C9H8O3S C9H6O4S
Mr 196.21 210.20
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 100 100
a, b, c (Å) 3.9149 (6), 10.3237 (12), 11.7003 (14) 5.6232 (5), 14.5650 (14), 10.8572 (11)
α, β, γ (°) 66.526 (6), 81.110 (9), 84.349 (9) 90, 96.045 (2), 90
V3) 428.18 (10) 884.28 (15)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.35 0.35
Crystal size (mm) 0.17 × 0.17 × 0.03 0.26 × 0.11 × 0.08
 
Data collection
Diffractometer Rigaku Saturn CCD Rigaku Saturn CCD
Absorption correction Multi-scan (FS_ABSCOR; Rigaku, 2013[Rigaku (2013). PS_ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (FS_ABSCOR; Rigaku, 2013[Rigaku (2013). PS_ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.714, 1.000 0.829, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5189, 1674, 1540 11487, 2028, 1903
Rint 0.040 0.036
(sin θ/λ)max−1) 0.617 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.094, 1.04 0.028, 0.081, 1.10
No. of reflections 1674 2028
No. of parameters 119 128
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.52, −0.20 0.33, −0.21
Computer programs: CrystalClear (Rigaku, 2014[Rigaku (2014). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: CrystalClear (Rigaku, 2014); cell refinement: CrystalClear (Rigaku, 2014); data reduction: CrystalClear (Rigaku, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

6-Methoxy-1,3-benzoxathiol-2-one (I) top
Crystal data top
C9H8O3SZ = 2
Mr = 196.21F(000) = 204
Triclinic, P1Dx = 1.522 Mg m3
a = 3.9149 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3237 (12) ÅCell parameters from 1390 reflections
c = 11.7003 (14) Åθ = 1.9–27.5°
α = 66.526 (6)°µ = 0.35 mm1
β = 81.110 (9)°T = 100 K
γ = 84.349 (9)°Plate, colourless
V = 428.18 (10) Å30.17 × 0.17 × 0.03 mm
Data collection top
Rigaku Saturn CCD
diffractometer
1540 reflections with I > 2σ(I)
ω scansRint = 0.040
Absorption correction: multi-scan
(FS_ABSCOR; Rigaku, 2013)
θmax = 26.0°, θmin = 1.9°
Tmin = 0.714, Tmax = 1.000h = 44
5189 measured reflectionsk = 1212
1674 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.0766P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1674 reflectionsΔρmax = 0.52 e Å3
119 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0898 (4)0.15148 (16)0.62375 (14)0.0238 (3)
C20.1487 (4)0.21490 (16)0.40934 (14)0.0221 (3)
C30.0473 (4)0.33140 (16)0.41485 (14)0.0221 (3)
C40.1375 (4)0.43830 (16)0.30435 (15)0.0238 (3)
H40.27330.51900.30640.029*
C50.0252 (4)0.42431 (16)0.19181 (15)0.0245 (3)
H50.08540.49610.11570.029*
C60.1770 (4)0.30535 (16)0.18846 (14)0.0223 (3)
C70.2673 (4)0.19732 (16)0.29857 (14)0.0230 (3)
H70.40280.11610.29750.028*
C80.4817 (4)0.18554 (16)0.06172 (15)0.0240 (3)
H8A0.35760.09700.10950.029*
H8B0.70260.17730.09590.029*
C90.5494 (4)0.21106 (18)0.07580 (15)0.0283 (4)
H9A0.69770.13360.08670.042*
H9B0.66510.30050.12240.042*
H9C0.32940.21570.10770.042*
O10.2250 (3)0.11453 (11)0.52491 (10)0.0244 (3)
O20.1322 (3)0.07887 (11)0.72936 (10)0.0282 (3)
O30.2727 (3)0.30495 (11)0.07165 (10)0.0251 (3)
S10.14241 (9)0.31705 (4)0.57093 (3)0.02391 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0236 (8)0.0232 (7)0.0273 (8)0.0042 (6)0.0017 (6)0.0124 (6)
C20.0220 (7)0.0193 (7)0.0254 (8)0.0039 (6)0.0056 (6)0.0076 (6)
C30.0218 (7)0.0212 (7)0.0264 (8)0.0034 (6)0.0037 (6)0.0117 (6)
C40.0228 (7)0.0213 (8)0.0301 (8)0.0010 (6)0.0056 (6)0.0125 (6)
C50.0257 (8)0.0216 (7)0.0273 (8)0.0009 (6)0.0069 (6)0.0096 (6)
C60.0214 (7)0.0222 (8)0.0258 (7)0.0045 (6)0.0026 (6)0.0112 (6)
C70.0223 (7)0.0201 (7)0.0286 (8)0.0013 (6)0.0042 (6)0.0110 (6)
C80.0245 (7)0.0216 (7)0.0280 (8)0.0002 (6)0.0040 (6)0.0120 (6)
C90.0289 (8)0.0302 (8)0.0288 (8)0.0026 (7)0.0007 (6)0.0153 (7)
O10.0290 (6)0.0210 (5)0.0239 (6)0.0013 (4)0.0044 (4)0.0096 (4)
O20.0335 (6)0.0260 (6)0.0246 (6)0.0001 (5)0.0037 (5)0.0095 (5)
O30.0300 (6)0.0221 (6)0.0247 (6)0.0026 (4)0.0044 (4)0.0112 (5)
S10.0252 (2)0.0234 (2)0.0259 (2)0.00092 (16)0.00403 (16)0.01255 (17)
Geometric parameters (Å, º) top
C1—O21.1905 (19)C5—H50.9500
C1—O11.3732 (18)C6—O31.3617 (18)
C1—S11.7766 (16)C6—C71.395 (2)
C2—C31.380 (2)C7—H70.9500
C2—C71.383 (2)C8—O31.4452 (18)
C2—O11.3926 (18)C8—C91.508 (2)
C3—C41.394 (2)C8—H8A0.9900
C3—S11.7552 (16)C8—H8B0.9900
C4—C51.381 (2)C9—H9A0.9800
C4—H40.9500C9—H9B0.9800
C5—C61.405 (2)C9—H9C0.9800
O2—C1—O1122.22 (14)C2—C7—C6116.34 (14)
O2—C1—S1126.71 (12)C2—C7—H7121.8
O1—C1—S1111.07 (11)C6—C7—H7121.8
C3—C2—C7123.62 (14)O3—C8—C9107.02 (12)
C3—C2—O1114.96 (13)O3—C8—H8A110.3
C7—C2—O1121.41 (13)C9—C8—H8A110.3
C2—C3—C4119.56 (14)O3—C8—H8B110.3
C2—C3—S1110.37 (11)C9—C8—H8B110.3
C4—C3—S1130.07 (12)H8A—C8—H8B108.6
C5—C4—C3118.55 (14)C8—C9—H9A109.5
C5—C4—H4120.7C8—C9—H9B109.5
C3—C4—H4120.7H9A—C9—H9B109.5
C4—C5—C6120.85 (14)C8—C9—H9C109.5
C4—C5—H5119.6H9A—C9—H9C109.5
C6—C5—H5119.6H9B—C9—H9C109.5
O3—C6—C7123.91 (13)C1—O1—C2112.97 (12)
O3—C6—C5115.01 (13)C6—O3—C8117.75 (12)
C7—C6—C5121.08 (14)C3—S1—C190.62 (7)
C7—C2—C3—C40.7 (2)C5—C6—C7—C20.4 (2)
O1—C2—C3—C4179.88 (13)O2—C1—O1—C2179.25 (14)
C7—C2—C3—S1179.08 (11)S1—C1—O1—C20.23 (15)
O1—C2—C3—S10.14 (16)C3—C2—O1—C10.24 (18)
C2—C3—C4—C50.3 (2)C7—C2—O1—C1178.99 (12)
S1—C3—C4—C5179.33 (12)C7—C6—O3—C80.3 (2)
C3—C4—C5—C60.3 (2)C5—C6—O3—C8179.90 (13)
C4—C5—C6—O3179.56 (13)C9—C8—O3—C6179.82 (12)
C4—C5—C6—C70.6 (2)C2—C3—S1—C10.01 (11)
C3—C2—C7—C60.3 (2)C4—C3—S1—C1179.71 (15)
O1—C2—C7—C6179.47 (13)O2—C1—S1—C3179.32 (15)
O3—C6—C7—C2179.87 (13)O1—C1—S1—C30.13 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.952.483.432 (2)175
C7—H7···O2ii0.952.663.5983 (19)170
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.
2-Oxo-1,3-benzoxathiol-6-yl acetate (II) top
Crystal data top
C9H6O4SF(000) = 432
Mr = 210.20Dx = 1.579 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.6232 (5) ÅCell parameters from 3355 reflections
b = 14.5650 (14) Åθ = 2.3–27.5°
c = 10.8572 (11) ŵ = 0.35 mm1
β = 96.045 (2)°T = 100 K
V = 884.28 (15) Å3Block, colourless
Z = 40.26 × 0.11 × 0.08 mm
Data collection top
Rigaku Saturn CCD
diffractometer
1903 reflections with I > 2σ(I)
ω scansRint = 0.036
Absorption correction: multi-scan
(FS_ABSCOR; Rigaku, 2013)
θmax = 27.5°, θmin = 2.4°
Tmin = 0.829, Tmax = 1.000h = 77
11487 measured reflectionsk = 1818
2028 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.328P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2028 reflectionsΔρmax = 0.33 e Å3
128 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1830 (2)0.03032 (8)0.18546 (11)0.0210 (2)
C20.1514 (2)0.07946 (8)0.38446 (11)0.0167 (2)
C30.0602 (2)0.11624 (8)0.32717 (11)0.0174 (2)
C40.2186 (2)0.16130 (8)0.39666 (11)0.0194 (2)
H40.36250.18720.35800.023*
C50.1609 (2)0.16746 (8)0.52441 (11)0.0191 (2)
H50.26570.19790.57420.023*
C60.0505 (2)0.12894 (8)0.57848 (10)0.0175 (2)
C70.2139 (2)0.08489 (8)0.51080 (11)0.0175 (2)
H70.35950.06010.54910.021*
C80.2608 (2)0.18164 (8)0.76657 (11)0.0183 (2)
C90.2792 (2)0.16577 (9)0.90343 (11)0.0222 (3)
H9A0.11970.15350.92840.033*
H9B0.34650.22040.94670.033*
H9C0.38330.11290.92480.033*
O10.29007 (15)0.03350 (6)0.30638 (8)0.01950 (19)
O20.27313 (17)0.00958 (7)0.10631 (8)0.0282 (2)
O30.08651 (15)0.12684 (6)0.70829 (7)0.0207 (2)
O40.37694 (17)0.23332 (7)0.71088 (8)0.0275 (2)
S10.09135 (5)0.09103 (2)0.16863 (3)0.02017 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0246 (6)0.0209 (6)0.0177 (6)0.0017 (5)0.0030 (4)0.0015 (4)
C20.0164 (5)0.0158 (5)0.0181 (6)0.0015 (4)0.0026 (4)0.0003 (4)
C30.0194 (5)0.0177 (5)0.0148 (5)0.0023 (4)0.0004 (4)0.0001 (4)
C40.0180 (5)0.0194 (6)0.0202 (6)0.0019 (4)0.0009 (4)0.0003 (4)
C50.0194 (5)0.0185 (6)0.0196 (6)0.0010 (4)0.0028 (4)0.0020 (4)
C60.0208 (5)0.0178 (5)0.0137 (5)0.0055 (4)0.0007 (4)0.0004 (4)
C70.0158 (5)0.0182 (6)0.0178 (6)0.0017 (4)0.0008 (4)0.0019 (4)
C80.0201 (5)0.0182 (5)0.0163 (5)0.0003 (4)0.0005 (4)0.0020 (4)
C90.0287 (6)0.0235 (6)0.0140 (5)0.0009 (5)0.0007 (4)0.0007 (4)
O10.0190 (4)0.0230 (4)0.0167 (4)0.0017 (3)0.0025 (3)0.0010 (3)
O20.0336 (5)0.0321 (5)0.0200 (5)0.0048 (4)0.0076 (4)0.0030 (4)
O30.0239 (4)0.0251 (5)0.0128 (4)0.0076 (3)0.0006 (3)0.0003 (3)
O40.0317 (5)0.0327 (5)0.0176 (4)0.0140 (4)0.0008 (4)0.0002 (4)
S10.02389 (18)0.02219 (18)0.01374 (17)0.00119 (11)0.00123 (12)0.00007 (10)
Geometric parameters (Å, º) top
C1—O21.1936 (15)C5—H50.9500
C1—O11.3864 (15)C6—C71.3923 (16)
C1—S11.7709 (13)C6—O31.4030 (13)
C2—C71.3820 (17)C7—H70.9500
C2—O11.3835 (14)C8—O41.2008 (15)
C2—C31.3905 (16)C8—O31.3665 (14)
C3—C41.3908 (16)C8—C91.4965 (16)
C3—S11.7506 (12)C9—H9A0.9800
C4—C51.3936 (16)C9—H9B0.9800
C4—H40.9500C9—H9C0.9800
C5—C61.3875 (16)
O2—C1—O1121.54 (12)C7—C6—O3119.12 (10)
O2—C1—S1126.88 (10)C2—C7—C6115.92 (11)
O1—C1—S1111.57 (8)C2—C7—H7122.0
C7—C2—O1122.33 (10)C6—C7—H7122.0
C7—C2—C3122.57 (11)O4—C8—O3122.31 (11)
O1—C2—C3115.05 (10)O4—C8—C9127.77 (11)
C2—C3—C4120.37 (11)O3—C8—C9109.92 (10)
C2—C3—S1110.57 (9)C8—C9—H9A109.5
C4—C3—S1128.97 (9)C8—C9—H9B109.5
C3—C4—C5118.37 (11)H9A—C9—H9B109.5
C3—C4—H4120.8C8—C9—H9C109.5
C5—C4—H4120.8H9A—C9—H9C109.5
C6—C5—C4119.62 (11)H9B—C9—H9C109.5
C6—C5—H5120.2C2—O1—C1112.32 (9)
C4—C5—H5120.2C8—O3—C6118.24 (9)
C5—C6—C7123.14 (11)C3—S1—C190.43 (6)
C5—C6—O3117.42 (10)
C7—C2—C3—C40.48 (18)C7—C2—O1—C1174.88 (10)
O1—C2—C3—C4177.81 (10)C3—C2—O1—C12.46 (14)
C7—C2—C3—S1176.35 (9)O2—C1—O1—C2177.20 (11)
O1—C2—C3—S10.98 (13)S1—C1—O1—C22.77 (12)
C2—C3—C4—C50.77 (18)O4—C8—O3—C62.67 (17)
S1—C3—C4—C5175.41 (9)C9—C8—O3—C6177.05 (10)
C3—C4—C5—C60.02 (17)C5—C6—O3—C8111.17 (12)
C4—C5—C6—C71.17 (18)C7—C6—O3—C875.10 (14)
C4—C5—C6—O3172.28 (10)C2—C3—S1—C10.52 (9)
O1—C2—C7—C6176.54 (10)C4—C3—S1—C1175.96 (12)
C3—C2—C7—C60.60 (17)O2—C1—S1—C3178.09 (12)
C5—C6—C7—C21.43 (17)O1—C1—S1—C31.88 (9)
O3—C6—C7—C2171.91 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O4i0.952.353.2606 (15)159
C9—H9C···O2ii0.982.503.4030 (16)153
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y, z+1.
Hirshfeld contact interactions (%) top
Contact type(I)(II)EVOQEL
H···H28.714.813.5
O···H/H···O30.139.536.0
C···H/H···C11.313.48.6
S···H/H···S11.110.88.8
C···C5.94.410.4
S···O/O···S1.57.010.1
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collections.

References

First citationAvdeenko, A. P., Pirozhenko, V. V., Konovalov, S. A., Roman'kov, D. A., Palamarchuk, G. V. & Shishkin, O. V. (2009). Russ. J. Org. Chem. 45, 408–416.  CrossRef CAS Google Scholar
First citationBarrese, A. A. III, Genis, C., Fisher, S. Z., Orwenyo, J. N., Kumara, M. T., Dutta, S. K., Phillips, E., Kiddle, J. J., Tu, C., Silverman, D. N., Govindasamy, L., Agbandje-McKenna, M., McKenna, R. & Tripp, B. C. (2008). Biochemistry, 47, 3174–3184.  PubMed CAS Google Scholar
First citationBerg, A. H. & Fiedler, H. (1959). US Patent 2,886,488.  Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationByres, M. & Cox, P. J. (2004). Acta Cryst. C60, o395–o396.  CrossRef CAS IUCr Journals Google Scholar
First citationChazin, E. L., Sanches, P. S., Lindgren, E. B., Vellasco Júnior, W. T., Pinto, L. C., Burbano, R. M. R., Yoneda, J. D., Leal, K. Z., Gomes, C. R. B., Wardell, J. L., Wardell, S. M. S. V., Montenegro, R. C. & Vasconcelos, T. R. A. (2015). Molecules, 20, 1968–1983.  CrossRef PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationMostert, S., Petzer, A. & Petzer, J. P. (2016). Bioorg. Med. Chem. Lett. 26, 1200–1204.  CrossRef CAS PubMed Google Scholar
First citationRigaku (2013). PS_ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2014). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTerra, L., Chazin, E. de L., Sanches, P. de S., Saito, M., de Souza, M. V. N., Gomes, C. R. B., Wardell, J. L., Wardell, S. M. S. V., Sathler, P. C., Silva, G. C. C., Lione, V. O., Kalil1, M., Joffily, A., Castro1, H. C. & Vasconcelos, T. R. A. (2018). Med. Chem. (Bentham) 14, 1–7  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Nedlands, Western Australia; https://hirshfeldsurface.net.  Google Scholar
First citationVellasco, W. T., Gomes, C. F. B. & Vasconcelos, T. R. A. (2011). Mini-Rev. Org. Chem. 8, 103–109.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Y., Xie, Y., Xia, C. & Huang, H. (2014). Adv. Synth. Catal. 356, 2471–2476.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds