research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 6,7-de­hydro­royleanone isolated from Taxodium distichum (L.) Rich.

CROSSMARK_Color_square_no_text.svg

aSchool of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China, and bCollege of Chemistry and Life Science, Qinghai University for Nationalities, Xining, 810007, People's Republic of China
*Correspondence e-mail: xzyang@mail.scuec.edu.cn, mxhmxh02@163.com

Edited by P. McArdle, National University of Ireland, Ireland (Received 31 August 2017; accepted 15 December 2017; online 1 January 2018)

The title compound, 6,7-de­hydro­royleanone, C20H26O3 [systematic name: (4bS)-3-hy­droxy-2-isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,8a-hexa­hydro­phenanthrene-1,4-dione] was isolated from Taxodium distichum (L.) Rich. The compound crystallizes in the space group P21. The crystal structure features two O—H⋯O hydrogen bonds, forming chains along the [010] direction.

1. Chemical context

Taxodium distichum (L.) Rich. is a tree native to North America that can grow to 25 m in height (Ogunwande et al., 2007[Ogunwande, I. A., Olawore, N. O., Ogunmola, O. O., Walker, T. M., Schmidt, J. M. & Setzer, W. N. (2007). Pharm. Biol. 45, 106-110.]). Its leaves and seeds are used for the treatment of malaria and liver disease (Kupchan et al., 1968[Kupchan, S. M., Karim, A. & Marcks, C. (1968). J. Am. Chem. Soc. 90, 5923-5924.]). Previous studies revealed that it contains multiple compounds such as diterpenes (Kusumoto et al., 2010[Kusumoto, N., Ashitani, T., Murayama, T., Ogiyama, K. & Takahashi, K. (2010). J. Chem. Ecol. 36, 1381-1386.]), flavonoids (Zaghloul et al., 2008[Zaghloul, A. M., Gohar, A. A., Naiem, Z. A. A. M. & Bar, F. M. A. (2008). J. Biosci. 63, 355-360.]), proanthocyanidins (Stafford & Lester, 1986[Stafford, H. A. & Lester, H. H. (1986). Am. J. Bot. 73, 1555-1562.]), lignins (Logan & Thomas, 1985[Logan, K. J. & Thomas, B. A. (1985). New Phytol. 99, 571-585.]), sterols and fatty acids (Geiger & de Groot-Pfleiderer, 1979[Geiger, H. & de Groot-Pfleiderer, W. (1979). Phytochemistry, 18, 1709-1710.]). A detailed phytochemical investigation of a petroleum ether extract of the seeds of Taxodium distichum (L.) Rich. led to the isolation of the title compound 6,7-de­hydro­royleanone. Herein we present the crystal structure of 6,7-de­hydro­royleanone, which was undertaken in order to establish unambiguously the stereochemical features of this natural compound.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The title compound belongs to the class of abietane-type diterpenes and the structure contains two ketone groups at C14 and C17 and three double bonds located between atoms C10 and C11, C12 and C13, C15 and C16. The torsion angles C17—C12—C13—C1 [176.8 (2)°], C11—C12—C13—C14 [168.7 (3)°], C6—C1—C2—C10 [171.6 (3)°] and C13—C1—C2—C3 [−173.4 (3)°] describe the geometry at the junctions of the three rings. An intra­molecular O2—H2A⋯O1 hydrogen bond (Table 1[link]) stabilizes the mol­ecular conformation.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.82 (6) 2.03 (5) 2.607 (3) 128 (5)
O2—H2A⋯O3i 0.82 (6) 2.53 (6) 3.160 (3) 135 (5)
C11—H11⋯O1ii 0.93 2.37 3.290 (3) 173 (5)
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling and 50% probability displacement ellipsoids. The intra­molecular O—H⋯O hydrogen bond (see Table 1[link]) is shown as a red dashed line.

3. Supra­molecular features

In the crystal, O2—H2A⋯O3i and C11—H11⋯O1i hydrogen bonds link the mol­ecules, forming chains along [010] (Table 1[link] and Fig. 2[link]).

[Figure 2]
Figure 2
Part of the crystal structure of the title compound, with hydrogen bonds (see Table 1[link]) shown as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.27, last update Feb 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded the compound royleanone (HACGUN01; Fun et al., 2011[Fun, H.-K., Chantrapromma, S., Salae, A. W., Razak, I. A. & Karalai, C. (2011). Acta Cryst. E67, o1032-o1033.]), which has a similar structure to the title compound but without the double bond between C10 and C11.

5. Synthesis and crystallization

The title compound was isolated from the seeds of Taxodium distichum (L.) Rich. collected in Xining, China, in April 2015 (SC0185). The air-dried seeds of Taxodium distichum (1.1 kg) were extracted with 95% EtOH and then partitioned successively with petroleum ether (PE), ethyl acetate (EtOAc) and n-butyl alcohol (n-BuOH) to give a PE extract (30 g), an EtOAc extract (50 g) and an n-BuOH extract (68 g). The PE extract (30 g) was subjected to normal-phase silica-gel column chromatography (300–400 mesh) with a gradient solvent system of petroleum ether–ethyl acetate (1:0-0:1, v/v, containing 0.1% formic acid) to give ten major fractions, denoted F1–F10. F7 (2.8 g) was sequentially subjected to Sephadex-LH20 gel column chromatography (CH2Cl2–MeOH, 3:1, v/v, containing 0.1% formic acid) to give four major fractions F7.1–F7.4. F7.3 was purified by semi-preparative HPLC (CNCH3/H2O, 20:80→100:0, 40 min, containing 0.1% formic acid in both phases) to give an orange solid, which was recrystallized from a solvent mix of CH2Cl2–MeOH (5:1) affording orange block-like crystals suitable for X-ray diffraction analysis. For the 1H and 13C NMR data of 6,7-de­hydro­royleanone, see Chang et al. (2001[Chang, J. M., Zhu, N. S. & Kasimu, R. N. (2001). Nat. Prod. Res. Dev, 13, 27-29.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned with idealized geometry and refined isotropically using a riding model with C—H = 0.94–0.99 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all others. The OH hydrogen atom was refined freely with Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula C20H26O3
Mr 314.41
Crystal system, space group Monoclinic, P21
Temperature (K) 296
a, b, c (Å) 10.4348 (17), 7.6726 (13), 10.8210 (18)
β (°) 97.773 (3)
V3) 858.4 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.3 × 0.2 × 0.2
 
Data collection
Diffractometer Bruker P4
No. of measured, independent and observed [I > 2σ(I)] reflections 6718, 3416, 2980
Rint 0.022
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.143, 1.08
No. of reflections 3416
No. of parameters 216
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.18
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(4bS)-3-Hydroxy-2-isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,8a-hexahydrophenanthrene-1,4-dione top
Crystal data top
C20H26O3F(000) = 340
Mr = 314.41Dx = 1.216 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.4348 (17) ÅCell parameters from 2696 reflections
b = 7.6726 (13) Åθ = 2.6–27.3°
c = 10.8210 (18) ŵ = 0.08 mm1
β = 97.773 (3)°T = 296 K
V = 858.4 (2) Å3Block, orange
Z = 20.3 × 0.2 × 0.2 mm
Data collection top
Bruker P4
diffractometer
θmax = 26.4°, θmin = 1.9°
φ and ω scansh = 1312
6718 measured reflectionsk = 99
3416 independent reflectionsl = 1313
2980 reflections with I > 2σ(I)1 standard reflections every 300 reflections
Rint = 0.022 intensity decay: 1%
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0865P)2 + 0.0799P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.003
3416 reflectionsΔρmax = 0.27 e Å3
216 parametersΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3123 (3)0.9175 (4)0.1442 (2)0.0325 (6)
C20.4090 (3)1.0711 (4)0.1650 (3)0.0400 (7)
H20.4547671.0679170.0916440.048*
C30.5186 (3)1.0545 (5)0.2774 (3)0.0471 (8)
C40.5860 (4)0.8794 (7)0.2667 (4)0.0712 (13)
H4A0.6334840.8828400.1956630.085*
H4B0.6478610.8611960.3409070.085*
C50.4925 (6)0.7270 (6)0.2515 (5)0.098 (2)
H5A0.4501670.7167840.3256870.117*
H5B0.5401530.6202040.2428450.117*
C60.3896 (4)0.7501 (5)0.1370 (4)0.0696 (13)
H6A0.4315840.7523320.0622730.084*
H6B0.3311420.6512220.1308270.084*
C70.2214 (4)0.9005 (8)0.2443 (3)0.0746 (14)
H7A0.1486290.8292360.2130570.112*
H7B0.1917621.0140640.2646750.112*
H7C0.2672760.8477190.3177820.112*
C80.4756 (5)1.0761 (7)0.4025 (4)0.0797 (14)
H8A0.4271340.9754470.4211900.120*
H8B0.4222031.1780200.4022340.120*
H8C0.5499591.0888470.4646190.120*
C90.6187 (5)1.1986 (9)0.2651 (6)0.106 (2)
H9A0.5816341.3101390.2792350.160*
H9B0.6434051.1956240.1828300.160*
H9C0.6936271.1798930.3256200.160*
C100.3398 (5)1.2400 (6)0.1542 (5)0.0861 (17)
H100.3567421.3242070.2160890.103*
C110.2507 (3)1.2703 (4)0.0517 (3)0.0480 (8)
H110.2225281.3823980.0295480.058*
C120.2011 (3)1.1170 (4)0.0221 (3)0.0346 (6)
C130.2247 (3)0.9533 (3)0.0209 (2)0.0312 (6)
C140.1516 (3)0.8125 (4)0.0477 (3)0.0370 (6)
C150.0868 (3)0.8459 (4)0.1776 (3)0.0376 (7)
C160.0709 (3)1.0066 (4)0.2261 (3)0.0359 (6)
C170.1215 (3)1.1519 (4)0.1454 (3)0.0346 (6)
C180.0096 (3)1.0468 (5)0.3588 (3)0.0451 (7)
H180.0013881.1738030.3656030.054*
C190.0958 (4)0.9899 (7)0.4517 (3)0.0680 (11)
H19A0.1775271.0487200.4348590.102*
H19B0.0558091.0182770.5343860.102*
H19C0.1092900.8662700.4451880.102*
C200.1270 (4)0.9706 (7)0.3885 (4)0.0711 (12)
H20A0.1219500.8457690.3907260.107*
H20B0.1665171.0129840.4680770.107*
H20C0.1779171.0054870.3251980.107*
O10.1376 (3)0.6667 (3)0.0048 (2)0.0561 (7)
O20.0435 (3)0.7012 (3)0.2393 (2)0.0521 (6)
H2A0.058 (5)0.628 (8)0.184 (5)0.078*
O30.1021 (2)1.3039 (3)0.1790 (2)0.0497 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0388 (14)0.0315 (15)0.0263 (12)0.0009 (12)0.0013 (10)0.0016 (10)
C20.0381 (14)0.0392 (17)0.0405 (14)0.0066 (13)0.0029 (11)0.0027 (13)
C30.0432 (16)0.0488 (19)0.0448 (16)0.0042 (15)0.0108 (13)0.0022 (15)
C40.060 (2)0.086 (3)0.060 (2)0.027 (2)0.0208 (18)0.012 (2)
C50.119 (4)0.047 (3)0.105 (4)0.026 (3)0.070 (3)0.010 (3)
C60.085 (3)0.043 (2)0.069 (2)0.022 (2)0.035 (2)0.0170 (18)
C70.056 (2)0.126 (4)0.0416 (19)0.030 (2)0.0079 (16)0.008 (2)
C80.082 (3)0.101 (4)0.050 (2)0.002 (3)0.0137 (19)0.031 (2)
C90.074 (3)0.113 (5)0.116 (4)0.049 (3)0.047 (3)0.047 (4)
C100.098 (3)0.034 (2)0.107 (4)0.002 (2)0.058 (3)0.010 (2)
C110.0561 (18)0.0279 (16)0.0545 (19)0.0007 (13)0.0124 (15)0.0005 (14)
C120.0351 (13)0.0292 (14)0.0383 (14)0.0001 (11)0.0009 (11)0.0001 (12)
C130.0334 (13)0.0278 (15)0.0318 (13)0.0006 (11)0.0022 (10)0.0009 (11)
C140.0433 (15)0.0285 (16)0.0377 (15)0.0001 (12)0.0003 (12)0.0015 (12)
C150.0410 (14)0.0318 (16)0.0375 (15)0.0029 (12)0.0038 (12)0.0037 (12)
C160.0352 (14)0.0364 (16)0.0348 (14)0.0040 (11)0.0000 (11)0.0021 (12)
C170.0321 (13)0.0309 (15)0.0403 (15)0.0017 (12)0.0026 (11)0.0016 (12)
C180.0541 (18)0.0399 (18)0.0372 (15)0.0030 (15)0.0087 (13)0.0022 (13)
C190.084 (3)0.083 (3)0.0374 (16)0.013 (2)0.0072 (17)0.0045 (19)
C200.058 (2)0.072 (3)0.074 (3)0.002 (2)0.025 (2)0.002 (2)
O10.0790 (16)0.0311 (12)0.0532 (14)0.0106 (11)0.0091 (12)0.0062 (10)
O20.0703 (15)0.0339 (13)0.0454 (12)0.0065 (11)0.0170 (11)0.0030 (10)
O30.0576 (13)0.0312 (12)0.0554 (14)0.0020 (10)0.0102 (11)0.0077 (10)
Geometric parameters (Å, º) top
C1—C21.548 (4)C9—H9C0.9600
C1—C61.525 (5)C10—H100.9300
C1—C71.538 (4)C10—C111.367 (5)
C1—C131.537 (4)C11—H110.9300
C2—H20.9800C11—C121.475 (4)
C2—C31.558 (4)C12—C131.350 (4)
C2—C101.481 (6)C12—C171.497 (4)
C3—C41.528 (6)C13—C141.466 (4)
C3—C81.492 (5)C14—C151.497 (4)
C3—C91.539 (6)C14—O11.227 (4)
C4—H4A0.9700C15—C161.341 (4)
C4—H4B0.9700C15—O21.342 (4)
C4—C51.517 (8)C16—C171.470 (4)
C5—H5A0.9700C16—C181.522 (4)
C5—H5B0.9700C17—O31.230 (4)
C5—C61.536 (5)C18—H180.9800
C6—H6A0.9700C18—C191.501 (5)
C6—H6B0.9700C18—C201.534 (5)
C7—H7A0.9600C19—H19A0.9600
C7—H7B0.9600C19—H19B0.9600
C7—H7C0.9600C19—H19C0.9600
C8—H8A0.9600C20—H20A0.9600
C8—H8B0.9600C20—H20B0.9600
C8—H8C0.9600C20—H20C0.9600
C9—H9A0.9600O2—H2A0.82 (6)
C9—H9B0.9600
C6—C1—C2108.0 (3)C3—C9—H9B109.5
C6—C1—C7110.2 (4)C3—C9—H9C109.5
C6—C1—C13111.3 (2)H9A—C9—H9B109.5
C7—C1—C2114.5 (3)H9A—C9—H9C109.5
C13—C1—C2106.8 (2)H9B—C9—H9C109.5
C13—C1—C7106.0 (2)C2—C10—H10120.6
C1—C2—H2104.1C11—C10—C2118.9 (4)
C1—C2—C3116.5 (3)C11—C10—H10120.6
C3—C2—H2104.1C10—C11—H11121.5
C10—C2—C1110.7 (3)C10—C11—C12117.0 (3)
C10—C2—H2104.1C12—C11—H11121.5
C10—C2—C3115.5 (3)C11—C12—C17116.8 (2)
C4—C3—C2108.0 (3)C13—C12—C11121.4 (3)
C4—C3—C9107.5 (4)C13—C12—C17121.8 (2)
C8—C3—C2114.9 (3)C12—C13—C1121.7 (2)
C8—C3—C4111.3 (4)C12—C13—C14116.9 (2)
C8—C3—C9106.8 (4)C14—C13—C1121.0 (2)
C9—C3—C2108.0 (3)C13—C14—C15119.2 (2)
C3—C4—H4A109.0O1—C14—C13124.1 (3)
C3—C4—H4B109.0O1—C14—C15116.8 (3)
H4A—C4—H4B107.8C16—C15—C14122.8 (3)
C5—C4—C3113.0 (3)C16—C15—O2123.4 (3)
C5—C4—H4A109.0O2—C15—C14113.8 (3)
C5—C4—H4B109.0C15—C16—C17116.7 (2)
C4—C5—H5A109.3C15—C16—C18124.7 (3)
C4—C5—H5B109.3C17—C16—C18118.6 (3)
C4—C5—C6111.6 (4)C16—C17—C12120.4 (2)
H5A—C5—H5B108.0O3—C17—C12118.8 (3)
C6—C5—H5A109.3O3—C17—C16120.8 (3)
C6—C5—H5B109.3C16—C18—H18107.1
C1—C6—C5111.9 (3)C16—C18—C20112.3 (3)
C1—C6—H6A109.2C19—C18—C16111.0 (3)
C1—C6—H6B109.2C19—C18—H18107.1
C5—C6—H6A109.2C19—C18—C20111.9 (3)
C5—C6—H6B109.2C20—C18—H18107.1
H6A—C6—H6B107.9C18—C19—H19A109.5
C1—C7—H7A109.5C18—C19—H19B109.5
C1—C7—H7B109.5C18—C19—H19C109.5
C1—C7—H7C109.5H19A—C19—H19B109.5
H7A—C7—H7B109.5H19A—C19—H19C109.5
H7A—C7—H7C109.5H19B—C19—H19C109.5
H7B—C7—H7C109.5C18—C20—H20A109.5
C3—C8—H8A109.5C18—C20—H20B109.5
C3—C8—H8B109.5C18—C20—H20C109.5
C3—C8—H8C109.5H20A—C20—H20B109.5
H8A—C8—H8B109.5H20A—C20—H20C109.5
H8A—C8—H8C109.5H20B—C20—H20C109.5
H8B—C8—H8C109.5C15—O2—H2A101 (4)
C3—C9—H9A109.5
C1—C2—C3—C452.3 (4)C11—C12—C13—C14168.7 (3)
C1—C2—C3—C872.7 (4)C17—C12—C13—C1176.8 (2)
C1—C2—C3—C9168.2 (4)C17—C12—C13—C1410.0 (4)
C1—C2—C10—C1150.7 (6)C11—C12—C17—C16178.5 (3)
C1—C13—C14—C15169.1 (2)C11—C12—C17—O30.3 (4)
C1—C13—C14—O112.1 (4)C12—C13—C14—C1517.7 (4)
C2—C1—C6—C554.3 (5)C12—C13—C14—O1161.1 (3)
C2—C1—C13—C1227.2 (3)C13—C1—C2—C3173.4 (3)
C2—C1—C13—C14159.9 (2)C13—C1—C2—C1051.8 (4)
C2—C3—C4—C552.3 (4)C13—C1—C6—C5171.2 (4)
C2—C10—C11—C1217.7 (7)C13—C12—C17—C162.5 (4)
C3—C2—C10—C11174.0 (4)C13—C12—C17—O3179.2 (3)
C3—C4—C5—C657.4 (6)C13—C14—C15—C1613.2 (4)
C4—C5—C6—C158.2 (6)C13—C14—C15—O2168.3 (3)
C6—C1—C2—C353.7 (4)C14—C15—C16—C170.4 (4)
C6—C1—C2—C10171.6 (3)C14—C15—C16—C18178.0 (3)
C6—C1—C13—C12144.9 (3)C15—C16—C17—C127.6 (4)
C6—C1—C13—C1442.2 (4)C15—C16—C17—O3174.3 (3)
C7—C1—C2—C369.5 (4)C15—C16—C18—C1970.0 (4)
C7—C1—C2—C1065.2 (4)C15—C16—C18—C2056.2 (4)
C7—C1—C6—C571.4 (5)C17—C12—C13—C1176.7 (2)
C7—C1—C13—C1295.2 (4)C17—C12—C13—C1410.1 (4)
C7—C1—C13—C1477.6 (4)C17—C16—C18—C19107.6 (3)
C8—C3—C4—C574.7 (4)C17—C16—C18—C20126.3 (3)
C9—C3—C4—C5168.6 (4)C18—C16—C17—C12170.2 (2)
C10—C2—C3—C4175.2 (4)C18—C16—C17—O38.0 (4)
C10—C2—C3—C859.9 (5)O1—C14—C15—C16165.6 (3)
C10—C2—C3—C959.2 (5)O1—C14—C15—O212.8 (4)
C10—C11—C12—C1311.3 (5)O2—C15—C16—C17178.7 (3)
C10—C11—C12—C17169.8 (4)O2—C15—C16—C183.8 (5)
C11—C12—C13—C14.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.82 (6)2.03 (5)2.607 (3)128 (5)
O2—H2A···O3i0.82 (6)2.53 (6)3.160 (3)135 (5)
C11—H11···O1ii0.932.373.290 (3)173 (5)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
 

Funding information

Funding for this research was provided by: Natural Science Foundation of Qinghai Province (grant No. 2016-ZJ-908); National Natural Science Foundation of China grant (grant No. 81573561).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, J. M., Zhu, N. S. & Kasimu, R. N. (2001). Nat. Prod. Res. Dev, 13, 27–29.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Salae, A. W., Razak, I. A. & Karalai, C. (2011). Acta Cryst. E67, o1032–o1033.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGeiger, H. & de Groot-Pfleiderer, W. (1979). Phytochemistry, 18, 1709–1710.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKupchan, S. M., Karim, A. & Marcks, C. (1968). J. Am. Chem. Soc. 90, 5923–5924.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKusumoto, N., Ashitani, T., Murayama, T., Ogiyama, K. & Takahashi, K. (2010). J. Chem. Ecol. 36, 1381–1386.  CrossRef CAS PubMed Google Scholar
First citationLogan, K. J. & Thomas, B. A. (1985). New Phytol. 99, 571–585.  CrossRef CAS Google Scholar
First citationOgunwande, I. A., Olawore, N. O., Ogunmola, O. O., Walker, T. M., Schmidt, J. M. & Setzer, W. N. (2007). Pharm. Biol. 45, 106–110.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStafford, H. A. & Lester, H. H. (1986). Am. J. Bot. 73, 1555–1562.  CrossRef CAS Google Scholar
First citationZaghloul, A. M., Gohar, A. A., Naiem, Z. A. A. M. & Bar, F. M. A. (2008). J. Biosci. 63, 355–360.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds