research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-2-(furan-2-yl­methyl­­idene)-2,3,4,9-tetra­hydro-1H-carbazol-1-one

CROSSMARK_Color_square_no_text.svg

aKunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamilnadu, India, bDepartment of Chemistry, RV College of Engineering, Bangalore 560 059, Karnataka, India, cDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, and dDepartment of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA
*Correspondence e-mail: thiruvalluvar.a@gmail.com, sridharanm@rvce.edu.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 8 December 2017; accepted 15 December 2017; online 1 January 2018)

The title compound, C17H13NO2, crystallizes with two conformationally very similar independent mol­ecules (A and B) in the asymmetric unit. In the crystal, the individual mol­ecules are linked by pairs of N—H⋯O hydrogen bonds forming AA and BB inversion dimers, with R22(10) rings. They stack alternately up the a-axis direction and are linked by C—H⋯π inter­actions, forming sheets parallel to the ab plane.

1. Chemical context

Natural products comprising a carbazole skeleton linked to another heterocycle have received significant attention due to the promising anti­tumor properties of several of their naturally occurring representatives (Knölker & Reddy, 2002[Knölker, H.-J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303-4427.]). Numerous total syntheses of these compounds have been reported that use a variety of structural modification methods for annelating heterocyclic systems to carbazole frameworks. This rapidly growing class of heteroaryl-condensed carbazoles has continued to attract attention because of their broad spectrum of useful biological activities that extend well beyond the anti­tumor properties of the naturally occurring carbazole derivatives that originally spiked the inter­est of researchers (Knölker & Reddy, 2002[Knölker, H.-J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303-4427.]). Most heteroaryl carbazoles reported contain a heteroaryl moiety fused with a carbazole moiety; however, there are few reports where the heteroaryl unit is substituted with a carbazole unit (Sridharan et al., 2008[Sridharan, M., Beagle, L. K., Zeller, M., Rajendra Prasad, K. J. (2008). J. Chem. Res. pp. 572-577.]). We have reported the synthesis of 1-oxo-2-aryl­idene-2,3,4,9-tetra­hydro­carbazoles from potential precursors of the 2,3,4,9-tetra­hydro­carbazole-1-one type and these synthons were utilized to derive a diverse variety of heteroannelated carbazoles (Sridharan et al., 2008[Sridharan, M., Beagle, L. K., Zeller, M., Rajendra Prasad, K. J. (2008). J. Chem. Res. pp. 572-577.]; Sridharan & Rajendra Prasad, 2011[Sridharan, M. & Rajendra Prasad, K. J. (2011). J. Chem. Res. 35, 53-59.]; Archana et al., 2010a[Archana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010a). Acta Cryst. E66, o3145.],b[Archana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010b). Acta Cryst. E66, o3198.]; Thiruvalluvar et al., 2013[Thiruvalluvar, A., Archana, R., Yamuna, E., Rajendra Prasad, K. J., Butcher, R. J., Gupta, S. K. & Öztürk Yildirim, S. (2013). Acta Cryst. E69, o150.]). Herein, we report on the crystal structure of one such compound, synthesized by the base-initialized reaction of 2,3,4,9-tetra­hydro­carbazol-1-one with furan-2-carbaldehyde.

[Scheme 1]

2. Structural commentary

The title compound, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit (Fig. 1[link]). The conformations of the two mol­ecules are similar, as can be seen in Fig. 2[link], which shows the mol­ecular overlay of mol­ecule B inverted on mol­ecule A (r.m.s. deviation = 0.082 Å). The cyclo­hexene rings of the tetra­hydro­carbazole moieties have half-chair conformations in both mol­ecules. The mean plane of the tetra­hydro­carbazole moiety (r.m.s. deviations are 0.087 and 0.072 Å for mol­ecules A and B, respectively) is inclined to the furan ring by 12.89 (14)° in mol­ecule A, and 12.09 (14)° in mol­ecule B.

[Figure 1]
Figure 1
The mol­ecular structure of the two independent mol­ecules (A and B) of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Mol­ecular overlay of inverted mol­ecule B (red) on mol­ecule A (blue).

3. Supra­molecular features

In the crystal, the individual mol­ecules are linked by pairs of N—H⋯O hydrogen bonds forming AA and BB inversion dimers, with [R_{2}^{2}](10) ring motifs, which is the main motif that facilitates packing (Table 1[link] and Fig. 3[link]). The individual dimers stack alternately along the a-axis direction, as shown in Fig. 3[link]. The stacks are connected by C—H⋯π inter­actions, forming layers parallel to the ab plane (Fig. 4[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg9, Cg10 are the centroids of rings O2/C14–C17, N1/C1/C6/C7/C12, N2/C18/C23/C24/C29 and C18–C23, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.93 (5) 1.90 (5) 2.792 (3) 160 (4)
N2—H2B⋯O3ii 0.89 (3) 1.91 (4) 2.788 (3) 168 (3)
C5—H5⋯Cg10 0.95 2.92 3.661 (3) 136
C8—H8ACg9 0.99 2.95 3.687 (3) 132
C25—H25BCg2iii 0.99 2.65 3.464 (3) 140
C33—H33⋯Cg1iii 0.95 2.92 3.564 (4) 126
Symmetry codes: (i) -x+1, -y-1, -z+1; (ii) -x+2, -y, -z+1; (iii) x, y+1, z.
[Figure 3]
Figure 3
Crystal packing of the title compound, viewed along the b axis, showing the hydrogen bonded AA and BB inversion dimers, with [R_{2}^{2}](10) ring motifs. The N—H⋯O hydrogen bonds are shown as dashed lines (see Table 1[link]; mol­ecule A blue, mol­ecule B red).
[Figure 4]
Figure 4
Crystal packing of the title compound, viewed along the c axis, showing the N—H⋯O hydrogen bonds and C—H⋯π inter­actions (blue dashed lines; see Table 1[link]). Only the H atoms involved in these inter­actions have been included; A mol­ecules are blue and B mol­ecules are red.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.38, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the (E)-2-furyl­methyl­ene-2,3,4,9-tetra­hydro-1H-carbazol-1-one skel­eton gave four hits. These include (E)-2-[(furan-2-yl)methyl­idene]-7-methyl-2,3,4,9-tetra­hydro-1H-carbazol-1-one (CSD refcode: LESBAO; Thiruvalluvar et al., 2013[Thiruvalluvar, A., Archana, R., Yamuna, E., Rajendra Prasad, K. J., Butcher, R. J., Gupta, S. K. & Öztürk Yildirim, S. (2013). Acta Cryst. E69, o150.]), 2-(2-furyl­methyl­ene)-6-methyl-2,3,4,9-tetra­hydro-1H-carbazol-1-one (OMABAG; Sridharan & Rajendra Prasad, 2011[Sridharan, M. & Rajendra Prasad, K. J. (2011). J. Chem. Res. 35, 53-59.]), (E)-2-(furan-2-yl­methyl­idene)-8-methyl-2,3,4,9-tetra­hydro-1H-carbazol-1-one (WACYAC; Archana et al., 2010a[Archana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010a). Acta Cryst. E66, o3145.]), and (E)-6-chloro-2-(furan-2-yl­methyl­idene)-2,3,4,9-tetra­hydro-1H-carbazol-1-one (WADDIQ; Archana et al., 2010b[Archana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010b). Acta Cryst. E66, o3198.]), which are closely related to the title compound. Half-chair conformations of the cyclo­hexene rings are observed in LESBAO, OMABAG and WACYAC, but a planar conformation is observed in the fourth structure, WADDIQ. The crystal packing in all four compounds, and the title compound, feature N—H⋯O hydrogen-bonded dimers with [R_{2}^{2}](10) ring motifs. LESBAO and OMABAG also exhibit C—H⋯O and C—H⋯π inter­actions, but such inter­actions are not present in WACYAC and WADDIQ.

5. Synthesis and crystallization

The synthesis of the title compound is illustrated in Fig. 5[link]. An equimolar mixture of 2,3,4,9-tetra­hydro­carbazol-1-one (0.005 mol) and furan-2-carbaldehyde (0.005 mol) was treated with 25 ml of a 5% ethano­lic potassium hydroxide solution and stirred for 6 h at room temperature. The product precipitated as a yellow crystalline mass, which was filtered off and washed with 50% ethanol. A further crop of condensation product was obtained on neutralization with acetic acid and dilution with water. The product was recrystallized from ethanol to yield the title compound as yellow plate-like crystals (yield 1.17 g, 89%; m.p. 492–494 K).

[Figure 5]
Figure 5
Synthesis of the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NH H atoms, H1A and H2B, were located in a difference-Fourier map and freely refined. The remaining H atoms were placed in calculated positions, with C—H bond distances of 0.95 Å (aromatic H), and 0.99 Å (methyl­ene H), and refined as riding with Uiso(H) = 1.2Ueq(C). Reflections 002 and 100 were obstructed by the beam stop and omitted from the refinement.

Table 2
Experimental details

Crystal data
Chemical formula C17H13NO2
Mr 263.28
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 15.353 (3), 6.3143 (13), 26.941 (6)
β (°) 96.446 (4)
V3) 2595.3 (9)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.43 × 0.14 × 0.06
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison. Wisconsin, USA.])
Tmin, Tmax 0.707, 0.995
No. of measured, independent and observed [I > 2σ(I)] reflections 21411, 5293, 3646
Rint 0.089
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.147, 1.11
No. of reflections 5293
No. of parameters 369
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.30
Computer programs: SMART and SAINT-Plus (Bruker, 2003[Bruker (2003). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison. Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(E)-2-(Furan-2-ylmethylidene)-2,3,4,9-tetrahydro-1H-carbazol-1-one top
Crystal data top
C17H13NO2Dx = 1.348 Mg m3
Mr = 263.28Melting point: 493 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.353 (3) ÅCell parameters from 2429 reflections
b = 6.3143 (13) Åθ = 2.7–30.5°
c = 26.941 (6) ŵ = 0.09 mm1
β = 96.446 (4)°T = 100 K
V = 2595.3 (9) Å3Plate, yellow
Z = 80.43 × 0.14 × 0.06 mm
F(000) = 1104
Data collection top
Bruker SMART APEX CCD
diffractometer
5293 independent reflections
Radiation source: fine-focus sealed tube3646 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
ω scansθmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1919
Tmin = 0.707, Tmax = 0.995k = 77
21411 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: mixed
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0269P)2 + 3.5969P]
where P = (Fo2 + 2Fc2)/3
5293 reflections(Δ/σ)max < 0.001
369 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.61376 (19)0.2774 (5)0.60261 (12)0.0173 (7)
C20.6086 (2)0.3856 (5)0.64790 (12)0.0217 (7)
H20.5783250.5163730.6490570.026*
C30.6495 (2)0.2924 (5)0.69026 (12)0.0227 (7)
H30.6471510.3608510.7214740.027*
C40.6952 (2)0.0974 (6)0.68913 (13)0.0252 (8)
H40.7222650.0382370.7194360.030*
C50.7008 (2)0.0072 (5)0.64487 (12)0.0216 (7)
H50.7322840.1366160.6442390.026*
C60.65914 (18)0.0813 (5)0.60055 (12)0.0167 (7)
C70.65038 (19)0.0186 (5)0.54922 (12)0.0177 (7)
C80.6917 (2)0.1602 (5)0.52424 (12)0.0216 (7)
H8A0.7544040.1270740.5226690.026*
H8B0.6887160.2896360.5447070.026*
C90.6481 (2)0.2046 (5)0.47127 (12)0.0203 (7)
H9A0.6041230.3180430.4733960.024*
H9B0.6933850.2609990.4514210.024*
C100.60272 (19)0.0196 (5)0.44242 (11)0.0165 (7)
C110.57529 (19)0.1702 (5)0.46952 (12)0.0173 (7)
C120.60027 (18)0.1724 (5)0.52269 (11)0.0165 (7)
C130.58102 (19)0.0203 (5)0.39250 (12)0.0199 (7)
H130.5536510.1046460.3786840.024*
C140.5942 (2)0.1873 (6)0.35736 (12)0.0225 (7)
C150.6212 (2)0.3920 (5)0.35988 (13)0.0246 (8)
H150.6408500.4681770.3894360.030*
C160.6147 (2)0.4717 (6)0.31037 (14)0.0326 (9)
H160.6293850.6103710.3003970.039*
C170.5837 (2)0.3117 (7)0.28029 (13)0.0355 (9)
H170.5724660.3210150.2449600.043*
N10.57937 (16)0.3319 (4)0.55481 (9)0.0179 (6)
H1A0.539 (3)0.439 (7)0.5461 (17)0.070 (15)*
O10.53202 (14)0.3178 (3)0.44786 (8)0.0215 (5)
O20.57065 (15)0.1343 (4)0.30757 (8)0.0303 (6)
C180.93890 (19)0.1893 (5)0.61166 (12)0.0189 (7)
C190.9632 (2)0.0632 (5)0.65399 (12)0.0237 (8)
H190.9942980.0658120.6516840.028*
C200.9400 (2)0.1351 (6)0.69894 (13)0.0279 (8)
H200.9545110.0526220.7281860.033*
C210.8948 (2)0.3294 (6)0.70257 (13)0.0299 (8)
H210.8805320.3751230.7342690.036*
C220.8713 (2)0.4529 (5)0.66135 (12)0.0235 (8)
H220.8407570.5822670.6644250.028*
C230.89304 (19)0.3854 (5)0.61422 (12)0.0184 (7)
C240.87868 (19)0.4659 (5)0.56452 (12)0.0178 (7)
C250.8270 (2)0.6529 (5)0.54360 (12)0.0202 (7)
H25A0.8431400.7776870.5649180.024*
H25B0.7639280.6245260.5450170.024*
C260.8415 (2)0.7065 (5)0.48933 (12)0.0229 (7)
H26A0.7863300.7669230.4726470.028*
H26B0.8866400.8188140.4902750.028*
C270.86940 (18)0.5264 (5)0.45686 (12)0.0175 (7)
C280.91238 (19)0.3342 (5)0.48089 (12)0.0178 (7)
C290.91589 (18)0.3218 (5)0.53430 (12)0.0176 (7)
C300.86481 (19)0.5329 (5)0.40647 (12)0.0201 (7)
H300.8843120.4092420.3909380.024*
C310.8343 (2)0.7024 (5)0.37323 (12)0.0221 (7)
C320.8067 (2)0.9061 (6)0.37738 (13)0.0267 (8)
H320.7989590.9789250.4074290.032*
C330.7916 (2)0.9893 (6)0.32760 (14)0.0319 (9)
H330.7721481.1280150.3182570.038*
C340.8102 (2)0.8329 (6)0.29687 (14)0.0332 (9)
H340.8057180.8444980.2615160.040*
N20.95203 (17)0.1539 (4)0.56271 (10)0.0191 (6)
H2B0.985 (2)0.049 (6)0.5523 (12)0.026 (10)*
O30.94238 (15)0.1899 (4)0.45586 (8)0.0242 (5)
O40.83651 (15)0.6547 (4)0.32307 (8)0.0306 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0095 (14)0.0212 (17)0.0213 (17)0.0009 (13)0.0028 (12)0.0031 (13)
C20.0188 (16)0.0236 (18)0.0227 (18)0.0002 (14)0.0015 (13)0.0023 (14)
C30.0180 (16)0.0317 (19)0.0188 (17)0.0003 (15)0.0036 (13)0.0042 (15)
C40.0224 (17)0.0325 (19)0.0203 (18)0.0018 (15)0.0009 (14)0.0043 (15)
C50.0170 (16)0.0219 (17)0.0264 (19)0.0015 (14)0.0040 (13)0.0058 (15)
C60.0093 (14)0.0178 (16)0.0235 (18)0.0013 (12)0.0044 (12)0.0004 (13)
C70.0138 (15)0.0172 (16)0.0222 (17)0.0018 (13)0.0032 (12)0.0032 (14)
C80.0190 (16)0.0215 (17)0.0241 (18)0.0035 (14)0.0015 (13)0.0004 (14)
C90.0180 (16)0.0180 (17)0.0255 (18)0.0030 (14)0.0048 (13)0.0020 (14)
C100.0116 (14)0.0191 (16)0.0191 (17)0.0012 (13)0.0032 (12)0.0012 (13)
C110.0111 (14)0.0157 (16)0.0250 (17)0.0013 (13)0.0017 (12)0.0030 (14)
C120.0114 (14)0.0159 (16)0.0227 (17)0.0012 (13)0.0047 (12)0.0004 (13)
C130.0145 (15)0.0188 (16)0.0272 (19)0.0005 (13)0.0063 (13)0.0013 (14)
C140.0152 (15)0.0297 (19)0.0228 (18)0.0001 (15)0.0036 (13)0.0008 (15)
C150.0231 (17)0.0285 (19)0.0235 (19)0.0021 (15)0.0081 (14)0.0023 (15)
C160.032 (2)0.032 (2)0.035 (2)0.0026 (17)0.0110 (16)0.0117 (18)
C170.038 (2)0.048 (2)0.021 (2)0.002 (2)0.0056 (16)0.0135 (19)
N10.0154 (13)0.0198 (15)0.0184 (14)0.0022 (12)0.0017 (11)0.0009 (12)
O10.0247 (12)0.0194 (12)0.0201 (12)0.0049 (10)0.0014 (9)0.0001 (10)
O20.0334 (14)0.0365 (15)0.0211 (13)0.0048 (12)0.0029 (11)0.0018 (11)
C180.0125 (15)0.0212 (16)0.0240 (17)0.0023 (13)0.0066 (13)0.0070 (14)
C190.0209 (17)0.0248 (18)0.0259 (19)0.0035 (14)0.0049 (14)0.0018 (15)
C200.0234 (18)0.038 (2)0.0220 (18)0.0006 (16)0.0006 (14)0.0027 (16)
C210.0273 (19)0.038 (2)0.0250 (19)0.0020 (17)0.0045 (15)0.0061 (17)
C220.0223 (17)0.0233 (18)0.0251 (19)0.0042 (15)0.0029 (14)0.0044 (15)
C230.0116 (15)0.0178 (16)0.0260 (18)0.0012 (13)0.0032 (13)0.0016 (14)
C240.0115 (14)0.0182 (17)0.0239 (18)0.0014 (13)0.0030 (12)0.0019 (14)
C250.0177 (16)0.0188 (17)0.0248 (18)0.0011 (14)0.0055 (13)0.0018 (14)
C260.0188 (16)0.0216 (18)0.0294 (19)0.0032 (14)0.0072 (14)0.0001 (15)
C270.0099 (14)0.0181 (16)0.0251 (18)0.0007 (13)0.0050 (12)0.0021 (14)
C280.0109 (14)0.0172 (16)0.0263 (18)0.0026 (13)0.0062 (12)0.0033 (14)
C290.0108 (14)0.0180 (16)0.0242 (17)0.0037 (13)0.0026 (12)0.0007 (14)
C300.0161 (16)0.0196 (17)0.0247 (18)0.0010 (13)0.0021 (13)0.0029 (14)
C310.0143 (16)0.0297 (19)0.0223 (18)0.0027 (15)0.0026 (13)0.0000 (15)
C320.0182 (17)0.031 (2)0.031 (2)0.0030 (15)0.0055 (14)0.0020 (16)
C330.0191 (18)0.034 (2)0.042 (2)0.0046 (16)0.0001 (15)0.0110 (18)
C340.0293 (19)0.042 (2)0.026 (2)0.0085 (18)0.0057 (15)0.0138 (18)
N20.0162 (14)0.0170 (14)0.0250 (15)0.0043 (12)0.0063 (11)0.0013 (12)
O30.0294 (13)0.0213 (12)0.0227 (12)0.0047 (11)0.0060 (10)0.0036 (10)
O40.0350 (14)0.0331 (14)0.0228 (13)0.0051 (12)0.0011 (11)0.0020 (11)
Geometric parameters (Å, º) top
C1—N11.379 (4)C18—N21.374 (4)
C1—C21.408 (4)C18—C191.406 (4)
C1—C61.425 (4)C18—C231.430 (4)
C2—C31.372 (4)C19—C201.377 (5)
C2—H20.9500C19—H190.9500
C3—C41.419 (5)C20—C211.418 (5)
C3—H30.9500C20—H200.9500
C4—C51.375 (5)C21—C221.372 (5)
C4—H40.9500C21—H210.9500
C5—C61.406 (4)C22—C231.414 (4)
C5—H50.9500C22—H220.9500
C6—C71.430 (4)C23—C241.426 (4)
C7—C121.387 (4)C24—C291.386 (4)
C7—C81.492 (4)C24—C251.497 (4)
C8—C91.533 (4)C25—C261.541 (4)
C8—H8A0.9900C25—H25A0.9900
C8—H8B0.9900C25—H25B0.9900
C9—C101.527 (4)C26—C271.525 (4)
C9—H9A0.9900C26—H26A0.9900
C9—H9B0.9900C26—H26B0.9900
C10—C131.349 (4)C27—C301.352 (4)
C10—C111.489 (4)C27—C281.494 (4)
C11—O11.250 (4)C28—O31.252 (4)
C11—C121.441 (4)C28—C291.436 (4)
C12—N11.389 (4)C29—N21.386 (4)
C13—C141.446 (4)C30—C311.440 (5)
C13—H130.9500C30—H300.9500
C14—C151.357 (5)C31—C321.363 (5)
C14—O21.391 (4)C31—O41.389 (4)
C15—C161.419 (5)C32—C331.435 (5)
C15—H150.9500C32—H320.9500
C16—C171.348 (5)C33—C341.340 (5)
C16—H160.9500C33—H330.9500
C17—O21.367 (4)C34—O41.365 (4)
C17—H170.9500C34—H340.9500
N1—H1A0.93 (5)N2—H2B0.89 (3)
N1—C1—C2129.4 (3)N2—C18—C19129.2 (3)
N1—C1—C6108.5 (3)N2—C18—C23108.2 (3)
C2—C1—C6122.0 (3)C19—C18—C23122.6 (3)
C3—C2—C1116.6 (3)C20—C19—C18117.1 (3)
C3—C2—H2121.7C20—C19—H19121.5
C1—C2—H2121.7C18—C19—H19121.5
C2—C3—C4122.4 (3)C19—C20—C21121.5 (3)
C2—C3—H3118.8C19—C20—H20119.2
C4—C3—H3118.8C21—C20—H20119.2
C5—C4—C3121.0 (3)C22—C21—C20121.5 (3)
C5—C4—H4119.5C22—C21—H21119.3
C3—C4—H4119.5C20—C21—H21119.3
C4—C5—C6118.6 (3)C21—C22—C23119.2 (3)
C4—C5—H5120.7C21—C22—H22120.4
C6—C5—H5120.7C23—C22—H22120.4
C5—C6—C1119.4 (3)C22—C23—C24135.1 (3)
C5—C6—C7134.1 (3)C22—C23—C18118.1 (3)
C1—C6—C7106.6 (3)C24—C23—C18106.8 (3)
C12—C7—C6106.9 (3)C29—C24—C23106.7 (3)
C12—C7—C8122.5 (3)C29—C24—C25122.2 (3)
C6—C7—C8130.3 (3)C23—C24—C25130.9 (3)
C7—C8—C9113.2 (3)C24—C25—C26113.8 (3)
C7—C8—H8A108.9C24—C25—H25A108.8
C9—C8—H8A108.9C26—C25—H25A108.8
C7—C8—H8B108.9C24—C25—H25B108.8
C9—C8—H8B108.9C26—C25—H25B108.8
H8A—C8—H8B107.7H25A—C25—H25B107.7
C10—C9—C8117.4 (3)C27—C26—C25117.4 (3)
C10—C9—H9A107.9C27—C26—H26A107.9
C8—C9—H9A107.9C25—C26—H26A107.9
C10—C9—H9B107.9C27—C26—H26B107.9
C8—C9—H9B107.9C25—C26—H26B107.9
H9A—C9—H9B107.2H26A—C26—H26B107.2
C13—C10—C11116.1 (3)C30—C27—C28115.5 (3)
C13—C10—C9123.5 (3)C30—C27—C26124.6 (3)
C11—C10—C9120.3 (3)C28—C27—C26119.7 (3)
O1—C11—C12121.7 (3)O3—C28—C29121.7 (3)
O1—C11—C10122.4 (3)O3—C28—C27122.0 (3)
C12—C11—C10115.9 (3)C29—C28—C27116.4 (3)
C7—C12—N1109.9 (3)C24—C29—N2110.1 (3)
C7—C12—C11125.2 (3)C24—C29—C28125.5 (3)
N1—C12—C11124.9 (3)N2—C29—C28124.3 (3)
C10—C13—C14128.2 (3)C27—C30—C31128.6 (3)
C10—C13—H13115.9C27—C30—H30115.7
C14—C13—H13115.9C31—C30—H30115.7
C15—C14—O2108.8 (3)C32—C31—O4109.1 (3)
C15—C14—C13136.6 (3)C32—C31—C30137.2 (3)
O2—C14—C13114.6 (3)O4—C31—C30113.7 (3)
C14—C15—C16107.6 (3)C31—C32—C33106.7 (3)
C14—C15—H15126.2C31—C32—H32126.6
C16—C15—H15126.2C33—C32—H32126.6
C17—C16—C15106.4 (3)C34—C33—C32106.5 (3)
C17—C16—H16126.8C34—C33—H33126.7
C15—C16—H16126.8C32—C33—H33126.7
C16—C17—O2110.8 (3)C33—C34—O4111.1 (3)
C16—C17—H17124.6C33—C34—H34124.5
O2—C17—H17124.6O4—C34—H34124.5
C1—N1—C12108.0 (3)C18—N2—C29108.2 (3)
C1—N1—H1A126 (3)C18—N2—H2B125 (2)
C12—N1—H1A124 (3)C29—N2—H2B127 (2)
C17—O2—C14106.5 (3)C34—O4—C31106.6 (3)
N1—C1—C2—C3179.9 (3)N2—C18—C19—C20178.6 (3)
C6—C1—C2—C30.1 (4)C23—C18—C19—C200.8 (5)
C1—C2—C3—C40.2 (5)C18—C19—C20—C211.0 (5)
C2—C3—C4—C50.4 (5)C19—C20—C21—C220.9 (5)
C3—C4—C5—C61.0 (5)C20—C21—C22—C230.4 (5)
C4—C5—C6—C11.1 (4)C21—C22—C23—C24178.5 (3)
C4—C5—C6—C7179.3 (3)C21—C22—C23—C180.1 (5)
N1—C1—C6—C5179.5 (3)N2—C18—C23—C22179.2 (3)
C2—C1—C6—C50.5 (4)C19—C18—C23—C220.3 (4)
N1—C1—C6—C70.2 (3)N2—C18—C23—C240.3 (3)
C2—C1—C6—C7179.7 (3)C19—C18—C23—C24179.2 (3)
C5—C6—C7—C12179.4 (3)C22—C23—C24—C29179.1 (3)
C1—C6—C7—C120.9 (3)C18—C23—C24—C290.6 (3)
C5—C6—C7—C86.7 (6)C22—C23—C24—C255.3 (6)
C1—C6—C7—C8172.9 (3)C18—C23—C24—C25173.3 (3)
C12—C7—C8—C921.2 (4)C29—C24—C25—C2616.9 (4)
C6—C7—C8—C9165.8 (3)C23—C24—C25—C26170.0 (3)
C7—C8—C9—C1027.5 (4)C24—C25—C26—C2726.2 (4)
C8—C9—C10—C13163.0 (3)C25—C26—C27—C30163.6 (3)
C8—C9—C10—C1120.5 (4)C25—C26—C27—C2822.1 (4)
C13—C10—C11—O12.4 (4)C30—C27—C28—O30.3 (4)
C9—C10—C11—O1174.3 (3)C26—C27—C28—O3174.4 (3)
C13—C10—C11—C12178.7 (3)C30—C27—C28—C29178.4 (3)
C9—C10—C11—C124.6 (4)C26—C27—C28—C296.8 (4)
C6—C7—C12—N11.7 (3)C23—C24—C29—N20.6 (3)
C8—C7—C12—N1172.7 (3)C25—C24—C29—N2173.9 (3)
C6—C7—C12—C11179.7 (3)C23—C24—C29—C28176.3 (3)
C8—C7—C12—C115.9 (5)C25—C24—C29—C281.8 (5)
O1—C11—C12—C7177.9 (3)O3—C28—C29—C24174.9 (3)
C10—C11—C12—C73.2 (4)C27—C28—C29—C243.9 (4)
O1—C11—C12—N10.5 (5)O3—C28—C29—N20.2 (5)
C10—C11—C12—N1178.4 (3)C27—C28—C29—N2179.0 (3)
C11—C10—C13—C14175.9 (3)C28—C27—C30—C31174.4 (3)
C9—C10—C13—C140.7 (5)C26—C27—C30—C310.1 (5)
C10—C13—C14—C157.8 (6)C27—C30—C31—C325.3 (6)
C10—C13—C14—O2175.4 (3)C27—C30—C31—O4178.6 (3)
O2—C14—C15—C160.0 (4)O4—C31—C32—C330.4 (4)
C13—C14—C15—C16176.9 (4)C30—C31—C32—C33175.9 (4)
C14—C15—C16—C170.3 (4)C31—C32—C33—C340.3 (4)
C15—C16—C17—O20.5 (4)C32—C33—C34—O40.2 (4)
C2—C1—N1—C12178.7 (3)C19—C18—N2—C29179.5 (3)
C6—C1—N1—C121.3 (3)C23—C18—N2—C290.0 (3)
C7—C12—N1—C11.9 (3)C24—C29—N2—C180.4 (3)
C11—C12—N1—C1179.5 (3)C28—C29—N2—C18176.2 (3)
C16—C17—O2—C140.5 (4)C33—C34—O4—C310.1 (4)
C15—C14—O2—C170.3 (4)C32—C31—O4—C340.3 (3)
C13—C14—O2—C17177.4 (3)C30—C31—O4—C34177.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg9, Cg10 are the centroids of rings O2/C14–C17, N1/C1/C6/C7/C12, N2/C18/C23/C24/C29 and C18–C23, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.93 (5)1.90 (5)2.792 (3)160 (4)
N2—H2B···O3ii0.89 (3)1.91 (4)2.788 (3)168 (3)
C5—H5···Cg100.952.923.661 (3)136
C8—H8A···Cg90.992.953.687 (3)132
C25—H25B···Cg2iii0.992.653.464 (3)140
C33—H33···Cg1iii0.952.923.564 (4)126
Symmetry codes: (i) x+1, y1, z+1; (ii) x+2, y, z+1; (iii) x, y+1, z.
 

Funding information

We are grateful to the UGC, New Delhi, India, for the award of a Major Research Project Grant (No. 31–122/2005). MS thanks the UGC, New Delhi, for the award of a research fellowship. The diffractometer was funded by an NSF grant (No. 0087210), by the Ohio Board of Regents grant CAP-491 and by YSU.

References

First citationArchana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010a). Acta Cryst. E66, o3145.  CrossRef IUCr Journals Google Scholar
First citationArchana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010b). Acta Cryst. E66, o3198.  CrossRef IUCr Journals Google Scholar
First citationBruker (2003). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison. Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKnölker, H.-J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303–4427.  Web of Science PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridharan, M., Beagle, L. K., Zeller, M., Rajendra Prasad, K. J. (2008). J. Chem. Res. pp. 572–577.  CrossRef Google Scholar
First citationSridharan, M. & Rajendra Prasad, K. J. (2011). J. Chem. Res. 35, 53–59.  CrossRef CAS Google Scholar
First citationThiruvalluvar, A., Archana, R., Yamuna, E., Rajendra Prasad, K. J., Butcher, R. J., Gupta, S. K. & Öztürk Yildirim, S. (2013). Acta Cryst. E69, o150.  CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds