research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the η4-ketimine titanium complex (di­phenyl­amido-κN){3-methyl-6-[(4-methyl­phen­yl)(phenyl­aza­nid­yl)methyl­­idene]cyclo­hexa-2,4-dien-1-yl-κ2N,C1}(η5-penta­methyl­cyclo­penta­dien­yl)titanium(IV)

CROSSMARK_Color_square_no_text.svg

aInstitut für Chemie, Fakultät für Mathematik und Naturwissenschaften, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
*Correspondence e-mail: ruediger.beckhaus@uni-oldenburg.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 11 November 2017; accepted 5 December 2017; online 1 January 2018)

The mol­ecular structure of the title titanium(IV) half-sandwich complex, [Ti(η5-C10H15)(η4-C21H19N)(C12H10N)], shows a three-legged piano-stool geometry at the central TiIV atom, comprising of one penta­methyl­cyclo­penta­dienyl ligand, one bidentate ketimine ligand in an η4-coordination mode and one monodentate di­phenyl­amide ligand. Except for van der Waals forces, there are no significant inter­molecular inter­actions in the crystal.

1. Chemical context

In the course of our recent investigations with respect to the unusual η4-coordination mode of the ketimine PhN=C(p-tol­yl)2 ligand in the coordination sphere of titanium (Fischer et al., 2017[Fischer, M., Schmidtmann, M. & Beckhaus, R. (2017). Organometallics, doi: 10.1021/acs. organomet. 7b00673.]; Loose et al., 2014[Loose, F., Plettenberg, I., Haase, D., Saak, W., Schmidtmann, M., Schäfer, A., Müller, T. & Beckhaus, R. (2014). Organometallics, 33, 6785-6795.]), the bonding situation of the ketimine ligand has been of great inter­est. This ligand is bonded with the nitro­gen atom and one of the ortho-carbon atoms of one para-tolyl moiety to the central titanium(IV) atom, forming five-membered ring structures. Structural details based on the results of X-ray diffraction and of density functional theory calculations at the M06-2X level support the formulation of these complexes as non-classical mono­aza­butadiene complexes. However, the follow-up chemistry with various multiple bond substrates of the complexes with formulae [(η5-Cp#)Ti(η4-C21H19N)(Cl)] (# = H5, Me5) shows a hidden η2-imine reactivity to five-membered titanacycles (Fischer et al., 2017[Fischer, M., Schmidtmann, M. & Beckhaus, R. (2017). Organometallics, doi: 10.1021/acs. organomet. 7b00673.]), being of high inter­est due to the importance of η2-bound imine titanium complexes in industrially relevant hydro­amino­alkyl­ation reaction of alkenes (for a recent review on hydro­amino­alkyl­ation reactions, see: Chong et al., 2014[Chong, E., Garcia, P. & Schafer, L. L. (2014). Synthesis, pp. 305-306.]). In contrast, classical mono­aza­butadiene complexes (Manssen et al., 2017b[Manssen, M., Töben, I., Kahrs, C., Bölte, J.-H., Schmidtmann, M. & Beckhaus, R. (2017b). Organometallics, 36, 2973-2981.]; Scholz et al. 1998[Scholz, J., Kahlert, S. & Görls, H. (1998). Organometallics, 17, 2876-2884.], 2004[Scholz, J., Kahlert, S. & Görls, H. (2004). Organometallics, 23, 1594-1603.]) show ring-enlargement reactions to seven-membered titanacycles, using similar substrates (Manssen et al., 2017a[Manssen, M., Kahrs, C., Töben, I., Bölte, J.-H., Schmidtmann, M. & Beckhaus, R. (2017a). Chem. Eur. J. 23, 15827-15833.]; Scholz et al., 1998[Scholz, J., Kahlert, S. & Görls, H. (1998). Organometallics, 17, 2876-2884.]). Moreover, the ligand framework of the non-classical mono­aza­butadiene complexes mentioned above is important for their unexpected reactivities. By derivatization of [(η5-Cp*)Ti(η4-C21H19N)(Cl)] with the dialkyl-substituted lithium amide LiN(Me)Cy, the formation of a titanadi­hydro­pyrrole is observed as a result of the 1,3-H-shift in the five-membered ring system in addition to the salt metathesis reaction (Fischer et al., 2017[Fischer, M., Schmidtmann, M. & Beckhaus, R. (2017). Organometallics, doi: 10.1021/acs. organomet. 7b00673.]).

Here we report the synthesis and crystal structure of the title compound (η5-C10H15)Ti(η4-C21H19N)(C12H10N), 1, synthesized by the reaction of [(η5-Cp*)Ti(η4-C21H19N)(Cl)] with the diaryl-substituted lithium amide LiNPh2. Compound 1 maintains the η4-coordination mode of the ketimine ligand.

[Scheme 1]

2. Structural commentary

Fig. 1[link] shows the mol­ecular structure of complex 1 for which the η4-coordination mode of the ketimine ligand is clearly confirmed. The N1—C17 bond length [1.383 (3) Å] is significantly elongated compared to the free ketimine [1.283 (1) Å; Loose et al., 2014[Loose, F., Plettenberg, I., Haase, D., Saak, W., Schmidtmann, M., Schäfer, A., Müller, T. & Beckhaus, R. (2014). Organometallics, 33, 6785-6795.]] and nearly identical to that of the starting complex [(η5-Cp*)Ti(η4-C21H19N)(Cl)] [1.393 (2) Å; (Loose et al., 2014[Loose, F., Plettenberg, I., Haase, D., Saak, W., Schmidtmann, M., Schäfer, A., Müller, T. & Beckhaus, R. (2014). Organometallics, 33, 6785-6795.]], indicating single-bond character (March, 2007[March, J. (2007). Advanced Organic Chemistry, 6th ed., p. 43. New York: John Wiley & Sons.]). The C17—C25 bond length [1.414 (4) Å] is significantly shortened in comparison to the free ketimine [1.497 (1) Å; Loose et al., 2014[Loose, F., Plettenberg, I., Haase, D., Saak, W., Schmidtmann, M., Schäfer, A., Müller, T. & Beckhaus, R. (2014). Organometallics, 33, 6785-6795.]]. The sum of angles around C17 {N1—C17—C18 [122.0 (2)°] + N1—C17—C25 [117.0 (2)°] + C18—C17—C25 [120.8 (2)°] = 359.8°} indicates sp2-hybridization of this atom. Furthermore, localized C=C double bonds are found in the C25–C30 aromatic ring [C26—C27 = 1.356 (4), C28—C29 = 1.355 (4) Å] in contrast to the well-balanced C—-C distances in the C18–C23 aromatic ring system (≃ 1.39 Å). The central titanium(IV) atom is fourfold coordinated in a considerably distorted tetra­hedral coordination environment, with N1—Ti1—N2 and N1—Ti1—C30 bond angles of 110.42 (9) and 84.23 (9)°, respectively. The Ti1—N1 bond length [1.963 (2) Å] is shorter than the Ti1—N2 bond length [2.009 (2) Å] and indicates weak pπdπ electron donor inter­actions. The Ti1—C30 bond length [2.259 (3) Å] as well as the fold angle of the central five-membered ring system (60.6°) are similar to those in other reported mono­aza­butadiene complexes (Manssen et al., 2017b[Manssen, M., Töben, I., Kahrs, C., Bölte, J.-H., Schmidtmann, M. & Beckhaus, R. (2017b). Organometallics, 36, 2973-2981.]; Scholz et al., 1998[Scholz, J., Kahlert, S. & Görls, H. (1998). Organometallics, 17, 2876-2884.], 2004[Scholz, J., Kahlert, S. & Görls, H. (2004). Organometallics, 23, 1594-1603.]). The influence of the η4-bonding mode of the ketimine ligand can be analysed by the difference Δ = [(Ti1—C17 + Ti1—C25)/2 – (Ti1—N1 + Ti1—C30)/2] = 0.386 Å (Scholz et al., 1998[Scholz, J., Kahlert, S. & Görls, H. (1998). Organometallics, 17, 2876-2884.]). This value is in good agreement with the starting material (0.326 Å; Loose et al., 2014[Loose, F., Plettenberg, I., Haase, D., Saak, W., Schmidtmann, M., Schäfer, A., Müller, T. & Beckhaus, R. (2014). Organometallics, 33, 6785-6795.]) and other related complexes. The terms prone and supine are employed to describe the mode of the monoazadiene orientation in the envelope structure of 1, as summarized by Nakamura et al. (2001[Nakamura, A. & Mashima, K. (2001). J. Organomet. Chem. 621, 224-230.]). Generally, for mono­aza­butadiene complexes prone and supine isomers are known. The mol­ecular structure of 1 shows the supine isomer.

[Scheme 2]
[Figure 1]
Figure 1
The mol­ecular structure of 1, with displacement ellipsoids at the 50% probability level. H atoms and phenyl groups of the diphenyl amido moiety have been omitted for clarity.

3. Supra­molecular features

There are no significant supra­molecular features in the crystal structure of 1. The crystal packing, shown in Fig. 2[link], appears to be dominated by van der Waals inter­actions only.

[Figure 2]
Figure 2
A view along the c axis, showing the packing of the mol­ecules in the crystal structure of complex 1. No significant supra­molecular features can be observed. Colour code: C grey, H colourless, N blue and Ti turquoise spheres.

4. Synthesis and crystallization

All operations were carried out under a dry nitro­gen atmos­phere using Schlenk techniques or in a glove box. The η4-ketimine complex [(η5-Cp*)Ti(η4-C21H19N)(Cl)] and lithium diphenyl amide were prepared according to published procedures (Fischer et al., 2017[Fischer, M., Schmidtmann, M. & Beckhaus, R. (2017). Organometallics, doi: 10.1021/acs. organomet. 7b00673.]; Hatakeyama et al., 2012[Hatakeyama, T., Imayoshi, R., Yoshimoto, Y., Ghorai, S. K., Jin, M., Takaya, H., Norisuye, K., Sohrin, Y. & Nakamura, M. (2012). J. Am. Chem. Soc. 134, 20262-20265.]). Solvents were dried according to standard procedures over Na/K alloy with benzo­phenone as indicator and distilled under a nitro­gen atmosphere.

[(η5-Cp*)Ti(η4-C21H19N)(Cl)] (0.500 g, 0.992 mmol) and lithium diphenyl amide (0.174 g, 0.992 mmol) were dissolved in 12 ml of tetra­hydro­furan. After stirring the reaction mixture for 16 h at room temperature, the solvent was evaporated in a vacuum. The residue was dissolved in 12 ml of toluene, filtered, and the precipitate of LiCl was washed with toluene (2 ×10 ml). The combined filtrates were evaporated in a vacuum and the residue was recrystallized from n-hexane to yield complex 1 as dark-red prisms in 15% crystalline yield.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Hydrogen atoms bonded to carbon atoms, with the exception of H30 bonded to the ortho-carbon atom that is bonded to titanium, were located from difference-Fourier maps but were subsequently fixed in idealized positions using appropriate riding models. Atom H30 was refined freely. The absolute structure was determined (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) by using 3640 quotients.

Table 1
Experimental details

Crystal data
Chemical formula [Ti(C10H15)(C21H19N)(C12H10N)]
Mr 636.70
Crystal system, space group Tetragonal, P[\overline{4}]21c
Temperature (K) 100
a, c (Å) 20.0633 (4), 16.8156 (4)
V3) 6768.9 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.40 × 0.14 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.832, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 152032, 9906, 8703
Rint 0.093
(sin θ/λ)max−1) 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.110, 1.07
No. of reflections 9906
No. of parameters 426
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.65, −0.53
Absolute structure Flack x determined using 3640 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.003 (8)
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

(Diphenylamido-κN){3-methyl-6-[(4-methylphenyl)(phenylazanidyl)methylidene]cyclohexa-2,4-dien-1-yl-κ2N,C1}(η5-pentamethylcyclopentadienyl)titanium(IV) top
Crystal data top
[Ti(C10H15)(C21H19N)(C12H10N)]Dx = 1.250 Mg m3
Mr = 636.70Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421cCell parameters from 9899 reflections
a = 20.0633 (4) Åθ = 2.3–27.7°
c = 16.8156 (4) ŵ = 0.29 mm1
V = 6768.9 (3) Å3T = 100 K
Z = 8Tetragonal prism, dark red
F(000) = 27040.40 × 0.14 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
8703 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.093
φ and ω scansθmax = 30.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2828
Tmin = 0.832, Tmax = 1.000k = 2828
152032 measured reflectionsl = 2323
9906 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.060P)2 + 2.P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
9906 reflectionsΔρmax = 0.65 e Å3
426 parametersΔρmin = 0.53 e Å3
0 restraintsAbsolute structure: Flack x determined using 3640 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.25521 (2)0.77115 (2)0.52922 (3)0.01349 (10)
N10.33928 (10)0.74376 (11)0.57924 (12)0.0165 (4)
N20.26913 (11)0.85300 (10)0.46239 (13)0.0165 (4)
C10.24245 (13)0.67486 (13)0.44812 (15)0.0183 (5)
C20.19622 (13)0.72333 (13)0.41991 (16)0.0191 (5)
C30.14749 (12)0.73412 (12)0.47990 (15)0.0173 (5)
C40.16372 (13)0.69257 (13)0.54563 (15)0.0175 (5)
C50.22181 (12)0.65600 (12)0.52647 (16)0.0178 (5)
C60.29283 (15)0.63923 (15)0.39780 (19)0.0265 (6)
H6A0.31430.67110.36190.040*
H6B0.27050.60460.36650.040*
H6C0.32660.61870.43210.040*
C70.19600 (15)0.75307 (16)0.33785 (16)0.0257 (6)
H7A0.17480.79710.33950.039*
H7B0.17110.72390.30180.039*
H7C0.24200.75760.31890.039*
C80.08424 (13)0.77324 (14)0.47078 (19)0.0244 (5)
H8A0.07320.79480.52140.037*
H8B0.04800.74320.45540.037*
H8C0.09020.80730.42960.037*
C90.12056 (15)0.68160 (15)0.61720 (18)0.0249 (6)
H9A0.14860.67800.66470.037*
H9B0.09500.64040.61040.037*
H9C0.08990.71920.62330.037*
C100.25101 (16)0.60119 (14)0.57619 (18)0.0255 (6)
H10A0.29710.59290.55950.038*
H10B0.22460.56050.56930.038*
H10C0.25040.61440.63230.038*
C110.38873 (12)0.69317 (13)0.58313 (16)0.0160 (5)
C120.40136 (14)0.66049 (14)0.65474 (17)0.0212 (5)
H120.37750.67280.70130.025*
C130.44865 (15)0.61008 (15)0.65820 (19)0.0255 (6)
H130.45640.58730.70680.031*
C140.48470 (14)0.59293 (14)0.5909 (2)0.0259 (6)
H140.51730.55870.59340.031*
C150.47305 (14)0.62589 (14)0.51979 (19)0.0236 (6)
H150.49820.61460.47390.028*
C160.42487 (13)0.67536 (13)0.51536 (16)0.0196 (5)
H160.41640.69710.46620.024*
C170.34882 (13)0.80236 (13)0.62103 (16)0.0184 (5)
C180.41617 (13)0.83181 (13)0.63272 (16)0.0167 (5)
C190.46455 (13)0.83115 (13)0.57330 (15)0.0188 (5)
H190.45540.80960.52420.023*
C200.52607 (14)0.86168 (14)0.58502 (17)0.0216 (5)
H200.55840.86060.54370.026*
C210.54113 (14)0.89386 (14)0.65630 (17)0.0214 (5)
C220.49367 (14)0.89274 (15)0.71652 (17)0.0227 (6)
H220.50330.91320.76610.027*
C230.43237 (14)0.86209 (14)0.70517 (17)0.0207 (5)
H230.40090.86170.74730.025*
C240.60631 (16)0.93054 (18)0.6678 (2)0.0332 (7)
H24A0.63850.91550.62780.050*
H24B0.62370.92130.72110.050*
H24C0.59890.97860.66180.050*
C250.29109 (13)0.83635 (13)0.64712 (15)0.0166 (5)
C260.29111 (14)0.90781 (13)0.65934 (16)0.0194 (5)
H260.33020.93270.64800.023*
C270.23609 (15)0.93964 (14)0.68677 (17)0.0236 (6)
H270.23770.98660.69400.028*
C280.17566 (14)0.90498 (16)0.70515 (17)0.0238 (6)
C290.17200 (14)0.83910 (16)0.68804 (16)0.0220 (5)
H290.13200.81560.69930.026*
C300.22712 (13)0.80375 (14)0.65334 (17)0.0203 (5)
H300.2255 (16)0.7539 (16)0.6633 (19)0.018 (8)*
C310.11923 (16)0.94261 (18)0.7438 (2)0.0341 (7)
H31A0.13440.96130.79450.051*
H31B0.08190.91220.75340.051*
H31C0.10470.97880.70860.051*
C320.33448 (13)0.86856 (13)0.43620 (16)0.0181 (5)
C330.37170 (14)0.82304 (15)0.39128 (15)0.0206 (5)
H330.35310.78110.37740.025*
C340.43614 (14)0.83944 (17)0.36691 (17)0.0259 (6)
H340.46130.80820.33680.031*
C350.46377 (15)0.90029 (17)0.38585 (19)0.0284 (6)
H350.50760.91120.36870.034*
C360.42683 (15)0.94556 (16)0.4303 (2)0.0280 (6)
H360.44570.98750.44380.034*
C370.36303 (14)0.93018 (14)0.45505 (18)0.0229 (6)
H370.33830.96170.48510.028*
C380.22008 (13)0.89928 (12)0.43968 (15)0.0159 (5)
C390.16483 (13)0.91041 (13)0.48870 (16)0.0192 (5)
H390.16190.88850.53860.023*
C400.11412 (14)0.95335 (14)0.46488 (19)0.0234 (5)
H400.07630.95950.49810.028*
C410.11815 (15)0.98732 (15)0.39313 (18)0.0244 (6)
H410.08331.01640.37700.029*
C420.17374 (15)0.97823 (14)0.34527 (17)0.0229 (5)
H420.17741.00230.29680.027*
C430.22390 (14)0.93457 (13)0.36723 (16)0.0198 (5)
H430.26120.92830.33320.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0154 (2)0.01400 (19)0.01109 (17)0.00003 (14)0.00026 (16)0.00082 (16)
N10.0164 (9)0.0204 (10)0.0127 (9)0.0021 (8)0.0002 (8)0.0009 (8)
N20.0169 (9)0.0170 (9)0.0156 (10)0.0011 (8)0.0004 (8)0.0026 (8)
C10.0196 (12)0.0190 (11)0.0165 (11)0.0002 (9)0.0006 (9)0.0032 (9)
C20.0232 (12)0.0206 (12)0.0135 (11)0.0013 (10)0.0028 (10)0.0017 (10)
C30.0177 (11)0.0177 (11)0.0164 (11)0.0027 (9)0.0017 (9)0.0027 (9)
C40.0192 (11)0.0173 (11)0.0160 (12)0.0052 (9)0.0008 (9)0.0005 (9)
C50.0205 (11)0.0149 (10)0.0179 (11)0.0033 (9)0.0027 (10)0.0004 (10)
C60.0247 (14)0.0273 (14)0.0274 (15)0.0012 (11)0.0028 (11)0.0112 (12)
C70.0323 (15)0.0313 (15)0.0136 (12)0.0039 (12)0.0032 (11)0.0005 (11)
C80.0197 (12)0.0237 (12)0.0296 (14)0.0013 (10)0.0030 (12)0.0043 (12)
C90.0267 (14)0.0287 (14)0.0194 (13)0.0088 (11)0.0063 (11)0.0003 (11)
C100.0305 (14)0.0181 (12)0.0279 (14)0.0017 (11)0.0062 (12)0.0037 (11)
C110.0151 (11)0.0166 (11)0.0161 (11)0.0006 (9)0.0016 (9)0.0023 (9)
C120.0219 (13)0.0221 (13)0.0196 (12)0.0003 (10)0.0024 (10)0.0001 (10)
C130.0254 (14)0.0212 (13)0.0300 (15)0.0004 (11)0.0085 (12)0.0039 (11)
C140.0198 (13)0.0180 (12)0.0399 (17)0.0018 (10)0.0038 (12)0.0043 (12)
C150.0212 (12)0.0221 (12)0.0276 (15)0.0021 (10)0.0033 (11)0.0081 (11)
C160.0204 (12)0.0218 (12)0.0167 (13)0.0004 (9)0.0004 (10)0.0040 (10)
C170.0166 (11)0.0199 (12)0.0188 (12)0.0003 (9)0.0004 (10)0.0005 (10)
C180.0168 (11)0.0162 (11)0.0170 (12)0.0001 (9)0.0013 (9)0.0000 (9)
C190.0219 (12)0.0215 (12)0.0131 (11)0.0005 (10)0.0007 (10)0.0008 (10)
C200.0206 (12)0.0253 (13)0.0188 (12)0.0009 (10)0.0056 (10)0.0014 (11)
C210.0190 (12)0.0220 (12)0.0231 (13)0.0008 (10)0.0026 (11)0.0042 (11)
C220.0227 (13)0.0279 (14)0.0176 (12)0.0010 (11)0.0009 (11)0.0067 (11)
C230.0206 (13)0.0238 (13)0.0175 (13)0.0003 (10)0.0026 (10)0.0028 (10)
C240.0207 (14)0.0389 (18)0.0401 (19)0.0081 (12)0.0040 (13)0.0120 (15)
C250.0182 (11)0.0198 (12)0.0120 (11)0.0008 (9)0.0000 (9)0.0007 (9)
C260.0208 (12)0.0193 (12)0.0179 (12)0.0009 (9)0.0010 (10)0.0001 (10)
C270.0260 (14)0.0214 (12)0.0235 (13)0.0049 (11)0.0050 (11)0.0060 (10)
C280.0216 (13)0.0356 (16)0.0142 (12)0.0077 (11)0.0013 (10)0.0070 (11)
C290.0173 (12)0.0330 (15)0.0156 (12)0.0003 (10)0.0015 (10)0.0011 (11)
C300.0185 (11)0.0215 (12)0.0210 (13)0.0004 (10)0.0003 (10)0.0007 (10)
C310.0248 (15)0.0434 (19)0.0342 (17)0.0030 (13)0.0025 (13)0.0174 (15)
C320.0177 (12)0.0214 (12)0.0154 (12)0.0002 (9)0.0008 (9)0.0051 (10)
C330.0231 (13)0.0270 (13)0.0119 (11)0.0014 (10)0.0018 (10)0.0019 (10)
C340.0209 (13)0.0418 (17)0.0150 (12)0.0050 (12)0.0000 (10)0.0056 (12)
C350.0194 (13)0.0415 (17)0.0243 (14)0.0005 (12)0.0009 (11)0.0130 (13)
C360.0224 (13)0.0272 (15)0.0345 (17)0.0062 (11)0.0035 (12)0.0108 (13)
C370.0208 (12)0.0207 (12)0.0272 (15)0.0009 (10)0.0002 (11)0.0029 (11)
C380.0180 (11)0.0143 (10)0.0154 (11)0.0016 (9)0.0013 (9)0.0003 (9)
C390.0205 (12)0.0179 (12)0.0192 (13)0.0010 (9)0.0029 (10)0.0034 (9)
C400.0212 (12)0.0230 (12)0.0259 (14)0.0009 (10)0.0029 (11)0.0020 (12)
C410.0234 (13)0.0237 (13)0.0262 (14)0.0048 (11)0.0050 (11)0.0014 (11)
C420.0302 (14)0.0221 (13)0.0164 (12)0.0018 (11)0.0020 (11)0.0018 (10)
C430.0239 (13)0.0203 (12)0.0152 (12)0.0008 (10)0.0005 (10)0.0008 (9)
Geometric parameters (Å, º) top
Ti1—N11.963 (2)C17—C181.488 (4)
Ti1—N22.009 (2)C18—C191.393 (4)
Ti1—C302.259 (3)C18—C231.400 (4)
Ti1—C12.379 (3)C19—C201.392 (4)
Ti1—C22.387 (3)C19—H190.9500
Ti1—C52.406 (2)C20—C211.394 (4)
Ti1—C32.431 (2)C20—H200.9500
Ti1—C42.435 (3)C21—C221.390 (4)
Ti1—C252.482 (3)C21—C241.513 (4)
Ti1—C172.511 (3)C22—C231.388 (4)
N1—C171.383 (3)C22—H220.9500
N1—C111.421 (3)C23—H230.9500
N2—C381.406 (3)C24—H24A0.9800
N2—C321.418 (3)C24—H24B0.9800
C1—C21.425 (4)C24—H24C0.9800
C1—C51.432 (4)C25—C301.444 (4)
C1—C61.500 (4)C25—C261.448 (4)
C2—C31.421 (4)C26—C271.356 (4)
C2—C71.503 (4)C26—H260.9500
C3—C41.422 (4)C27—C281.432 (4)
C3—C81.500 (4)C27—H270.9500
C4—C51.414 (4)C28—C291.355 (4)
C4—C91.499 (4)C28—C311.508 (4)
C5—C101.501 (4)C29—C301.438 (4)
C6—H6A0.9800C29—H290.9500
C6—H6B0.9800C30—H301.01 (3)
C6—H6C0.9800C31—H31A0.9800
C7—H7A0.9800C31—H31B0.9800
C7—H7B0.9800C31—H31C0.9800
C7—H7C0.9800C32—C371.399 (4)
C8—H8A0.9800C32—C331.401 (4)
C8—H8B0.9800C33—C341.396 (4)
C8—H8C0.9800C33—H330.9500
C9—H9A0.9800C34—C351.378 (5)
C9—H9B0.9800C34—H340.9500
C9—H9C0.9800C35—C361.390 (5)
C10—H10A0.9800C35—H350.9500
C10—H10B0.9800C36—C371.381 (4)
C10—H10C0.9800C36—H360.9500
C11—C121.394 (4)C37—H370.9500
C11—C161.397 (4)C38—C391.399 (4)
C12—C131.388 (4)C38—C431.411 (4)
C12—H120.9500C39—C401.392 (4)
C13—C141.387 (5)C39—H390.9500
C13—H130.9500C40—C411.388 (4)
C14—C151.386 (5)C40—H400.9500
C14—H140.9500C41—C421.387 (4)
C15—C161.387 (4)C41—H410.9500
C15—H150.9500C42—C431.384 (4)
C16—H160.9500C42—H420.9500
C17—C251.414 (4)C43—H430.9500
N1—Ti1—N2110.42 (9)C16—C11—N1120.5 (2)
N1—Ti1—C3084.23 (9)C13—C12—C11120.2 (3)
N2—Ti1—C30108.35 (9)C13—C12—H12119.9
N1—Ti1—C196.36 (9)C11—C12—H12119.9
N2—Ti1—C1110.98 (9)C14—C13—C12120.2 (3)
C30—Ti1—C1137.58 (10)C14—C13—H13119.9
N1—Ti1—C2130.03 (9)C12—C13—H13119.9
N2—Ti1—C288.09 (9)C15—C14—C13119.9 (3)
C30—Ti1—C2134.76 (10)C15—C14—H14120.1
C1—Ti1—C234.80 (9)C13—C14—H14120.1
N1—Ti1—C588.78 (9)C14—C15—C16120.3 (3)
N2—Ti1—C5144.36 (9)C14—C15—H15119.8
C30—Ti1—C5103.08 (10)C16—C15—H15119.8
C1—Ti1—C534.82 (9)C15—C16—C11120.0 (3)
C2—Ti1—C557.40 (9)C15—C16—H16120.0
N1—Ti1—C3145.52 (9)C11—C16—H16120.0
N2—Ti1—C3100.51 (9)N1—C17—C25117.0 (2)
C30—Ti1—C3100.49 (9)N1—C17—C18122.0 (2)
C1—Ti1—C357.35 (9)C25—C17—C18120.8 (2)
C2—Ti1—C334.29 (9)N1—C17—Ti151.10 (12)
C5—Ti1—C356.80 (9)C25—C17—Ti172.43 (15)
N1—Ti1—C4114.69 (9)C18—C17—Ti1149.29 (19)
N2—Ti1—C4134.20 (9)C19—C18—C23117.8 (2)
C30—Ti1—C483.96 (9)C19—C18—C17122.3 (2)
C1—Ti1—C457.18 (9)C23—C18—C17119.9 (2)
C2—Ti1—C456.87 (9)C20—C19—C18120.8 (2)
C5—Ti1—C433.96 (8)C20—C19—H19119.6
C3—Ti1—C433.99 (9)C18—C19—H19119.6
N1—Ti1—C2563.65 (9)C19—C20—C21121.2 (2)
N2—Ti1—C2588.61 (9)C19—C20—H20119.4
C30—Ti1—C2535.07 (9)C21—C20—H20119.4
C1—Ti1—C25156.53 (9)C22—C21—C20118.1 (3)
C2—Ti1—C25166.07 (9)C22—C21—C24120.5 (3)
C5—Ti1—C25127.03 (9)C20—C21—C24121.5 (3)
C3—Ti1—C25133.74 (9)C23—C22—C21120.9 (3)
C4—Ti1—C25117.99 (8)C23—C22—H22119.5
N1—Ti1—C1733.24 (9)C21—C22—H22119.5
N2—Ti1—C1792.07 (9)C22—C23—C18121.2 (3)
C30—Ti1—C1763.01 (9)C22—C23—H23119.4
C1—Ti1—C17129.47 (9)C18—C23—H23119.4
C2—Ti1—C17160.82 (9)C21—C24—H24A109.5
C5—Ti1—C17117.37 (9)C21—C24—H24B109.5
C3—Ti1—C17162.00 (9)H24A—C24—H24B109.5
C4—Ti1—C17130.97 (9)C21—C24—H24C109.5
C25—Ti1—C1732.90 (8)H24A—C24—H24C109.5
C17—N1—C11119.2 (2)H24B—C24—H24C109.5
C17—N1—Ti195.66 (16)C17—C25—C30122.1 (2)
C11—N1—Ti1145.04 (18)C17—C25—C26121.4 (2)
C38—N2—C32114.7 (2)C30—C25—C26116.0 (2)
C38—N2—Ti1126.47 (17)C17—C25—Ti174.67 (15)
C32—N2—Ti1118.83 (16)C30—C25—Ti163.98 (14)
C2—C1—C5107.4 (2)C26—C25—Ti1129.43 (18)
C2—C1—C6125.2 (2)C27—C26—C25120.9 (3)
C5—C1—C6126.0 (2)C27—C26—H26119.5
C2—C1—Ti172.94 (15)C25—C26—H26119.5
C5—C1—Ti173.64 (14)C26—C27—C28122.3 (3)
C6—C1—Ti1129.66 (19)C26—C27—H27118.9
C3—C2—C1108.4 (2)C28—C27—H27118.9
C3—C2—C7126.1 (2)C29—C28—C27118.3 (3)
C1—C2—C7125.3 (3)C29—C28—C31122.6 (3)
C3—C2—Ti174.53 (15)C27—C28—C31119.1 (3)
C1—C2—Ti172.26 (15)C28—C29—C30121.7 (3)
C7—C2—Ti1123.27 (19)C28—C29—H29119.1
C2—C3—C4107.7 (2)C30—C29—H29119.1
C2—C3—C8126.1 (2)C29—C30—C25119.3 (2)
C4—C3—C8125.4 (2)C29—C30—Ti1135.2 (2)
C2—C3—Ti171.17 (14)C25—C30—Ti180.95 (16)
C4—C3—Ti173.17 (14)C29—C30—H30113.2 (19)
C8—C3—Ti1128.83 (18)C25—C30—H30119.2 (19)
C5—C4—C3108.4 (2)Ti1—C30—H3082.8 (19)
C5—C4—C9125.6 (2)C28—C31—H31A109.5
C3—C4—C9125.3 (2)C28—C31—H31B109.5
C5—C4—Ti171.88 (14)H31A—C31—H31B109.5
C3—C4—Ti172.85 (14)C28—C31—H31C109.5
C9—C4—Ti1128.42 (18)H31A—C31—H31C109.5
C4—C5—C1108.1 (2)H31B—C31—H31C109.5
C4—C5—C10125.1 (3)C37—C32—C33118.7 (3)
C1—C5—C10126.4 (2)C37—C32—N2120.2 (2)
C4—C5—Ti174.15 (14)C33—C32—N2121.1 (2)
C1—C5—Ti171.54 (14)C34—C33—C32119.9 (3)
C10—C5—Ti1125.75 (18)C34—C33—H33120.1
C1—C6—H6A109.5C32—C33—H33120.1
C1—C6—H6B109.5C35—C34—C33120.9 (3)
H6A—C6—H6B109.5C35—C34—H34119.5
C1—C6—H6C109.5C33—C34—H34119.5
H6A—C6—H6C109.5C34—C35—C36119.2 (3)
H6B—C6—H6C109.5C34—C35—H35120.4
C2—C7—H7A109.5C36—C35—H35120.4
C2—C7—H7B109.5C37—C36—C35120.7 (3)
H7A—C7—H7B109.5C37—C36—H36119.7
C2—C7—H7C109.5C35—C36—H36119.7
H7A—C7—H7C109.5C36—C37—C32120.6 (3)
H7B—C7—H7C109.5C36—C37—H37119.7
C3—C8—H8A109.5C32—C37—H37119.7
C3—C8—H8B109.5C39—C38—N2120.0 (2)
H8A—C8—H8B109.5C39—C38—C43118.1 (2)
C3—C8—H8C109.5N2—C38—C43121.9 (2)
H8A—C8—H8C109.5C40—C39—C38120.5 (2)
H8B—C8—H8C109.5C40—C39—H39119.7
C4—C9—H9A109.5C38—C39—H39119.7
C4—C9—H9B109.5C41—C40—C39120.8 (3)
H9A—C9—H9B109.5C41—C40—H40119.6
C4—C9—H9C109.5C39—C40—H40119.6
H9A—C9—H9C109.5C42—C41—C40119.1 (3)
H9B—C9—H9C109.5C42—C41—H41120.4
C5—C10—H10A109.5C40—C41—H41120.4
C5—C10—H10B109.5C43—C42—C41120.9 (3)
H10A—C10—H10B109.5C43—C42—H42119.6
C5—C10—H10C109.5C41—C42—H42119.6
H10A—C10—H10C109.5C42—C43—C38120.6 (3)
H10B—C10—H10C109.5C42—C43—H43119.7
C12—C11—C16119.3 (2)C38—C43—H43119.7
C12—C11—N1120.2 (2)
C5—C1—C2—C30.2 (3)N1—C17—C18—C23142.0 (3)
C6—C1—C2—C3166.8 (3)C25—C17—C18—C2343.1 (4)
Ti1—C1—C2—C366.34 (18)Ti1—C17—C18—C23151.4 (3)
C5—C1—C2—C7175.2 (2)C23—C18—C19—C202.1 (4)
C6—C1—C2—C78.3 (4)C17—C18—C19—C20177.2 (3)
Ti1—C1—C2—C7118.6 (3)C18—C19—C20—C210.1 (4)
C5—C1—C2—Ti166.13 (17)C19—C20—C21—C222.1 (4)
C6—C1—C2—Ti1126.9 (3)C19—C20—C21—C24176.4 (3)
C1—C2—C3—C40.3 (3)C20—C21—C22—C231.8 (4)
C7—C2—C3—C4175.3 (2)C24—C21—C22—C23176.7 (3)
Ti1—C2—C3—C464.51 (17)C21—C22—C23—C180.5 (4)
C1—C2—C3—C8170.3 (2)C19—C18—C23—C222.4 (4)
C7—C2—C3—C84.7 (4)C17—C18—C23—C22176.9 (3)
Ti1—C2—C3—C8124.8 (3)N1—C17—C25—C3019.1 (4)
C1—C2—C3—Ti164.84 (18)C18—C17—C25—C30165.8 (2)
C7—C2—C3—Ti1120.2 (3)Ti1—C17—C25—C3044.8 (2)
C2—C3—C4—C50.3 (3)N1—C17—C25—C26152.9 (2)
C8—C3—C4—C5170.4 (2)C18—C17—C25—C2622.3 (4)
Ti1—C3—C4—C563.53 (17)Ti1—C17—C25—C26127.2 (2)
C2—C3—C4—C9171.5 (2)N1—C17—C25—Ti125.7 (2)
C8—C3—C4—C90.7 (4)C18—C17—C25—Ti1149.4 (2)
Ti1—C3—C4—C9125.3 (3)C17—C25—C26—C27177.9 (3)
C2—C3—C4—Ti163.20 (18)C30—C25—C26—C279.6 (4)
C8—C3—C4—Ti1126.1 (2)Ti1—C25—C26—C2786.3 (3)
C3—C4—C5—C10.2 (3)C25—C26—C27—C280.1 (4)
C9—C4—C5—C1171.3 (2)C26—C27—C28—C295.7 (4)
Ti1—C4—C5—C163.95 (17)C26—C27—C28—C31173.3 (3)
C3—C4—C5—C10173.0 (2)C27—C28—C29—C300.9 (4)
C9—C4—C5—C101.9 (4)C31—C28—C29—C30178.1 (3)
Ti1—C4—C5—C10122.9 (3)C28—C29—C30—C259.2 (4)
C3—C4—C5—Ti164.16 (17)C28—C29—C30—Ti198.8 (3)
C9—C4—C5—Ti1124.8 (3)C17—C25—C30—C29173.6 (2)
C2—C1—C5—C40.0 (3)C26—C25—C30—C2914.1 (4)
C6—C1—C5—C4166.8 (3)Ti1—C25—C30—C29137.3 (3)
Ti1—C1—C5—C465.66 (17)C17—C25—C30—Ti149.1 (2)
C2—C1—C5—C10173.1 (2)C26—C25—C30—Ti1123.2 (2)
C6—C1—C5—C106.2 (4)C38—N2—C32—C3755.4 (3)
Ti1—C1—C5—C10121.3 (3)Ti1—N2—C32—C37122.8 (2)
C2—C1—C5—Ti165.66 (18)C38—N2—C32—C33124.6 (3)
C6—C1—C5—Ti1127.5 (3)Ti1—N2—C32—C3357.2 (3)
C17—N1—C11—C1265.8 (3)C37—C32—C33—C340.6 (4)
Ti1—N1—C11—C12119.8 (3)N2—C32—C33—C34179.4 (2)
C17—N1—C11—C16114.5 (3)C32—C33—C34—C350.5 (4)
Ti1—N1—C11—C1659.9 (4)C33—C34—C35—C360.4 (4)
C16—C11—C12—C131.0 (4)C34—C35—C36—C370.3 (5)
N1—C11—C12—C13178.6 (2)C35—C36—C37—C320.3 (5)
C11—C12—C13—C141.5 (4)C33—C32—C37—C360.5 (4)
C12—C13—C14—C150.5 (4)N2—C32—C37—C36179.5 (3)
C13—C14—C15—C160.9 (4)C32—N2—C38—C39148.6 (2)
C14—C15—C16—C111.3 (4)Ti1—N2—C38—C3929.5 (3)
C12—C11—C16—C150.4 (4)C32—N2—C38—C4332.7 (3)
N1—C11—C16—C15180.0 (2)Ti1—N2—C38—C43149.2 (2)
C11—N1—C17—C25151.1 (2)N2—C38—C39—C40176.5 (2)
Ti1—N1—C17—C2532.1 (2)C43—C38—C39—C402.3 (4)
C11—N1—C17—C1833.8 (4)C38—C39—C40—C411.7 (4)
Ti1—N1—C17—C18143.0 (2)C39—C40—C41—C420.3 (4)
C11—N1—C17—Ti1176.8 (3)C40—C41—C42—C431.8 (4)
N1—C17—C18—C1938.7 (4)C41—C42—C43—C381.2 (4)
C25—C17—C18—C19136.2 (3)C39—C38—C43—C420.8 (4)
Ti1—C17—C18—C1927.9 (5)N2—C38—C43—C42177.9 (2)
 

References

First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChong, E., Garcia, P. & Schafer, L. L. (2014). Synthesis, pp. 305–306.  Google Scholar
First citationFischer, M., Schmidtmann, M. & Beckhaus, R. (2017). Organometallics, doi: 10.1021/acs. organomet. 7b00673.  Google Scholar
First citationHatakeyama, T., Imayoshi, R., Yoshimoto, Y., Ghorai, S. K., Jin, M., Takaya, H., Norisuye, K., Sohrin, Y. & Nakamura, M. (2012). J. Am. Chem. Soc. 134, 20262–20265.  CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLoose, F., Plettenberg, I., Haase, D., Saak, W., Schmidtmann, M., Schäfer, A., Müller, T. & Beckhaus, R. (2014). Organometallics, 33, 6785–6795.  CSD CrossRef CAS Google Scholar
First citationManssen, M., Kahrs, C., Töben, I., Bölte, J.-H., Schmidtmann, M. & Beckhaus, R. (2017a). Chem. Eur. J. 23, 15827–15833.  CAS PubMed Google Scholar
First citationManssen, M., Töben, I., Kahrs, C., Bölte, J.-H., Schmidtmann, M. & Beckhaus, R. (2017b). Organometallics, 36, 2973–2981.  CAS Google Scholar
First citationMarch, J. (2007). Advanced Organic Chemistry, 6th ed., p. 43. New York: John Wiley & Sons.  Google Scholar
First citationNakamura, A. & Mashima, K. (2001). J. Organomet. Chem. 621, 224–230.  CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationScholz, J., Kahlert, S. & Görls, H. (1998). Organometallics, 17, 2876–2884.  CSD CrossRef CAS Google Scholar
First citationScholz, J., Kahlert, S. & Görls, H. (2004). Organometallics, 23, 1594–1603.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds