research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5,15-bis­­(4-methyl­phen­yl)-10,20-bis­­(4-nitro­phen­yl)porphyrin nitro­benzene disolvate

CROSSMARK_Color_square_no_text.svg

aNational Laboratory Astana, Laboratory of Chemistry, Nazarbayev University, 53 Kabanbay Batyr Ave, Astana, 010000, Kazakhstan, and bDepartment of Chemistry, SST, Nazarbayev University, 53 Kabanbay Batyr Ave, Astana, 010000, Kazakhstan
*Correspondence e-mail: sadilov@nu.edu.kz

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 22 November 2017; accepted 13 December 2017; online 1 January 2018)

The whole mol­ecule of the title porphyrin, C46H32N6O4·2C6H5NO2, which crystallized as a nitro­benzene disolvate, is generated by inversion symmetry. The porphyrin macrocycle is almost planar, the maximum deviation from the mean plane of the non-hydrogen atoms is 0.097 (2) Å. The aryl rings at the meso positions are inclined to this mean plane by 74.84 (6)° for the nitro­phenyl rings and 73.37 (7)° for the tolyl rings. In the crystal, the porphyrin mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains along [100]. The solvent mol­ecules are also linked by C—H⋯O hydrogen bonds, forming chains along [100]. Inter­digitation of the p-tolyl groups along the c axis creates rectangular channels in which the solvent mol­ecules are located.

1. Chemical context

Porphyrins and their metallated derivatives have been studied extensively for their host–guest properties (Byrn et al., 1991[Byrn, M. P., Curtis, C. J., Goldberg, I., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K. & Strouse, C. E. (1991). J. Am. Chem. Soc. 113, 6549-6557.]), catalytic activity (Shultz et al., 2009[Shultz, A. M., Farha, O. K., Hupp, J. T. & Nguyen, S. T. (2009). J. Am. Chem. Soc. 131, 4204-4205.]) and for applications in dye-sensitized solar cells (Urbani et al., 2014[Urbani, M., Grätzel, M., Nazeeruddin, M. K. & Torres, T. (2014). Chem. Rev. 114, 12330-12396.]). The presence or absence of a metal ion at the porphyrin core can greatly affect its physical properties, such as catalytic activity and crystal packing. The title compound is the free-base analogue of a previously reported zinc derivative (Adilov & Thalladi, 2007[Adilov, S. & Thalladi, V. R. (2007). Cryst. Growth & Des. 7, 481-484.]). The absence of the metal ion alters the crystal packing and these changes in the crystal structure of its nitro­benzene disolvate are discussed herein.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The asymmetric unit consists of half of the porphyrin mol­ecule and one nitro­benzene solvent mol­ecule. The whole mol­ecule of the porphyrin is generated by inversion symmetry. The porphyrin macrocycle is almost planar, the maximum deviation from the mean plane of the non-hydrogen atoms being 0.0970 (19) Å for atom C1 (and the symmetry-related atom). The dihedral angles between the porphyrin ring mean plane and the aryl rings at the meso positions are similar; 74.84 (6)° for the nitro­phenyl rings and 73.37 (7)° for the tolyl rings.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by inversion symmetry (symmetry operation: −x, 2 − y, −z), and only one solvent mol­ecule is shown.

3. Supra­molecular features

In the crystal, the solvent mol­ecules are linked by C—H⋯O hydrogen bonds [2.58 (5) Å, 129.9 (3)°] forming chains along the a-axis direction (Fig. 2[link] and Table 1[link]). The nitro­phenyl groups of the macrocyle are projected into the inter­layer space where an oxygen of a nitro group (O2) forms a C—H⋯O hydrogen bond [2.453 (3) Å, 158.6 (2)°] with neighbouring mol­ecules, leading to the formation of chains along [100] (Fig. 2[link] and Table 1[link]). Inter­digitation of the p-tolyl groups along the c-axis creates rectangular channels in which the solvent mol­ecules are located, as illustrated in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2i 0.95 (1) 2.45 (1) 3.355 (3) 159 (1)
C104—H104⋯O102i 0.95 (1) 2.58 (1) 3.272 (4) 130 (1)
Symmetry code: (i) x+1, y, z.
[Figure 2]
Figure 2
A partial view along the b axis of the crystal packing of the title compound. The C—H⋯O hydrogen bonds are shown as dashed lines (see Table 1[link]).
[Figure 3]
Figure 3
A view along the a axis of the inter­layer stacking in the crystal of the title compound, also showing the inter­calation of the nitro­benzene groups between the layers.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for trans nitro­phenyl­phenyl porphyrins gave 29 hits. Apart from the zinc-metallated complex of the title compound, catena-[[μ3-5,15-bis­(p-tol­yl)-10,20-bis­(4-nitro­phen­yl)porphyrinato]zinc(II) nitro­benzene solvate] (CEZTUX; Adilov & Thalladi, 2007[Adilov, S. & Thalladi, V. R. (2007). Cryst. Growth & Des. 7, 481-484.]), mentioned previously, the crystal structure of the meso-tetra­kis­(4-nitro­phen­yl) analogue of the title compound, viz. meso-tetra­kis­(4-nitro­phen­yl)porphyrin nitro­benzene disolvate (BOMTEE; Seredyuk et al., 2014[Seredyuk, M., Gumienna-Kontecka, E., Brzuszkiewicz, A., Iskenderov, T. S. & Kalibabchuk, V. A. (2014). Acta Cryst. E70, o1147-o1148.]), is of particular inter­est. While CEZTUX has the same 1:2 porphyrin-solvent ratio, it has a totally different crystal packing. Both structures, however, contain porphyrin layers and the solvent mol­ecules are inter­calated between the layers. In the title free-base, the nitro groups of the macrocycle form C—H⋯O hydrogen bonds with neighbouring mol­ecules resulting in continuous offset stacks along the a-axis direction. The same situation is observed in the crystal of the tetra­kis­(4-nitro­phen­yl) analogue, BOMTEE.

5. Synthesis and crystallization

The synthesis of the title compound has been described previously (Adilov & Thalladi, 2007[Adilov, S. & Thalladi, V. R. (2007). Cryst. Growth & Des. 7, 481-484.]). It crystallized as a nitro­benzene disolvate on slow evaporation of a solution in chloro­form/nitro­benzene (v:v 1:2).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound and N-bound H atoms were included in calculated positions and refined as riding atoms: C—H = 0.95–0.98 Å, N—H = 0.88 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(N, C) for other H atoms. The two NH H atoms in the porphyrin core are disordered over the four pyrrole N-atoms, and were refined with occupancies of 0.5 each.

Table 2
Experimental details

Crystal data
Chemical formula C46H32N6O4·2C6H5NO2
Mr 979.03
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 193
a, b, c (Å) 7.957 (3), 9.656 (3), 16.568 (5)
α, β, γ (°) 76.710 (5), 79.440 (5), 78.173 (5)
V3) 1200.1 (7)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.2 × 0.15 × 0.1
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.830, 0.991
No. of measured, independent and observed [I > 2σ(I)] reflections 7891, 5512, 4072
Rint 0.066
(sin θ/λ)max−1) 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.189, 1.05
No. of reflections 5512
No. of parameters 334
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.80, −0.37
Computer programs: SMART and SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2004 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), Olex2.refine (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR2004 (Burla et al., 2007); program(s) used to refine structure: Olex2.refine (Bourhis et al., 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

5,15-Bis(4-methylphenyl)-10,20-bis(4-nitrophenyl)porphyrin nitrobenzene disolvate top
Crystal data top
C46H32N6O4·2C6H5NO2Z = 1
Mr = 979.03F(000) = 510.2496
Triclinic, P1Dx = 1.355 Mg m3
a = 7.957 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.656 (3) ÅCell parameters from 832 reflections
c = 16.568 (5) Åθ = 5.5–55.4°
α = 76.710 (5)°µ = 0.09 mm1
β = 79.440 (5)°T = 193 K
γ = 78.173 (5)°Plate, dark red
V = 1200.1 (7) Å30.2 × 0.15 × 0.1 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
5512 independent reflections
Radiation source: fine-focus sealed tube4072 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
φ and ω scansθmax = 27.9°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.830, Tmax = 0.991k = 1212
7891 measured reflectionsl = 1421
Refinement top
Refinement on F242 constraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.064All H-atom parameters refined
wR(F2) = 0.189 w = 1/[σ2(Fo2) + (0.0885P)2 + 0.7087P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5512 reflectionsΔρmax = 0.80 e Å3
334 parametersΔρmin = 0.37 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4023 (2)1.1991 (2)0.03569 (12)0.0242 (4)
N10.2172 (2)1.08626 (18)0.07401 (10)0.0253 (4)
H10.1213 (2)1.05861 (18)0.04157 (10)0.0304 (4)*0.500000
O11.0421 (2)1.6738 (2)0.15516 (13)0.0524 (5)
C20.3711 (2)1.1584 (2)0.04770 (13)0.0254 (4)
N20.1210 (2)0.91439 (18)0.10379 (10)0.0249 (4)
H20.0670 (2)0.94670 (18)0.05953 (10)0.0299 (4)*0.500000
O21.1746 (2)1.4941 (2)0.09963 (14)0.0598 (6)
C30.4958 (3)1.1826 (2)0.11990 (13)0.0293 (4)
H30.6126 (3)1.2307 (2)0.11960 (13)0.0351 (5)*
N31.0444 (2)1.5482 (2)0.11856 (12)0.0348 (4)
C40.4157 (3)1.1240 (2)0.18851 (13)0.0294 (4)
H40.4667 (3)1.1223 (2)0.24519 (13)0.0353 (5)*
C50.2391 (3)1.0648 (2)0.15975 (13)0.0257 (4)
C60.1130 (3)0.9975 (2)0.21153 (12)0.0258 (4)
C70.0548 (3)0.9304 (2)0.18412 (12)0.0263 (4)
C80.1855 (3)0.8648 (3)0.23783 (13)0.0331 (5)
H80.1742 (3)0.8620 (3)0.29623 (13)0.0397 (6)*
C90.3270 (3)0.8079 (3)0.18946 (13)0.0328 (5)
H90.4332 (3)0.7571 (3)0.20771 (13)0.0394 (6)*
C100.2867 (2)0.8387 (2)0.10502 (12)0.0253 (4)
C110.5730 (2)1.2911 (2)0.05372 (12)0.0245 (4)
C120.5801 (3)1.4362 (2)0.08993 (16)0.0356 (5)
H120.4777 (3)1.4775 (2)0.10072 (16)0.0427 (6)*
C130.7349 (3)1.5219 (2)0.11066 (15)0.0360 (5)
H130.7399 (3)1.6216 (2)0.13496 (15)0.0432 (6)*
C140.8809 (2)1.4592 (2)0.09523 (13)0.0274 (4)
C150.8795 (3)1.3162 (3)0.05707 (17)0.0395 (6)
H150.9830 (3)1.2761 (3)0.04532 (17)0.0474 (7)*
C160.7239 (3)1.2319 (2)0.03617 (16)0.0370 (5)
H160.7207 (3)1.1332 (2)0.00974 (16)0.0443 (6)*
C170.1603 (3)0.9982 (2)0.30326 (12)0.0274 (4)
C180.1736 (4)1.1229 (3)0.33314 (15)0.0439 (6)
H180.1544 (4)1.2097 (3)0.29475 (15)0.0526 (7)*
C190.2144 (4)1.1238 (3)0.41821 (16)0.0493 (7)
H190.2223 (4)1.2108 (3)0.43721 (16)0.0591 (8)*
C200.2439 (3)0.9990 (3)0.47565 (14)0.0382 (5)
C210.2353 (4)0.8755 (3)0.44615 (15)0.0463 (6)
H210.2577 (4)0.7895 (3)0.48459 (15)0.0556 (7)*
C220.1943 (3)0.8742 (3)0.36067 (14)0.0414 (6)
H220.1895 (3)0.7877 (3)0.34163 (14)0.0497 (7)*
C230.2861 (4)0.9995 (4)0.56844 (16)0.0555 (8)
H23a0.1805 (7)0.963 (2)0.5947 (3)0.0833 (12)*
H23b0.332 (3)1.0984 (5)0.57653 (16)0.0833 (12)*
H23c0.373 (2)0.9378 (19)0.5942 (3)0.0833 (12)*
C1010.6144 (3)0.4878 (3)0.62860 (17)0.0449 (6)
N1010.4624 (4)0.4425 (3)0.6107 (2)0.0671 (8)
O1010.4858 (4)0.3604 (3)0.5613 (2)0.0894 (9)
C1020.5908 (4)0.5772 (3)0.68566 (18)0.0520 (7)
H1020.4780 (4)0.6110 (3)0.71179 (18)0.0624 (8)*
O1020.3212 (3)0.4896 (4)0.6447 (3)0.1102 (11)
C1030.7342 (4)0.6154 (4)0.70340 (19)0.0574 (8)
H1030.7214 (4)0.6759 (4)0.74271 (19)0.0689 (9)*
C1040.8975 (4)0.5666 (3)0.66456 (19)0.0528 (7)
H1040.9964 (4)0.5943 (3)0.67696 (19)0.0633 (8)*
C1050.9175 (4)0.4789 (3)0.60842 (18)0.0504 (7)
H1051.0305 (4)0.4455 (3)0.58236 (18)0.0605 (8)*
C1060.7757 (4)0.4377 (3)0.58887 (17)0.0472 (6)
H1060.7891 (4)0.3771 (3)0.54953 (17)0.0566 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0182 (9)0.0227 (9)0.0314 (10)0.0003 (7)0.0061 (7)0.0052 (8)
N10.0216 (8)0.0256 (8)0.0279 (9)0.0008 (6)0.0059 (6)0.0060 (7)
O10.0374 (10)0.0453 (11)0.0675 (13)0.0024 (8)0.0168 (9)0.0018 (9)
C20.0206 (9)0.0225 (9)0.0323 (10)0.0002 (7)0.0044 (8)0.0066 (8)
N20.0204 (8)0.0260 (8)0.0276 (8)0.0002 (6)0.0061 (6)0.0054 (7)
O20.0261 (9)0.0670 (14)0.0843 (15)0.0090 (9)0.0175 (9)0.0028 (11)
C30.0224 (9)0.0308 (11)0.0326 (11)0.0015 (8)0.0029 (8)0.0084 (8)
N30.0203 (9)0.0442 (12)0.0388 (10)0.0004 (8)0.0083 (7)0.0074 (9)
C40.0243 (10)0.0304 (11)0.0315 (11)0.0002 (8)0.0015 (8)0.0084 (8)
C50.0242 (9)0.0230 (9)0.0294 (10)0.0018 (7)0.0035 (8)0.0063 (8)
C60.0253 (10)0.0247 (10)0.0273 (10)0.0020 (8)0.0043 (8)0.0063 (8)
C70.0251 (10)0.0261 (10)0.0272 (10)0.0004 (8)0.0067 (8)0.0059 (8)
C80.0304 (11)0.0401 (12)0.0271 (10)0.0026 (9)0.0099 (8)0.0064 (9)
C90.0254 (10)0.0397 (12)0.0309 (11)0.0040 (9)0.0106 (8)0.0054 (9)
C100.0211 (9)0.0249 (10)0.0298 (10)0.0009 (7)0.0072 (8)0.0047 (8)
C110.0185 (9)0.0260 (10)0.0289 (10)0.0008 (7)0.0045 (7)0.0070 (8)
C120.0185 (9)0.0302 (11)0.0546 (14)0.0057 (8)0.0073 (9)0.0015 (10)
C130.0237 (10)0.0265 (11)0.0529 (14)0.0019 (8)0.0103 (9)0.0034 (10)
C140.0173 (9)0.0333 (11)0.0309 (10)0.0008 (8)0.0060 (7)0.0073 (8)
C150.0232 (10)0.0350 (12)0.0637 (16)0.0092 (9)0.0140 (10)0.0068 (11)
C160.0282 (11)0.0241 (11)0.0595 (15)0.0053 (9)0.0127 (10)0.0044 (10)
C170.0240 (9)0.0308 (10)0.0259 (10)0.0011 (8)0.0052 (8)0.0068 (8)
C180.0649 (17)0.0350 (13)0.0320 (12)0.0109 (12)0.0054 (11)0.0064 (10)
C190.0735 (19)0.0401 (14)0.0374 (13)0.0074 (13)0.0073 (12)0.0167 (11)
C200.0360 (12)0.0456 (14)0.0303 (11)0.0030 (10)0.0069 (9)0.0092 (10)
C210.0621 (17)0.0396 (14)0.0324 (12)0.0089 (12)0.0013 (11)0.0019 (10)
C220.0579 (15)0.0334 (12)0.0321 (12)0.0090 (11)0.0008 (10)0.0082 (9)
C230.0658 (18)0.0635 (19)0.0312 (13)0.0071 (15)0.0060 (12)0.0139 (12)
C1010.0386 (13)0.0421 (14)0.0511 (15)0.0067 (11)0.0121 (11)0.0008 (11)
N1010.0556 (17)0.0549 (16)0.092 (2)0.0197 (13)0.0255 (15)0.0042 (15)
O1010.103 (2)0.0722 (17)0.111 (2)0.0413 (15)0.0389 (17)0.0134 (16)
C1020.0391 (14)0.0584 (17)0.0512 (16)0.0049 (12)0.0012 (12)0.0121 (13)
O1020.0402 (14)0.114 (3)0.179 (3)0.0187 (15)0.0151 (16)0.029 (2)
C1030.0534 (17)0.0654 (19)0.0557 (17)0.0089 (14)0.0165 (13)0.0266 (15)
C1040.0424 (14)0.0585 (17)0.0599 (17)0.0046 (13)0.0170 (12)0.0125 (14)
C1050.0374 (13)0.0565 (17)0.0517 (15)0.0014 (12)0.0001 (11)0.0103 (13)
C1060.0528 (15)0.0420 (14)0.0444 (14)0.0029 (12)0.0046 (12)0.0103 (11)
Geometric parameters (Å, º) top
C1—C21.400 (3)C15—H150.9500
C1—C10i1.403 (3)C15—C161.390 (3)
C1—C111.501 (2)C16—H160.9500
N1—H10.8800C17—C181.382 (3)
N1—C21.372 (2)C17—C221.388 (3)
N1—C51.371 (3)C18—H180.9500
O1—N31.226 (3)C18—C191.389 (3)
C2—C31.438 (3)C19—H190.9500
N2—H20.8800C19—C201.386 (4)
N2—C71.370 (3)C20—C211.374 (4)
N2—C101.372 (2)C20—C231.513 (3)
O2—N31.213 (3)C21—H210.9500
C3—H30.9500C21—C221.396 (3)
C3—C41.357 (3)C22—H220.9500
N3—C141.468 (2)C23—H23a0.9800
C4—H40.9500C23—H23b0.9800
C4—C51.442 (3)C23—H23c0.9800
C5—C61.399 (3)C101—N1011.466 (4)
C6—C71.402 (3)C101—C1021.385 (4)
C6—C171.498 (3)C101—C1061.378 (4)
C7—C81.444 (3)N101—O1011.231 (4)
C8—H80.9500N101—O1021.210 (4)
C8—C91.352 (3)C102—H1020.9500
C9—H90.9500C102—C1031.368 (4)
C9—C101.443 (3)C103—H1030.9500
C11—C121.385 (3)C103—C1041.381 (4)
C11—C161.389 (3)C104—H1040.9500
C12—H120.9500C104—C1051.364 (4)
C12—C131.388 (3)C105—H1050.9500
C13—H130.9500C105—C1061.382 (4)
C13—C141.374 (3)C106—H1060.9500
C14—C151.379 (3)
C10i—C1—C2125.44 (17)H15—C15—C14120.65 (12)
C11—C1—C2118.19 (17)C16—C15—C14118.7 (2)
C11—C1—C10i116.37 (17)C16—C15—H15120.65 (13)
C2—N1—H1126.02 (11)C15—C16—C11120.4 (2)
C5—N1—H1126.02 (10)H16—C16—C11119.82 (12)
C5—N1—C2107.95 (16)H16—C16—C15119.82 (13)
N1—C2—C1125.50 (18)C18—C17—C6121.0 (2)
C3—C2—C1125.69 (17)C22—C17—C6121.06 (19)
C3—C2—N1108.79 (17)C22—C17—C18118.0 (2)
C7—N2—H2126.28 (10)H18—C18—C17119.36 (14)
C10—N2—H2126.28 (11)C19—C18—C17121.3 (2)
C10—N2—C7107.43 (16)C19—C18—H18119.36 (15)
H3—C3—C2126.37 (11)H19—C19—C18119.68 (15)
C4—C3—C2107.25 (18)C20—C19—C18120.6 (2)
C4—C3—H3126.37 (12)C20—C19—H19119.68 (14)
O2—N3—O1123.68 (19)C21—C20—C19118.4 (2)
C14—N3—O1118.12 (18)C23—C20—C19120.6 (2)
C14—N3—O2118.2 (2)C23—C20—C21121.0 (2)
H4—C4—C3126.23 (12)H21—C21—C20119.43 (15)
C5—C4—C3107.55 (18)C22—C21—C20121.1 (2)
C5—C4—H4126.23 (12)C22—C21—H21119.43 (15)
C4—C5—N1108.44 (17)C21—C22—C17120.6 (2)
C6—C5—N1126.46 (18)H22—C22—C17119.72 (13)
C6—C5—C4125.10 (19)H22—C22—C21119.72 (15)
C7—C6—C5125.03 (19)H23a—C23—C20109.5
C17—C6—C5117.50 (17)H23b—C23—C20109.5
C17—C6—C7117.47 (17)H23b—C23—H23a109.5
C6—C7—N2126.41 (17)H23c—C23—C20109.5
C8—C7—N2109.04 (17)H23c—C23—H23a109.5
C8—C7—C6124.54 (19)H23c—C23—H23b109.5
H8—C8—C7126.39 (12)C102—C101—N101118.9 (3)
C9—C8—C7107.22 (18)C106—C101—N101118.6 (3)
C9—C8—H8126.39 (12)C106—C101—C102122.5 (3)
H9—C9—C8126.33 (12)O101—N101—C101118.2 (3)
C10—C9—C8107.34 (18)O102—N101—C101117.9 (3)
C10—C9—H9126.33 (11)O102—N101—O101123.9 (3)
N2—C10—C1i126.24 (18)H102—C102—C101120.88 (16)
C9—C10—C1i124.76 (17)C103—C102—C101118.2 (2)
C9—C10—N2108.96 (17)C103—C102—H102120.88 (17)
C12—C11—C1119.81 (17)H103—C103—C102119.77 (17)
C16—C11—C1120.80 (18)C104—C103—C102120.5 (3)
C16—C11—C12119.37 (18)C104—C103—H103119.77 (18)
H12—C12—C11119.57 (11)H104—C104—C103119.89 (18)
C13—C12—C11120.86 (19)C105—C104—C103120.2 (3)
C13—C12—H12119.57 (13)C105—C104—H104119.89 (17)
H13—C13—C12120.77 (13)H105—C105—C104119.47 (17)
C14—C13—C12118.5 (2)C106—C105—C104121.1 (3)
C14—C13—H13120.77 (12)C106—C105—H105119.47 (16)
C13—C14—N3118.88 (19)C105—C106—C101117.5 (3)
C15—C14—N3118.92 (18)H106—C106—C101121.26 (17)
C15—C14—C13122.19 (18)H106—C106—C105121.26 (16)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O2ii0.95 (1)2.45 (1)3.355 (3)159 (1)
C104—H104···O102ii0.95 (1)2.58 (1)3.272 (4)130 (1)
Symmetry code: (ii) x+1, y, z.
 

Funding information

The authors are grateful to the Ministry of Education and Science of the Republic of Kaza­khstan for supporting this work.

References

First citationAdilov, S. & Thalladi, V. R. (2007). Cryst. Growth & Des. 7, 481–484.  CSD CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2005). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationByrn, M. P., Curtis, C. J., Goldberg, I., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K. & Strouse, C. E. (1991). J. Am. Chem. Soc. 113, 6549–6557.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSeredyuk, M., Gumienna–Kontecka, E., Brzuszkiewicz, A., Iskenderov, T. S. & Kalibabchuk, V. A. (2014). Acta Cryst. E70, o1147–o1148.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShultz, A. M., Farha, O. K., Hupp, J. T. & Nguyen, S. T. (2009). J. Am. Chem. Soc. 131, 4204–4205.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationUrbani, M., Grätzel, M., Nazeeruddin, M. K. & Torres, T. (2014). Chem. Rev. 114, 12330–12396.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds