research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of bis­­[4-(di­methyl­amino)­pyridinium] tetra­kis­(thio­cyanato-κN)manganate(II) and tris­­[4-(di­methyl­amino)­pyridinium] penta­kis(thio­cyanato-κN)manganate(II)

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 25 November 2017; accepted 6 December 2017; online 1 January 2018)

The crystal structures of the title salts, (C7H11N2)2[Mn(NCS)4] (1) and (C7H11N2)3[Mn(NCS)5] (2), consist of manganese(II) cations that are tetra­hedrally (1) or trigonal–bipyramidally (2) coordinated to four or five terminal N-bonded thio­cyanate ligands, respectively, into discrete anionic complexes. The negative charge is compensated by two (1) or three (2) 4-(di­methyl­amino)­pyridinium cations, which are protonated at the pyridine N atom. The asymmetric unit of compound 1 consists of one anionic complex and two 4-(di­methyl­amino)­pyridinium cations, whereas that of compound 2 consists of two anionic complexes and six 4-(di­methyl­amino)­pyridinium cations, all of them located in general positions. These complexes are linked by N—H⋯S, C—H⋯S and C—H⋯N hydrogen-bonding inter­actions between the 4-(di­methyl­amino)­pyridinium cations and the thio­cyanate ligands into three-dimensional network structures.

1. Chemical context

Thio­cyanate anions are versatile ligands that can be coordinated to metal cations in different ways. The most prominent coordin­ation modes include the terminal and the μ-1,3 coord­ination modes. The latter mode is of special importance for compounds showing cooperative magnetic phenomena (Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]; Massoud et al., 2013[Massoud, S. S., Guilbeau, A. E., Luong, H. T., Vicente, R., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2013). Polyhedron, 54, 26-33.]; Mousavi et al., 2012[Mousavi, M., Béreau, V., Duhayon, C., Guionneau, P. & Sutter, J. P. (2012). Chem. Commun. 48, 10028-10030.]). In this context, we have reported a number of compounds based on M(NCS)2 moieties (M = Mn, Fe, Co and Ni) that show different magnetic properties including single-chain magnetism (Werner et al., 2015a[Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015a). Inorg. Chem. 54, 2893-2901.],b[Werner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015b). Eur. J. Inorg. Chem. pp. 3236-3245.]; Rams et al., 2017a[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017a). Phys. Chem. Chem. Phys. 19, 3232-3243.],b[Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017b). Phys. Chem. Chem. Phys. 19, 24534-24544.]). In the majority of structures, the metal cations are linked by pairs of μ-1,3 bridging ligands into chains, but 2D networks are also realized in which the cations are linked by pairs and single anionic ligands into layers (Suckert et al., 2016[Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190-18201.]; Wöhlert et al., 2012a[Wöhlert, S., Ruschewitz, U. & Näther, C. (2012a). Cryst. Growth Des. 12, 2715-2718.], 2013[Wöhlert, S., Wriedt, M., Fic, T., Tomkowicz, Z., Haase, W. & Näther, C. (2013). Inorg. Chem. 52, 1061-1068.]). In some cases, compounds comprising bridging anionic ligands need to be prepared by thermal decomposition of precursors that consist of discrete octa­hedral complexes with terminal N-bonded thio­cyanate anions. In this regard, we became inter­ested in mixed crystals based on MnII and CoII atoms with the strong N-donor co-ligand 4-di­methyl­amino­pyridine that might be prepared by thermal decomposition of mixed crystals of the corresponding discrete precursor complexes. To prove mixed crystal formation, the X-ray diffraction powder pattern of all samples needs to be compared with physical mixtures with the same metal-to-metal ratio. We therefore attempted to prepare [Mn(NCS)2(4-(di­methyl­amino)­pyridine)4], but in all cases obtained only the salt-like crystals 1 and 2, in which the MnII atom is solely coordinated by thio­cyanate ligands, either in a tetra­hedral (1) or trigonal–bipyramidal (2) configuration, and charge-balanced by 4-(di­methyl­amino)­pyridinium cations. The formation of these cations might be traced back to the fact that the neutral mol­ecule is a strong base because of the electron-donating di­methyl­amino substituent and therefore can easily be protonated. It should be mentioned that neither of the two compounds could be prepared in larger amounts as a pure crystalline phase, because mixtures were always obtained. However, both compounds are of inter­est from a structural point of view, because negatively charged manganate complexes with a fivefold coordination by thio­cyanate ligands are scarce. Moreover, a manganate(II) complex with 4-di­methyl­amino­pyridine has already been reported in the literature (Wöhlert et al., 2012b[Wöhlert, S., Jess, I. & Näther, C. (2012b). Acta Cryst. E68, m1528.]; Fig. 1[link]). In the structure of this compound, the MnII atom is octa­hedrally coordinated to four terminal N-bonded thio­cyanate anions and two neutral 4-(di­methyl­amino)­pyridine ligands, and the twofold negative charge is compensated by two 4-(di­methyl­amino)­pyridinium cations. Therefore, the crystal structures of the title compounds 1 and 2 supplement the coordination polyhedra realized for thio­cyanato­manganate(II) complexes with 4-(di­methyl­amino)­pyridinium as counter-cationic species.

[Scheme 1]
[Figure 1]
Figure 1
View of the Mn coordination in bis­[4-(di­methyl­amino)­pyridinium] bis­[4-(di­methyl­amino)­pyridine-κN]tetra­kis­(thio­cyanato-κN)manganate(II). Data taken from Wöhlert et al. (2012b[Wöhlert, S., Jess, I. & Näther, C. (2012b). Acta Cryst. E68, m1528.]).

2. Structural commentary

In the crystal structure of compound 1, the MnII atom is surrounded by four terminal N-bonded thio­cyanate ligands within a considerably distorted tetra­hedral coordination sphere. The N—Mn—N bond angles vary from 93.83 (7)° to 123.57 (7)° (Fig. 2[link] and Table 1[link]). The asymmetric unit of 1 comprises two cations and one complex anion. In contrast, the asymmetric unit of compound 2 comprises six cations and two anionic complexes, and the two MnII atoms in 2 are fivefold coordinated to the thio­cyanato anions. The resulting coord­in­ation polyhedra around the two central metal atoms can be described as distorted trigonal bipyramids (Fig. 3[link] and Table 2[link]). This is supported by calculation of the structural parameter τ5 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]), which leads to a value of 0.85 for Mn1 and of 0.93 for Mn2 (ideal value for a trigonal–bipyramidal coordination is 1, that of an ideal square-pyramidal coordination is 0). The Mn—N bond lengths in both independent complexes are comparable, but in both of them the distances to the thio­cyanate N atom in axial positions are significantly elongated, which might be the result of steric effects between the anionic ligands in the equatorial position (Tables 1[link] and 2[link]). In the structure of 1, three Mn—N bond lengths are similar, whereas the fourth is significantly elongated by about 0.07 Å (Table 1[link]). When comparing the Mn—N bond lengths of 1 and 2 with those of bis­(4-(di­methyl­amino)­pyridinium) [bis­(4-(di­methyl­amino)-pyridine-κN)tetra­kis­(thio­cyanato-κN)manganate(II)] (Wöhlert et al., 2012b[Wöhlert, S., Jess, I. & Näther, C. (2012b). Acta Cryst. E68, m1528.]), it becomes obvious that they increase with increasing coordination number. The negative charge of the anionic complexes in compounds 1 and 2 is compensated by two or six, respectively, crystallographically independent 4-(di­methyl­amino)­pyridinium cations that are located in general positions (Figs. 2[link] and 4[link]).

Table 1
Selected geometric parameters (Å, °) for compound 1[link]

Mn1—N1 2.0495 (17) Mn1—N3 2.0810 (16)
Mn1—N2 2.0600 (16) Mn1—N4 2.1336 (17)
       
N1—Mn1—N2 118.35 (7) N1—Mn1—N4 101.27 (7)
N1—Mn1—N3 112.93 (6) N2—Mn1—N4 93.83 (7)
N2—Mn1—N3 123.57 (7) N3—Mn1—N4 97.99 (6)

Table 2
Selected geometric parameters (Å, °) for compound 2[link]

Mn1—N4 2.099 (4) Mn2—N6 2.100 (5)
Mn1—N1 2.104 (4) Mn2—N8 2.100 (4)
Mn1—N3 2.128 (4) Mn2—N9 2.103 (4)
Mn1—N2 2.198 (5) Mn2—N10 2.205 (4)
Mn1—N5 2.205 (4) Mn2—N7 2.217 (4)
       
N4—Mn1—N1 115.03 (17) N6—Mn2—N8 121.35 (19)
N4—Mn1—N3 123.99 (19) N6—Mn2—N9 121.77 (19)
N1—Mn1—N3 120.97 (18) N8—Mn2—N9 116.88 (18)
N4—Mn1—N2 91.71 (19) N6—Mn2—N10 90.22 (18)
N1—Mn1—N2 91.61 (18) N8—Mn2—N10 89.77 (17)
N3—Mn1—N2 86.71 (17) N9—Mn2—N10 89.23 (18)
N4—Mn1—N5 90.38 (17) N6—Mn2—N7 92.53 (18)
N1—Mn1—N5 91.55 (17) N8—Mn2—N7 90.07 (16)
N3—Mn1—N5 88.42 (17) N9—Mn2—N7 88.06 (17)
N2—Mn1—N5 175.07 (16) N10—Mn2—N7 176.88 (18)
[Figure 2]
Figure 2
View of the asymmetric unit of 1, with atomic labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
View of the Mn coordination in 2, with atomic labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 4]
Figure 4
View of the six crystallographically independent 4-(di­methyl­amino)­pyridinium cations in 2, with atomic labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal structure of 1, the negatively charged tetra­kis­(thio­cyanato)­manganese(II) complex mol­ecules are linked to the 4-(di­methyl­amino)­pyridinium cations by inter­molecular N—H⋯S and C—H⋯S hydrogen bonding between the pyridinium N—H group and C—H hydrogen atoms, and the thio­cyanate S atoms into a three-dimensional network (Fig. 5[link] and Table 3[link]). There are two additional C—H⋯N contacts between the pyridinium C—H hydrogen atoms and the thio­cyanate N atom N4, which is exactly the N atom of the ligand that shows the elongated Mn—N bond length. In the crystal structure of 2, inter­molecular N—H⋯S, C—H⋯S and C—H⋯ N hydrogen bonding between the thio­cyanate anions of the anionic complexes and the 4-(di­methyl­amino)­pyridinium cations is also observed, leading likewise to a three-dimensional hydrogen-bonded network (Fig. 6[link] and Table 4[link]). The 4-(di­methyl­amino)­pyridinium cations are stacked along the a axis into columns, but are slightly shifted one to the other within these columns. More importantly, the two penta­kis(thio­cyanato)­manganese(II) complexes point in the same direction relative to the crystallographic b axis, from which the polar and non-centrosymmetric arrangement becomes obvious (Fig. 6[link]).

Table 3
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11A⋯S3 0.88 2.45 3.3129 (18) 166
C12—H12⋯N4i 0.95 2.67 3.548 (2) 155
C14—H14⋯S1 0.95 2.94 3.788 (2) 149
N21—H21A⋯S4ii 0.88 2.51 3.2771 (19) 147
C21—H21⋯N4iii 0.95 2.64 3.440 (3) 142
C24—H24⋯S2iv 0.95 2.85 3.548 (2) 131
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) x-1, y-1, z-1; (iii) -x+1, -y+1, -z+2; (iv) x-1, y, z-1.

Table 4
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11A⋯S2 0.88 2.37 3.224 (4) 163
C11—H11⋯S9i 0.95 3.02 3.945 (5) 166
C15—H15⋯S8ii 0.95 2.86 3.728 (5) 153
C16—H16B⋯S9iii 0.98 3.02 3.954 (6) 160
C17—H17B⋯S9iii 0.98 2.96 3.930 (6) 170
N21—H21A⋯S1iv 0.88 2.82 3.520 (5) 138
N21—H21A⋯S7 0.88 2.81 3.485 (6) 134
C25—H25⋯N1iv 0.95 2.62 3.567 (7) 175
C26—H26B⋯N5 0.98 2.58 3.500 (7) 157
N31—H31A⋯S10 0.88 2.41 3.266 (5) 164
C31—H31⋯S3v 0.95 2.99 3.838 (6) 150
C35—H35⋯S1vi 0.95 2.96 3.512 (6) 118
C36—H36B⋯S3vii 0.98 2.99 3.868 (6) 149
N41—H41A⋯S5 0.88 2.45 3.302 (4) 163
C41—H41⋯S6 0.95 2.94 3.804 (5) 152
C45—H45⋯S8viii 0.95 2.88 3.445 (5) 119
C47—H47C⋯S2ix 0.98 2.98 3.717 (5) 133
N51—H51A⋯S7 0.88 2.43 3.288 (5) 163
C51—H51⋯S4x 0.95 2.99 3.931 (5) 169
C55—H55⋯S1iv 0.95 2.93 3.746 (5) 145
C57—H57C⋯N7iv 0.98 2.69 3.539 (7) 146
N61—H61A⋯S8iv 0.88 2.78 3.507 (5) 141
C65—H65⋯N8iv 0.95 2.66 3.513 (7) 150
C66—H66A⋯S4x 0.98 2.92 3.767 (6) 145
Symmetry codes: (i) x-1, y, z-1; (ii) [-x+1, y-{\script{1\over 2}}, -z]; (iii) x-1, y, z-2; (iv) x, y, z+1; (v) [-x+2, y+{\script{1\over 2}}, -z]; (vi) x+1, y, z; (vii) [-x+2, y+{\script{1\over 2}}, -z-1]; (viii) [-x+2, y-{\script{1\over 2}}, -z+1]; (ix) x+1, y, z+1; (x) [-x+1, y+{\script{1\over 2}}, -z+1].
[Figure 5]
Figure 5
Crystal structure of compound 1 in a view along the a axis. Inter­molecular hydrogen bonding is shown as dashed lines.
[Figure 6]
Figure 6
Crystal structure of compound 2 in a view along the a axis. Inter­molecular hydrogen bonding is shown as dashed lines. The polar character of this structure is emphasized by the same orientation of the complex anions relative to the b axis.

4. Database survey

There are only two MnII thio­cyanate coordination polymers with 4-(di­methyl­amino)­pyridine reported in the Cambridge Structural Database (Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). They include the bis­(4-(di­methyl­amino)­pyridinium) [bis­(4-(di­methyl­amino)­pyridine-κN)tetra­kis­(thio­cyanato-κN)mang­anate(II)] mentioned above (Wöhlert et al., 2012b[Wöhlert, S., Jess, I. & Näther, C. (2012b). Acta Cryst. E68, m1528.]) and the discrete complex bis­[4-(di­methyl­amino)­pyridine-κN]bis(methanol-κO)bis(thio­cyanato-κN)manganese(II), in which the MnII cations are octa­hedrally coordinated to two terminal N-bonding thio­cyanate anions, two 4-(di­methyl­amino)­pyridine ligands and two methanol mol­ecules (Suckert et al., 2015[Suckert, S., Jess, I. & Näther, C. (2015). Acta Cryst. E71, m126.]). There are a few compounds reported that are built up of discrete anionic manganate(II) complexes, in which the MnII atoms are in an octa­hedral coordination by six terminal N-bonding thio­cyanate ligands with different charge-compensating cations. They include tetra­kis­(tetra­methyl­phospho­nium) [hexa­kis­(thio­cyanato)­manganese(II)] (Li et al., 2015[Li, Q., Shi, P. P., Ye, Q., Wang, H. T., Wu, D. H., Ye, H. Y., Fu, D. W. & Zhang, Y. (2015). Inorg. Chem. 54, 10642-10647.]), tetra­kis­(tetra­methyl­ammonium) [hexa­kis­(thio­cyanato)­mang­anese(II)] (Savard & Leznoff, 2013[Savard, D. & Leznoff, D. B. (2013). Dalton Trans. 42, 14982-14991.]) and tetra­kis­(tris­(amino­eth­yl)amine)(thio­cyanato)­copper(II) [hexa­kis­(thio­cyanato)­manganese(II)] (Bose et al., 2006[Bose, D., Mostafa, G., Walsh, R. D. B., Zaworotko, M. J. & Ghosh, B. K. (2006). Polyhedron, 25, 663-670.]). Similar compounds with five thio­cyanate anions coordinating to MnII are also known, but only a few have been reported (Matoga et al., 2015[Matoga, M., Oszajca, M. & Molenda, M. (2015). Chem. Commun. 51, 7637-7640.]; Savard & Leznoff, 2013[Savard, D. & Leznoff, D. B. (2013). Dalton Trans. 42, 14982-14991.]; Hill et al., 2008[Hill, J. P., Palza, H., Alam, S., Ariga, K., Schumacher, A. L., D'Souza, F. D., Anson, C. E. & Powell, A. K. (2008). Inorg. Chem. 47, 8306-8314.]). Finally, some discrete MnII complexes with a fourfold thio­cyanate coordination are also known, such as in the salt bis­(tetra­phenyl­phospho­nium) [tetra­kis­(thio­cyanato)­manganese(II)] (Kushch et al., 2014[Kushch, N. D., Bardin, A. A., Buravov, L. I., Glushakova, N. M., Shilov, G. V., Dmitriev, A. I., Morgunov, R. B. & Kulikov, A. V. (2014). Synth. Met. 195, 75-82.]).

5. Synthesis and crystallization

MnSO4·H2O was obtained from Merck and Ba(NCS)2·3H2O from Alfa Aesar. Equimolar amounts of both compounds were reacted in water. The resulting white precipitate of BaSO4 was filtered off, and the filtrate was evaporated until complete dryness. The purity of the white residue of Mn(NCS)2 was checked by X-ray powder diffraction (XRPD) and thermogravimetry. For the synthesis of complex 1, Mn(NCS)2 (1.0 mmol, 170 mg) was reacted with 4-(di­methyl­amino)­pyridine (0.5 mmol, 61.0 mg) in 1.0 ml of water. The precipitate was filtered off and the filtrate was allowed to stand under ambient conditions. After a few days, single crystals suitable for single-crystal X-ray diffraction had formed. For the synthesis of complex 2, Mn(NCS)2 (1.0 mmol, 170 mg) was reacted with 4-(di­methyl­amino)­pyridine (1.0 mmol, 122 mg) in 4.0 ml of water. Single crystals formed from the filtrate at room temperature in a closed test tube after a few days. XRPD measurements proved that mixtures were always obtained, sometimes consisting of compound 1 and 2 or one of these compounds contaminated with additional crystalline phases.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The C—H and N—H hydrogen atoms were initially located in difference maps but were finally positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined with fixed isotropic displacement parameters Uiso(H) = 1.2Ueq(C, N) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl H atoms. For 2, the Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter did not refine to zero within the estimated standard deviation. Therefore, a twin refinement was performed leading to a BASF parameter of 0.028 (18). However, the non-centrosymmetric and polar arrangement is clearly seen in Fig. 6[link].

Table 5
Experimental details

  1 2
Crystal data
Chemical formula (C7H11N2)2[Mn(NCS)4] (C7H11N2)3[Mn(NCS)5]
Mr 533.61 714.87
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21
Temperature (K) 170 170
a, b, c (Å) 8.5079 (4), 10.4356 (5), 14.9899 (7) 10.8320 (2), 28.1610 (5), 11.3392 (2)
α, β, γ (°) 93.748 (4), 90.464 (4), 112.585 (3) 90, 90.098 (1), 90
V3) 1225.39 (10) 3458.90 (11)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.90 0.72
Crystal size (mm) 0.22 × 0.12 × 0.06 0.25 × 0.18 × 0.10
 
Data collection
Diffractometer Stoe IPDS2 Stoe IPDS2
Absorption correction Numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.593, 0.915 0.789, 0.915
No. of measured, independent and observed [I > 2σ(I)] reflections 17932, 5342, 4633 45580, 13568, 12684
Rint 0.046 0.037
(sin θ/λ)max−1) 0.639 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.06 0.039, 0.099, 1.05
No. of reflections 5342 13568
No. of parameters 285 789
No. of restraints 0 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.53 0.33, −0.24
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.028 (18)
Computer programs: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), XP in SHELXTL and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[4-(dimethylamino)pyridinium] tetrakis(thiocyanato-κN)manganate(II) (Compound1) top
Crystal data top
(C7H11N2)2[Mn(NCS)4]Z = 2
Mr = 533.61F(000) = 550
Triclinic, P1Dx = 1.446 Mg m3
a = 8.5079 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4356 (5) ÅCell parameters from 17932 reflections
c = 14.9899 (7) Åθ = 2.1–27.0°
α = 93.748 (4)°µ = 0.90 mm1
β = 90.464 (4)°T = 170 K
γ = 112.585 (3)°Block, colorless
V = 1225.39 (10) Å30.22 × 0.12 × 0.06 mm
Data collection top
Stoe IPDS-2
diffractometer
4633 reflections with I > 2σ(I)
ω scansRint = 0.046
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
θmax = 27.0°, θmin = 2.1°
Tmin = 0.593, Tmax = 0.915h = 1010
17932 measured reflectionsk = 1313
5342 independent reflectionsl = 1919
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.0944P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max = 0.003
S = 1.06Δρmax = 0.31 e Å3
5342 reflectionsΔρmin = 0.53 e Å3
285 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.017 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.90952 (3)0.88265 (3)1.18620 (2)0.03782 (10)
N10.6639 (2)0.74716 (16)1.15632 (11)0.0426 (3)
C10.5334 (2)0.65751 (19)1.13644 (12)0.0388 (4)
S10.35333 (7)0.53200 (6)1.10859 (4)0.05316 (15)
N21.0772 (2)0.80600 (17)1.23903 (11)0.0451 (4)
C21.1541 (2)0.76211 (19)1.28340 (12)0.0402 (4)
S21.26376 (9)0.70138 (7)1.34362 (4)0.06153 (18)
N30.9843 (2)1.05670 (15)1.11196 (10)0.0415 (3)
C30.9911 (2)1.13584 (17)1.05982 (12)0.0356 (3)
S30.99897 (6)1.24678 (4)0.98674 (3)0.04241 (13)
N40.8810 (2)0.98070 (17)1.31098 (11)0.0470 (4)
C40.8722 (2)1.04124 (18)1.37713 (13)0.0400 (4)
S40.85130 (7)1.12578 (5)1.46840 (3)0.05017 (14)
N110.6345 (2)1.00661 (18)0.90468 (12)0.0496 (4)
H11A0.72521.08090.92190.060*
C110.5288 (3)1.0139 (2)0.84009 (15)0.0488 (5)
H110.55251.09940.81370.059*
C120.3886 (2)0.90088 (19)0.81197 (14)0.0427 (4)
H120.31550.90810.76600.051*
C130.3498 (2)0.77195 (18)0.85038 (12)0.0370 (4)
C140.4655 (2)0.7706 (2)0.91879 (13)0.0441 (4)
H140.44580.68750.94740.053*
C150.6036 (3)0.8871 (2)0.94344 (14)0.0498 (5)
H150.68020.88440.98900.060*
N120.2129 (2)0.65910 (15)0.82409 (11)0.0418 (3)
C160.0935 (3)0.6621 (2)0.75498 (14)0.0514 (5)
H16A0.04050.72670.77530.077*
H16B0.00530.56860.74290.077*
H16C0.15450.69300.70020.077*
C170.1683 (3)0.5301 (2)0.86837 (16)0.0534 (5)
H17A0.25150.48840.85430.080*
H17B0.05440.46510.84730.080*
H17C0.16910.55000.93320.080*
N210.2097 (2)0.34211 (19)0.56590 (13)0.0546 (4)
H21A0.13230.25950.54880.066*
C210.3276 (3)0.3541 (2)0.62914 (15)0.0523 (5)
H210.32620.27300.65500.063*
C220.4485 (3)0.4792 (2)0.65702 (13)0.0465 (4)
H220.53000.48500.70240.056*
C230.4545 (2)0.60157 (19)0.61898 (12)0.0389 (4)
C240.3267 (3)0.5837 (2)0.55258 (14)0.0483 (4)
H240.32400.66230.52500.058*
C250.2088 (3)0.4556 (2)0.52819 (15)0.0550 (5)
H250.12370.44540.48370.066*
N220.5730 (2)0.72629 (17)0.64412 (12)0.0487 (4)
C260.7061 (3)0.7430 (3)0.71058 (18)0.0656 (6)
H26A0.65520.69230.76260.098*
H26B0.76600.84200.72920.098*
H26C0.78700.70610.68470.098*
C270.5877 (4)0.8505 (2)0.59983 (18)0.0678 (7)
H27A0.60250.83580.53570.102*
H27B0.68640.93010.62550.102*
H27C0.48420.86910.60850.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.03611 (17)0.03304 (15)0.04112 (17)0.00946 (11)0.00592 (11)0.00585 (11)
N10.0365 (8)0.0408 (8)0.0474 (9)0.0115 (7)0.0022 (7)0.0034 (6)
C10.0397 (10)0.0410 (9)0.0364 (9)0.0158 (8)0.0009 (7)0.0064 (7)
S10.0411 (3)0.0541 (3)0.0484 (3)0.0003 (2)0.0078 (2)0.0083 (2)
N20.0444 (9)0.0483 (9)0.0439 (8)0.0191 (7)0.0069 (7)0.0058 (7)
C20.0434 (10)0.0411 (9)0.0353 (9)0.0162 (8)0.0011 (7)0.0007 (7)
S20.0784 (4)0.0761 (4)0.0476 (3)0.0500 (3)0.0149 (3)0.0008 (3)
N30.0451 (9)0.0358 (7)0.0408 (8)0.0126 (6)0.0011 (7)0.0028 (6)
C30.0335 (9)0.0313 (8)0.0382 (9)0.0088 (6)0.0014 (7)0.0010 (7)
S30.0471 (3)0.0316 (2)0.0448 (3)0.01048 (18)0.00020 (19)0.00712 (17)
N40.0538 (10)0.0439 (8)0.0413 (9)0.0171 (7)0.0050 (7)0.0015 (7)
C40.0387 (9)0.0323 (8)0.0438 (10)0.0070 (7)0.0065 (7)0.0091 (7)
S40.0552 (3)0.0454 (3)0.0440 (3)0.0139 (2)0.0023 (2)0.0027 (2)
N110.0346 (8)0.0458 (9)0.0599 (10)0.0069 (7)0.0021 (7)0.0013 (8)
C110.0402 (10)0.0386 (9)0.0672 (13)0.0135 (8)0.0091 (9)0.0106 (9)
C120.0377 (10)0.0396 (9)0.0523 (11)0.0153 (8)0.0011 (8)0.0114 (8)
C130.0351 (9)0.0358 (8)0.0412 (9)0.0143 (7)0.0033 (7)0.0051 (7)
C140.0408 (10)0.0472 (10)0.0451 (10)0.0165 (8)0.0008 (8)0.0107 (8)
C150.0396 (10)0.0616 (12)0.0461 (10)0.0171 (9)0.0024 (8)0.0052 (9)
N120.0430 (9)0.0338 (7)0.0458 (8)0.0117 (6)0.0038 (7)0.0043 (6)
C160.0472 (11)0.0502 (11)0.0503 (11)0.0124 (9)0.0109 (9)0.0003 (9)
C170.0568 (13)0.0335 (9)0.0645 (13)0.0108 (8)0.0009 (10)0.0085 (9)
N210.0515 (10)0.0440 (9)0.0579 (11)0.0078 (8)0.0016 (8)0.0020 (8)
C210.0605 (13)0.0422 (10)0.0512 (11)0.0154 (9)0.0049 (10)0.0108 (8)
C220.0476 (11)0.0489 (10)0.0439 (10)0.0185 (9)0.0011 (8)0.0124 (8)
C230.0360 (9)0.0418 (9)0.0379 (9)0.0132 (7)0.0029 (7)0.0063 (7)
C240.0536 (12)0.0473 (10)0.0469 (10)0.0227 (9)0.0086 (9)0.0039 (8)
C250.0521 (12)0.0583 (12)0.0535 (12)0.0220 (10)0.0133 (10)0.0056 (10)
N220.0433 (9)0.0448 (9)0.0498 (9)0.0073 (7)0.0026 (7)0.0083 (7)
C260.0434 (12)0.0719 (15)0.0663 (15)0.0060 (11)0.0124 (11)0.0028 (12)
C270.0812 (17)0.0412 (11)0.0683 (15)0.0083 (11)0.0008 (13)0.0123 (10)
Geometric parameters (Å, º) top
Mn1—N12.0495 (17)C16—H16A0.9800
Mn1—N22.0600 (16)C16—H16B0.9800
Mn1—N32.0810 (16)C16—H16C0.9800
Mn1—N42.1336 (17)C17—H17A0.9800
N1—C11.165 (2)C17—H17B0.9800
C1—S11.6169 (19)C17—H17C0.9800
N2—C21.159 (2)N21—C211.339 (3)
C2—S21.6133 (19)N21—C251.348 (3)
N3—C31.159 (2)N21—H21A0.8800
C3—S31.6286 (18)C21—C221.351 (3)
N4—C41.159 (3)C21—H210.9500
C4—S41.627 (2)C22—C231.416 (3)
N11—C111.342 (3)C22—H220.9500
N11—C151.344 (3)C23—N221.332 (2)
N11—H11A0.8800C23—C241.418 (3)
C11—C121.356 (3)C24—C251.351 (3)
C11—H110.9500C24—H240.9500
C12—C131.419 (2)C25—H250.9500
C12—H120.9500N22—C261.454 (3)
C13—N121.333 (2)N22—C271.458 (3)
C13—C141.420 (3)C26—H26A0.9800
C14—C151.354 (3)C26—H26B0.9800
C14—H140.9500C26—H26C0.9800
C15—H150.9500C27—H27A0.9800
N12—C161.455 (2)C27—H27B0.9800
N12—C171.458 (2)C27—H27C0.9800
N1—Mn1—N2118.35 (7)H16B—C16—H16C109.5
N1—Mn1—N3112.93 (6)N12—C17—H17A109.5
N2—Mn1—N3123.57 (7)N12—C17—H17B109.5
N1—Mn1—N4101.27 (7)H17A—C17—H17B109.5
N2—Mn1—N493.83 (7)N12—C17—H17C109.5
N3—Mn1—N497.99 (6)H17A—C17—H17C109.5
C1—N1—Mn1171.10 (15)H17B—C17—H17C109.5
N1—C1—S1179.42 (18)C21—N21—C25120.47 (18)
C2—N2—Mn1166.86 (16)C21—N21—H21A119.8
N2—C2—S2178.85 (18)C25—N21—H21A119.8
C3—N3—Mn1164.22 (15)N21—C21—C22121.43 (19)
N3—C3—S3179.51 (17)N21—C21—H21119.3
C4—N4—Mn1175.99 (16)C22—C21—H21119.3
N4—C4—S4177.36 (18)C21—C22—C23120.43 (19)
C11—N11—C15120.80 (18)C21—C22—H22119.8
C11—N11—H11A119.6C23—C22—H22119.8
C15—N11—H11A119.6N22—C23—C22122.04 (17)
N11—C11—C12120.89 (18)N22—C23—C24121.91 (17)
N11—C11—H11119.6C22—C23—C24116.06 (18)
C12—C11—H11119.6C25—C24—C23120.49 (18)
C11—C12—C13120.75 (18)C25—C24—H24119.8
C11—C12—H12119.6C23—C24—H24119.8
C13—C12—H12119.6N21—C25—C24121.1 (2)
N12—C13—C12122.07 (16)N21—C25—H25119.4
N12—C13—C14122.04 (16)C24—C25—H25119.4
C12—C13—C14115.89 (17)C23—N22—C26121.46 (18)
C15—C14—C13120.35 (18)C23—N22—C27121.96 (18)
C15—C14—H14119.8C26—N22—C27116.23 (19)
C13—C14—H14119.8N22—C26—H26A109.5
N11—C15—C14121.32 (19)N22—C26—H26B109.5
N11—C15—H15119.3H26A—C26—H26B109.5
C14—C15—H15119.3N22—C26—H26C109.5
C13—N12—C16121.63 (16)H26A—C26—H26C109.5
C13—N12—C17121.40 (16)H26B—C26—H26C109.5
C16—N12—C17116.78 (16)N22—C27—H27A109.5
N12—C16—H16A109.5N22—C27—H27B109.5
N12—C16—H16B109.5H27A—C27—H27B109.5
H16A—C16—H16B109.5N22—C27—H27C109.5
N12—C16—H16C109.5H27A—C27—H27C109.5
H16A—C16—H16C109.5H27B—C27—H27C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···S30.882.453.3129 (18)166
C12—H12···N4i0.952.673.548 (2)155
C14—H14···S10.952.943.788 (2)149
N21—H21A···S4ii0.882.513.2771 (19)147
C21—H21···N4iii0.952.643.440 (3)142
C24—H24···S2iv0.952.853.548 (2)131
Symmetry codes: (i) x+1, y+2, z+2; (ii) x1, y1, z1; (iii) x+1, y+1, z+2; (iv) x1, y, z1.
Tris[4-(dimethylamino)pyridinium] pentakis(thiocyanato-κN)manganate(II) (Compound2) top
Crystal data top
(C7H11N2)3[Mn(NCS)5]F(000) = 1484
Mr = 714.87Dx = 1.373 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.8320 (2) ÅCell parameters from 45580 reflections
b = 28.1610 (5) Åθ = 1.5–26.0°
c = 11.3392 (2) ŵ = 0.72 mm1
β = 90.098 (1)°T = 170 K
V = 3458.90 (11) Å3Block, colorless
Z = 40.25 × 0.18 × 0.10 mm
Data collection top
Stoe IPDS-2
diffractometer
12684 reflections with I > 2σ(I)
ω scansRint = 0.037
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
θmax = 26.0°, θmin = 1.5°
Tmin = 0.789, Tmax = 0.915h = 1313
45580 measured reflectionsk = 3434
13568 independent reflectionsl = 1313
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0506P)2 + 1.5196P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.039(Δ/σ)max = 0.001
wR(F2) = 0.099Δρmax = 0.33 e Å3
S = 1.05Δρmin = 0.24 e Å3
13568 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
789 parametersExtinction coefficient: 0.0053 (7)
1 restraintAbsolute structure: Refined as an inversion twin
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.028 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.45124 (7)0.33957 (2)0.02498 (5)0.04095 (16)
N10.4568 (4)0.41385 (15)0.0058 (3)0.0519 (10)
C10.4812 (4)0.45416 (16)0.0112 (4)0.0415 (9)
S10.51506 (14)0.50955 (5)0.02592 (13)0.0588 (3)
N20.2830 (4)0.34375 (18)0.1331 (4)0.0635 (12)
C20.1876 (5)0.34774 (16)0.1793 (4)0.0455 (10)
S20.05434 (12)0.35258 (5)0.24442 (11)0.0533 (3)
N30.5353 (4)0.30569 (17)0.1721 (4)0.0583 (11)
C30.5780 (4)0.28033 (17)0.2411 (4)0.0444 (10)
S30.63768 (14)0.24496 (6)0.33664 (12)0.0636 (4)
N40.3576 (4)0.30326 (16)0.1095 (4)0.0561 (10)
C40.3062 (5)0.28207 (16)0.1821 (4)0.0462 (10)
S40.23426 (17)0.25235 (5)0.28177 (12)0.0688 (4)
N50.6269 (4)0.33145 (15)0.0716 (3)0.0504 (9)
C50.7204 (5)0.33024 (16)0.1210 (4)0.0435 (10)
S50.85205 (14)0.32725 (6)0.19012 (13)0.0694 (4)
Mn20.98322 (6)0.58569 (2)0.49368 (6)0.04102 (16)
N60.8987 (5)0.55087 (17)0.3511 (4)0.0623 (11)
C60.8649 (5)0.52786 (18)0.2728 (4)0.0507 (11)
S60.8161 (2)0.49483 (7)0.16721 (14)0.0859 (5)
N70.8142 (4)0.58111 (16)0.6030 (4)0.0520 (9)
C70.7313 (4)0.59084 (16)0.6640 (4)0.0428 (9)
S70.61231 (12)0.60318 (5)0.74658 (11)0.0538 (3)
N80.9804 (4)0.66003 (15)0.5084 (4)0.0522 (10)
C81.0076 (4)0.70025 (16)0.5056 (4)0.0409 (9)
S81.04620 (13)0.75529 (4)0.49639 (13)0.0574 (3)
N91.0767 (4)0.54807 (16)0.6268 (4)0.0556 (10)
C91.1319 (4)0.52764 (16)0.6988 (4)0.0428 (9)
S91.20997 (14)0.49886 (5)0.79725 (12)0.0594 (3)
N101.1573 (4)0.59021 (16)0.3939 (4)0.0566 (10)
C101.2582 (4)0.58970 (16)0.3575 (4)0.0447 (10)
S101.39824 (12)0.58848 (6)0.30722 (11)0.0585 (3)
N110.1399 (4)0.39353 (17)0.4969 (4)0.0570 (11)
H11A0.13380.38250.42460.068*
C110.1660 (5)0.4390 (2)0.5146 (5)0.0585 (13)
H110.18070.45870.44800.070*
C120.1727 (5)0.45877 (17)0.6236 (4)0.0506 (11)
H120.19100.49150.63270.061*
C130.1516 (4)0.42950 (16)0.7241 (4)0.0409 (9)
C140.1284 (4)0.38056 (16)0.7017 (4)0.0462 (10)
H140.11690.35920.76560.055*
C150.1227 (5)0.36442 (18)0.5888 (5)0.0541 (12)
H150.10620.33180.57490.065*
N120.1540 (4)0.44690 (14)0.8332 (3)0.0489 (9)
C160.1790 (6)0.4965 (2)0.8554 (5)0.0652 (14)
H16A0.12160.51610.80970.098*
H16B0.16840.50320.93960.098*
H16C0.26390.50390.83180.098*
C170.1250 (6)0.4171 (2)0.9341 (4)0.0662 (15)
H17A0.17780.38880.93300.099*
H17B0.13950.43491.00700.099*
H17C0.03820.40740.93040.099*
N210.5064 (5)0.4907 (2)0.6673 (4)0.0686 (13)
H21A0.51380.51110.72580.082*
C210.5188 (6)0.5055 (2)0.5574 (6)0.0695 (15)
H210.53240.53830.54250.083*
C220.5126 (5)0.47491 (19)0.4656 (5)0.0566 (12)
H220.52340.48610.38730.068*
C230.4903 (4)0.42656 (18)0.4869 (4)0.0432 (10)
C240.4738 (5)0.4129 (2)0.6041 (4)0.0556 (12)
H240.45620.38080.62260.067*
C250.4826 (5)0.4452 (3)0.6904 (4)0.0663 (16)
H250.47180.43540.76990.080*
N220.4861 (4)0.39534 (16)0.3968 (4)0.0597 (11)
C260.4996 (7)0.4112 (3)0.2744 (5)0.085 (2)
H26A0.42450.42780.24960.128*
H26B0.51320.38370.22330.128*
H26C0.57030.43280.26850.128*
C270.4662 (7)0.3451 (2)0.4156 (8)0.087 (2)
H27A0.46200.33860.50050.131*
H27B0.53450.32710.38100.131*
H27C0.38840.33550.37820.131*
N311.3593 (4)0.6433 (2)0.0561 (4)0.0711 (15)
H31A1.36370.63410.13020.085*
C311.3821 (5)0.6886 (2)0.0291 (5)0.0633 (14)
H311.40060.71050.09030.076*
C321.3792 (5)0.70398 (18)0.0866 (4)0.0502 (11)
H321.39730.73610.10520.060*
C331.3490 (4)0.67117 (15)0.1779 (4)0.0405 (9)
C341.3235 (5)0.62408 (17)0.1419 (5)0.0545 (12)
H341.30160.60080.19900.065*
C351.3302 (5)0.6120 (2)0.0266 (6)0.0681 (16)
H351.31350.58010.00430.082*
N321.3453 (4)0.68469 (15)0.2895 (3)0.0501 (9)
C361.3831 (7)0.7329 (2)0.3241 (5)0.0726 (17)
H36A1.31230.75450.31780.109*
H36B1.41280.73260.40570.109*
H36C1.44940.74390.27180.109*
C371.3129 (6)0.6522 (2)0.3847 (5)0.0686 (16)
H37A1.34230.62020.36530.103*
H37B1.35160.66290.45810.103*
H37C1.22300.65160.39470.103*
N410.8097 (4)0.38604 (16)0.4387 (4)0.0545 (10)
H41A0.81230.37560.36560.065*
C410.8374 (5)0.4314 (2)0.4627 (4)0.0547 (12)
H410.86000.45190.39990.066*
C420.8341 (5)0.44863 (17)0.5732 (4)0.0487 (11)
H420.85330.48110.58710.058*
C430.8021 (4)0.41871 (15)0.6694 (4)0.0397 (9)
C440.7732 (4)0.37120 (16)0.6395 (4)0.0460 (10)
H440.75020.34930.69930.055*
C450.7785 (4)0.35695 (18)0.5256 (5)0.0521 (11)
H450.75900.32490.50720.063*
N420.7971 (3)0.43422 (13)0.7805 (3)0.0422 (8)
C460.8383 (5)0.48182 (18)0.8139 (5)0.0551 (12)
H46A0.92880.48280.81440.083*
H46B0.80730.48950.89280.083*
H46C0.80660.50500.75700.083*
C470.7646 (5)0.40293 (18)0.8784 (4)0.0555 (12)
H47A0.69050.38470.85790.083*
H47B0.74850.42200.94890.083*
H47C0.83310.38110.89400.083*
N510.6896 (4)0.64325 (18)1.0088 (4)0.0593 (11)
H51A0.68570.63100.93750.071*
C510.7084 (5)0.6894 (2)1.0227 (4)0.0569 (13)
H510.71900.70860.95460.068*
C520.7132 (5)0.71033 (17)1.1305 (4)0.0490 (11)
H520.72750.74351.13720.059*
C530.6965 (4)0.68204 (16)1.2337 (4)0.0410 (9)
C540.6802 (4)0.63271 (16)1.2136 (5)0.0486 (11)
H540.67180.61191.27900.058*
C550.6763 (5)0.61493 (19)1.1044 (5)0.0554 (12)
H550.66400.58181.09370.066*
N520.6956 (4)0.70091 (14)1.3407 (3)0.0456 (8)
C560.7191 (6)0.75123 (19)1.3597 (5)0.0598 (13)
H56A0.78940.76121.31140.090*
H56B0.73800.75671.44320.090*
H56C0.64580.76961.33740.090*
C570.6639 (6)0.6725 (2)1.4439 (4)0.0602 (14)
H57A0.58380.65721.43120.090*
H57B0.65930.69311.51340.090*
H57C0.72730.64821.45650.090*
N611.0625 (5)0.7312 (2)1.1934 (5)0.0788 (16)
H61A1.07310.75081.25310.095*
C611.0528 (6)0.7490 (2)1.0834 (5)0.0693 (16)
H611.05960.78231.07100.083*
C621.0336 (5)0.71981 (18)0.9909 (4)0.0531 (12)
H621.02730.73250.91350.064*
C631.0228 (4)0.67040 (16)1.0088 (4)0.0405 (9)
C641.0364 (5)0.6541 (2)1.1262 (4)0.0565 (12)
H641.03100.62111.14270.068*
C651.0566 (6)0.6847 (3)1.2137 (4)0.0682 (16)
H651.06690.67321.29180.082*
N620.9989 (4)0.64083 (14)0.9185 (4)0.0494 (9)
C660.9958 (6)0.6572 (2)0.7978 (4)0.0632 (14)
H66A0.91260.66870.77880.095*
H66B1.01740.63100.74490.095*
H66C1.05520.68320.78790.095*
C670.9799 (6)0.59025 (19)0.9366 (6)0.0702 (15)
H67A1.06010.57420.94130.105*
H67B0.93240.57720.87050.105*
H67C0.93450.58521.01020.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0469 (4)0.0414 (3)0.0345 (3)0.0005 (3)0.0011 (3)0.0013 (3)
N10.067 (3)0.046 (2)0.043 (2)0.0004 (19)0.0006 (18)0.0003 (16)
C10.046 (2)0.044 (2)0.034 (2)0.0030 (19)0.0026 (17)0.0016 (17)
S10.0689 (8)0.0426 (6)0.0648 (8)0.0032 (6)0.0125 (6)0.0045 (6)
N20.065 (3)0.073 (3)0.053 (2)0.017 (2)0.018 (2)0.016 (2)
C20.054 (3)0.045 (3)0.038 (2)0.007 (2)0.002 (2)0.0031 (18)
S20.0493 (7)0.0650 (8)0.0456 (6)0.0016 (5)0.0038 (5)0.0087 (5)
N30.056 (3)0.070 (3)0.049 (2)0.000 (2)0.0003 (19)0.015 (2)
C30.046 (2)0.052 (2)0.036 (2)0.003 (2)0.0021 (18)0.0002 (19)
S30.0702 (9)0.0738 (9)0.0470 (7)0.0103 (7)0.0079 (6)0.0144 (6)
N40.058 (3)0.063 (3)0.048 (2)0.008 (2)0.0065 (19)0.0034 (19)
C40.051 (3)0.046 (2)0.041 (2)0.004 (2)0.000 (2)0.0018 (19)
S40.0985 (11)0.0599 (8)0.0480 (7)0.0245 (8)0.0151 (7)0.0002 (6)
N50.054 (2)0.053 (2)0.045 (2)0.0017 (19)0.0054 (18)0.0007 (17)
C50.051 (3)0.044 (2)0.035 (2)0.0018 (19)0.0022 (19)0.0019 (17)
S50.0549 (8)0.0944 (12)0.0588 (8)0.0104 (7)0.0132 (6)0.0238 (7)
Mn20.0451 (4)0.0395 (3)0.0385 (3)0.0017 (3)0.0036 (3)0.0007 (3)
N60.061 (3)0.067 (3)0.059 (3)0.005 (2)0.005 (2)0.003 (2)
C60.057 (3)0.056 (3)0.040 (2)0.002 (2)0.005 (2)0.002 (2)
S60.1235 (16)0.0809 (11)0.0533 (8)0.0148 (10)0.0296 (9)0.0062 (7)
N70.051 (2)0.051 (2)0.054 (2)0.0028 (19)0.0101 (18)0.0062 (18)
C70.050 (2)0.040 (2)0.039 (2)0.0039 (19)0.0021 (18)0.0033 (18)
S70.0526 (7)0.0610 (7)0.0479 (6)0.0016 (5)0.0104 (5)0.0098 (5)
N80.062 (3)0.046 (2)0.048 (2)0.0048 (19)0.0068 (19)0.0021 (18)
C80.044 (2)0.043 (2)0.036 (2)0.0013 (18)0.0044 (17)0.0020 (17)
S80.0638 (8)0.0422 (6)0.0661 (8)0.0086 (6)0.0106 (6)0.0089 (5)
N90.059 (3)0.058 (2)0.050 (2)0.008 (2)0.002 (2)0.003 (2)
C90.046 (2)0.041 (2)0.041 (2)0.0019 (19)0.0022 (19)0.0005 (18)
S90.0634 (8)0.0674 (8)0.0474 (6)0.0149 (6)0.0055 (6)0.0034 (6)
N100.055 (2)0.058 (2)0.057 (2)0.004 (2)0.0150 (19)0.002 (2)
C100.054 (3)0.042 (2)0.038 (2)0.003 (2)0.0042 (18)0.0003 (18)
S100.0489 (6)0.0768 (8)0.0497 (6)0.0023 (6)0.0081 (5)0.0151 (6)
N110.054 (2)0.072 (3)0.045 (2)0.013 (2)0.0027 (18)0.013 (2)
C110.062 (3)0.070 (3)0.043 (3)0.011 (3)0.005 (2)0.013 (2)
C120.063 (3)0.043 (2)0.046 (3)0.005 (2)0.002 (2)0.0074 (19)
C130.042 (2)0.042 (2)0.038 (2)0.0014 (18)0.0009 (18)0.0025 (17)
C140.048 (3)0.041 (2)0.049 (3)0.0019 (19)0.002 (2)0.0000 (19)
C150.050 (3)0.051 (3)0.062 (3)0.001 (2)0.001 (2)0.012 (2)
N120.061 (3)0.047 (2)0.0382 (19)0.0014 (18)0.0054 (17)0.0016 (16)
C160.082 (4)0.057 (3)0.056 (3)0.007 (3)0.004 (3)0.015 (2)
C170.085 (4)0.073 (4)0.040 (2)0.004 (3)0.001 (3)0.009 (2)
N210.070 (3)0.076 (3)0.060 (3)0.015 (3)0.007 (2)0.030 (2)
C210.071 (4)0.058 (3)0.079 (4)0.002 (3)0.015 (3)0.008 (3)
C220.067 (3)0.055 (3)0.047 (3)0.002 (2)0.006 (2)0.005 (2)
C230.042 (2)0.051 (3)0.037 (2)0.0027 (19)0.0066 (18)0.0073 (18)
C240.054 (3)0.066 (3)0.047 (3)0.007 (2)0.002 (2)0.009 (2)
C250.065 (3)0.102 (5)0.032 (2)0.018 (3)0.002 (2)0.005 (3)
N220.065 (3)0.061 (3)0.053 (2)0.009 (2)0.010 (2)0.020 (2)
C260.089 (5)0.128 (6)0.039 (3)0.018 (4)0.001 (3)0.029 (3)
C270.078 (4)0.059 (4)0.125 (6)0.009 (3)0.029 (4)0.033 (4)
N310.053 (3)0.108 (4)0.052 (3)0.016 (3)0.012 (2)0.031 (3)
C310.059 (3)0.090 (4)0.041 (3)0.007 (3)0.001 (2)0.006 (3)
C320.061 (3)0.049 (3)0.041 (2)0.002 (2)0.005 (2)0.006 (2)
C330.038 (2)0.042 (2)0.041 (2)0.0004 (17)0.0016 (18)0.0019 (17)
C340.055 (3)0.040 (2)0.068 (3)0.001 (2)0.014 (2)0.003 (2)
C350.058 (3)0.064 (3)0.082 (4)0.012 (3)0.020 (3)0.027 (3)
N320.052 (2)0.060 (2)0.0378 (19)0.0007 (19)0.0016 (17)0.0042 (17)
C360.093 (5)0.071 (4)0.053 (3)0.004 (3)0.003 (3)0.020 (3)
C370.066 (4)0.093 (4)0.047 (3)0.003 (3)0.005 (3)0.022 (3)
N410.051 (2)0.068 (3)0.044 (2)0.006 (2)0.0032 (18)0.0072 (19)
C410.054 (3)0.069 (3)0.041 (2)0.000 (2)0.001 (2)0.007 (2)
C420.050 (3)0.045 (2)0.051 (3)0.003 (2)0.002 (2)0.008 (2)
C430.034 (2)0.041 (2)0.044 (2)0.0022 (17)0.0007 (17)0.0040 (18)
C440.047 (3)0.041 (2)0.050 (2)0.0006 (19)0.004 (2)0.0024 (19)
C450.043 (2)0.051 (3)0.062 (3)0.007 (2)0.005 (2)0.008 (2)
N420.045 (2)0.0417 (19)0.0402 (19)0.0029 (16)0.0031 (15)0.0020 (15)
C460.063 (3)0.052 (3)0.050 (3)0.011 (2)0.002 (2)0.003 (2)
C470.065 (3)0.054 (3)0.047 (3)0.000 (2)0.013 (2)0.008 (2)
N510.050 (2)0.078 (3)0.050 (2)0.010 (2)0.0034 (19)0.014 (2)
C510.057 (3)0.071 (3)0.043 (3)0.012 (3)0.002 (2)0.009 (2)
C520.052 (3)0.048 (2)0.047 (3)0.005 (2)0.001 (2)0.010 (2)
C530.034 (2)0.043 (2)0.045 (2)0.0005 (17)0.0001 (17)0.0049 (18)
C540.044 (2)0.041 (2)0.061 (3)0.0004 (19)0.003 (2)0.003 (2)
C550.051 (3)0.052 (3)0.064 (3)0.000 (2)0.005 (2)0.012 (2)
N520.050 (2)0.047 (2)0.0399 (19)0.0011 (17)0.0011 (16)0.0052 (16)
C560.068 (3)0.048 (3)0.063 (3)0.002 (2)0.012 (3)0.003 (2)
C570.069 (4)0.070 (3)0.041 (3)0.009 (3)0.003 (2)0.010 (2)
N610.090 (4)0.090 (4)0.056 (3)0.015 (3)0.006 (3)0.030 (3)
C610.091 (4)0.057 (3)0.060 (3)0.016 (3)0.017 (3)0.014 (3)
C620.066 (3)0.046 (3)0.047 (3)0.001 (2)0.013 (2)0.003 (2)
C630.042 (2)0.045 (2)0.035 (2)0.0045 (18)0.0013 (17)0.0019 (17)
C640.062 (3)0.065 (3)0.043 (3)0.008 (2)0.005 (2)0.009 (2)
C650.078 (4)0.095 (5)0.032 (2)0.013 (3)0.000 (2)0.003 (3)
N620.054 (2)0.046 (2)0.048 (2)0.0043 (17)0.0004 (18)0.0066 (17)
C660.073 (4)0.078 (4)0.040 (3)0.017 (3)0.008 (2)0.012 (2)
C670.081 (4)0.044 (3)0.086 (4)0.001 (3)0.012 (3)0.010 (3)
Geometric parameters (Å, º) top
Mn1—N42.099 (4)C32—C331.425 (6)
Mn1—N12.104 (4)C32—H320.9500
Mn1—N32.128 (4)C33—N321.323 (6)
Mn1—N22.198 (5)C33—C341.415 (7)
Mn1—N52.205 (4)C34—C351.352 (8)
N1—C11.167 (6)C34—H340.9500
C1—S11.611 (5)C35—H350.9500
N2—C21.162 (6)N32—C371.458 (6)
C2—S21.627 (5)N32—C361.472 (7)
N3—C31.156 (6)C36—H36A0.9800
C3—S31.608 (5)C36—H36B0.9800
N4—C41.160 (6)C36—H36C0.9800
C4—S41.608 (5)C37—H37A0.9800
N5—C51.157 (6)C37—H37B0.9800
C5—S51.628 (5)C37—H37C0.9800
Mn2—N62.100 (5)N41—C451.325 (7)
Mn2—N82.100 (4)N41—C411.339 (7)
Mn2—N92.103 (4)N41—H41A0.8800
Mn2—N102.205 (4)C41—C421.344 (7)
Mn2—N72.217 (4)C41—H410.9500
N6—C61.158 (7)C42—C431.421 (6)
C6—S61.605 (5)C42—H420.9500
N7—C71.166 (6)C43—N421.334 (6)
C7—S71.632 (4)C43—C441.415 (6)
N8—C81.171 (6)C44—C451.354 (7)
C8—S81.609 (5)C44—H440.9500
N9—C91.163 (6)C45—H450.9500
C9—S91.617 (5)N42—C471.461 (6)
N10—C101.168 (6)N42—C461.463 (6)
C10—S101.622 (5)C46—H46A0.9800
N11—C111.328 (7)C46—H46B0.9800
N11—C151.339 (7)C46—H46C0.9800
N11—H11A0.8800C47—H47A0.9800
C11—C121.357 (7)C47—H47B0.9800
C11—H110.9500C47—H47C0.9800
C12—C131.424 (6)N51—C511.325 (7)
C12—H120.9500N51—C551.354 (7)
C13—N121.331 (6)N51—H51A0.8800
C13—C141.424 (6)C51—C521.359 (7)
C14—C151.360 (7)C51—H510.9500
C14—H140.9500C52—C531.427 (6)
C15—H150.9500C52—H520.9500
N12—C161.446 (7)C53—N521.325 (6)
N12—C171.454 (6)C53—C541.419 (6)
C16—H16A0.9800C54—C551.336 (7)
C16—H16B0.9800C54—H540.9500
C16—H16C0.9800C55—H550.9500
C17—H17A0.9800N52—C561.456 (6)
C17—H17B0.9800N52—C571.459 (6)
C17—H17C0.9800C56—H56A0.9800
N21—C211.321 (8)C56—H56B0.9800
N21—C251.334 (9)C56—H56C0.9800
N21—H21A0.8800C57—H57A0.9800
C21—C221.353 (8)C57—H57B0.9800
C21—H210.9500C57—H57C0.9800
C22—C231.404 (7)N61—C651.332 (8)
C22—H220.9500N61—C611.348 (8)
C23—N221.349 (6)N61—H61A0.8800
C23—C241.394 (7)C61—C621.349 (7)
C24—C251.339 (8)C61—H610.9500
C24—H240.9500C62—C631.411 (7)
C25—H250.9500C62—H620.9500
N22—C271.448 (8)C63—N621.345 (6)
N22—C261.466 (8)C63—C641.415 (6)
C26—H26A0.9800C64—C651.333 (8)
C26—H26B0.9800C64—H640.9500
C26—H26C0.9800C65—H650.9500
C27—H27A0.9800N62—C661.445 (7)
C27—H27B0.9800N62—C671.453 (7)
C27—H27C0.9800C66—H66A0.9800
N31—C351.326 (9)C66—H66B0.9800
N31—C311.333 (8)C66—H66C0.9800
N31—H31A0.8800C67—H67A0.9800
C31—C321.383 (7)C67—H67B0.9800
C31—H310.9500C67—H67C0.9800
N4—Mn1—N1115.03 (17)C35—C34—H34119.9
N4—Mn1—N3123.99 (19)C33—C34—H34119.9
N1—Mn1—N3120.97 (18)N31—C35—C34121.9 (5)
N4—Mn1—N291.71 (19)N31—C35—H35119.0
N1—Mn1—N291.61 (18)C34—C35—H35119.0
N3—Mn1—N286.71 (17)C33—N32—C37122.3 (5)
N4—Mn1—N590.38 (17)C33—N32—C36120.8 (4)
N1—Mn1—N591.55 (17)C37—N32—C36116.7 (5)
N3—Mn1—N588.42 (17)N32—C36—H36A109.5
N2—Mn1—N5175.07 (16)N32—C36—H36B109.5
C1—N1—Mn1165.5 (4)H36A—C36—H36B109.5
N1—C1—S1177.1 (4)N32—C36—H36C109.5
C2—N2—Mn1172.6 (4)H36A—C36—H36C109.5
N2—C2—S2179.2 (5)H36B—C36—H36C109.5
C3—N3—Mn1168.4 (4)N32—C37—H37A109.5
N3—C3—S3179.8 (6)N32—C37—H37B109.5
C4—N4—Mn1178.2 (4)H37A—C37—H37B109.5
N4—C4—S4179.4 (5)N32—C37—H37C109.5
C5—N5—Mn1175.6 (4)H37A—C37—H37C109.5
N5—C5—S5178.7 (4)H37B—C37—H37C109.5
N6—Mn2—N8121.35 (19)C45—N41—C41119.7 (4)
N6—Mn2—N9121.77 (19)C45—N41—H41A120.1
N8—Mn2—N9116.88 (18)C41—N41—H41A120.1
N6—Mn2—N1090.22 (18)N41—C41—C42121.9 (5)
N8—Mn2—N1089.77 (17)N41—C41—H41119.1
N9—Mn2—N1089.23 (18)C42—C41—H41119.1
N6—Mn2—N792.53 (18)C41—C42—C43120.5 (5)
N8—Mn2—N790.07 (16)C41—C42—H42119.8
N9—Mn2—N788.06 (17)C43—C42—H42119.8
N10—Mn2—N7176.88 (18)N42—C43—C44121.8 (4)
C6—N6—Mn2171.3 (5)N42—C43—C42122.7 (4)
N6—C6—S6178.2 (5)C44—C43—C42115.5 (4)
C7—N7—Mn2162.7 (4)C45—C44—C43120.0 (5)
N7—C7—S7178.0 (5)C45—C44—H44120.0
C8—N8—Mn2163.4 (4)C43—C44—H44120.0
N8—C8—S8177.8 (4)N41—C45—C44122.5 (5)
C9—N9—Mn2177.8 (4)N41—C45—H45118.8
N9—C9—S9179.1 (5)C44—C45—H45118.8
C10—N10—Mn2169.0 (4)C43—N42—C47122.0 (4)
N10—C10—S10179.5 (5)C43—N42—C46122.1 (4)
C11—N11—C15120.2 (4)C47—N42—C46115.4 (4)
C11—N11—H11A119.9N42—C46—H46A109.5
C15—N11—H11A119.9N42—C46—H46B109.5
N11—C11—C12123.0 (5)H46A—C46—H46B109.5
N11—C11—H11118.5N42—C46—H46C109.5
C12—C11—H11118.5H46A—C46—H46C109.5
C11—C12—C13118.9 (5)H46B—C46—H46C109.5
C11—C12—H12120.6N42—C47—H47A109.5
C13—C12—H12120.6N42—C47—H47B109.5
N12—C13—C14121.7 (4)H47A—C47—H47B109.5
N12—C13—C12121.8 (4)N42—C47—H47C109.5
C14—C13—C12116.5 (4)H47A—C47—H47C109.5
C15—C14—C13120.0 (4)H47B—C47—H47C109.5
C15—C14—H14120.0C51—N51—C55120.0 (5)
C13—C14—H14120.0C51—N51—H51A120.0
N11—C15—C14121.4 (5)C55—N51—H51A120.0
N11—C15—H15119.3N51—C51—C52122.5 (5)
C14—C15—H15119.3N51—C51—H51118.7
C13—N12—C16121.4 (4)C52—C51—H51118.7
C13—N12—C17121.0 (4)C51—C52—C53119.4 (5)
C16—N12—C17117.5 (4)C51—C52—H52120.3
N12—C16—H16A109.5C53—C52—H52120.3
N12—C16—H16B109.5N52—C53—C54122.6 (4)
H16A—C16—H16B109.5N52—C53—C52121.9 (4)
N12—C16—H16C109.5C54—C53—C52115.5 (4)
H16A—C16—H16C109.5C55—C54—C53121.3 (5)
H16B—C16—H16C109.5C55—C54—H54119.3
N12—C17—H17A109.5C53—C54—H54119.3
N12—C17—H17B109.5C54—C55—N51121.2 (5)
H17A—C17—H17B109.5C54—C55—H55119.4
N12—C17—H17C109.5N51—C55—H55119.4
H17A—C17—H17C109.5C53—N52—C56121.6 (4)
H17B—C17—H17C109.5C53—N52—C57121.2 (4)
C21—N21—C25120.5 (5)C56—N52—C57117.1 (4)
C21—N21—H21A119.7N52—C56—H56A109.5
C25—N21—H21A119.7N52—C56—H56B109.5
N21—C21—C22121.3 (6)H56A—C56—H56B109.5
N21—C21—H21119.3N52—C56—H56C109.5
C22—C21—H21119.3H56A—C56—H56C109.5
C21—C22—C23119.6 (5)H56B—C56—H56C109.5
C21—C22—H22120.2N52—C57—H57A109.5
C23—C22—H22120.2N52—C57—H57B109.5
N22—C23—C24122.6 (5)H57A—C57—H57B109.5
N22—C23—C22120.5 (5)N52—C57—H57C109.5
C24—C23—C22116.9 (4)H57A—C57—H57C109.5
C25—C24—C23120.1 (5)H57B—C57—H57C109.5
C25—C24—H24120.0C65—N61—C61121.5 (5)
C23—C24—H24120.0C65—N61—H61A119.3
N21—C25—C24121.5 (5)C61—N61—H61A119.3
N21—C25—H25119.3N61—C61—C62120.3 (6)
C24—C25—H25119.3N61—C61—H61119.9
C23—N22—C27122.0 (5)C62—C61—H61119.9
C23—N22—C26121.0 (5)C61—C62—C63120.2 (5)
C27—N22—C26117.0 (5)C61—C62—H62119.9
N22—C26—H26A109.5C63—C62—H62119.9
N22—C26—H26B109.5N62—C63—C62121.1 (4)
H26A—C26—H26B109.5N62—C63—C64122.3 (5)
N22—C26—H26C109.5C62—C63—C64116.6 (5)
H26A—C26—H26C109.5C65—C64—C63120.4 (5)
H26B—C26—H26C109.5C65—C64—H64119.8
N22—C27—H27A109.5C63—C64—H64119.8
N22—C27—H27B109.5N61—C65—C64121.1 (5)
H27A—C27—H27B109.5N61—C65—H65119.5
N22—C27—H27C109.5C64—C65—H65119.5
H27A—C27—H27C109.5C63—N62—C66121.8 (4)
H27B—C27—H27C109.5C63—N62—C67121.8 (4)
C35—N31—C31121.2 (5)C66—N62—C67116.4 (4)
C35—N31—H31A119.4N62—C66—H66A109.5
C31—N31—H31A119.4N62—C66—H66B109.5
N31—C31—C32120.9 (5)H66A—C66—H66B109.5
N31—C31—H31119.5N62—C66—H66C109.5
C32—C31—H31119.5H66A—C66—H66C109.5
C31—C32—C33119.4 (5)H66B—C66—H66C109.5
C31—C32—H32120.3N62—C67—H67A109.5
C33—C32—H32120.3N62—C67—H67B109.5
N32—C33—C34122.7 (4)H67A—C67—H67B109.5
N32—C33—C32121.0 (4)N62—C67—H67C109.5
C34—C33—C32116.3 (4)H67A—C67—H67C109.5
C35—C34—C33120.3 (5)H67B—C67—H67C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···S20.882.373.224 (4)163
C11—H11···S9i0.953.023.945 (5)166
C15—H15···S8ii0.952.863.728 (5)153
C16—H16B···S9iii0.983.023.954 (6)160
C17—H17B···S9iii0.982.963.930 (6)170
N21—H21A···S1iv0.882.823.520 (5)138
N21—H21A···S70.882.813.485 (6)134
C25—H25···N1iv0.952.623.567 (7)175
C26—H26B···N50.982.583.500 (7)157
N31—H31A···S100.882.413.266 (5)164
C31—H31···S3v0.952.993.838 (6)150
C35—H35···S1vi0.952.963.512 (6)118
C36—H36B···S3vii0.982.993.868 (6)149
N41—H41A···S50.882.453.302 (4)163
C41—H41···S60.952.943.804 (5)152
C45—H45···S8viii0.952.883.445 (5)119
C47—H47C···S2ix0.982.983.717 (5)133
N51—H51A···S70.882.433.288 (5)163
C51—H51···S4x0.952.993.931 (5)169
C55—H55···S1iv0.952.933.746 (5)145
C57—H57C···N7iv0.982.693.539 (7)146
N61—H61A···S8iv0.882.783.507 (5)141
C65—H65···N8iv0.952.663.513 (7)150
C66—H66A···S4x0.982.923.767 (6)145
Symmetry codes: (i) x1, y, z1; (ii) x+1, y1/2, z; (iii) x1, y, z2; (iv) x, y, z+1; (v) x+2, y+1/2, z; (vi) x+1, y, z; (vii) x+2, y+1/2, z1; (viii) x+2, y1/2, z+1; (ix) x+1, y, z+1; (x) x+1, y+1/2, z+1.
 

Acknowledgements

We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

Funding information

This project was supported by the Deutsche Forschungsgemeinschaft (Project No. NA 720/6-1) and the State of Schleswig-Holstein.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBose, D., Mostafa, G., Walsh, R. D. B., Zaworotko, M. J. & Ghosh, B. K. (2006). Polyhedron, 25, 663–670.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHill, J. P., Palza, H., Alam, S., Ariga, K., Schumacher, A. L., D'Souza, F. D., Anson, C. E. & Powell, A. K. (2008). Inorg. Chem. 47, 8306–8314.  CSD CrossRef PubMed CAS Google Scholar
First citationKushch, N. D., Bardin, A. A., Buravov, L. I., Glushakova, N. M., Shilov, G. V., Dmitriev, A. I., Morgunov, R. B. & Kulikov, A. V. (2014). Synth. Met. 195, 75–82.  CSD CrossRef CAS Google Scholar
First citationLi, Q., Shi, P. P., Ye, Q., Wang, H. T., Wu, D. H., Ye, H. Y., Fu, D. W. & Zhang, Y. (2015). Inorg. Chem. 54, 10642–10647.  CSD CrossRef CAS PubMed Google Scholar
First citationMassoud, S. S., Guilbeau, A. E., Luong, H. T., Vicente, R., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2013). Polyhedron, 54, 26–33.  Web of Science CSD CrossRef CAS Google Scholar
First citationMatoga, M., Oszajca, M. & Molenda, M. (2015). Chem. Commun. 51, 7637–7640.  CSD CrossRef CAS Google Scholar
First citationMousavi, M., Béreau, V., Duhayon, C., Guionneau, P. & Sutter, J. P. (2012). Chem. Commun. 48, 10028–10030.  CSD CrossRef CAS Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS Google Scholar
First citationRams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017b). Phys. Chem. Chem. Phys. 19, 24534–24544.  CrossRef CAS PubMed Google Scholar
First citationRams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017a). Phys. Chem. Chem. Phys. 19, 3232–3243.  CSD CrossRef CAS PubMed Google Scholar
First citationSavard, D. & Leznoff, D. B. (2013). Dalton Trans. 42, 14982–14991.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSuckert, S., Jess, I. & Näther, C. (2015). Acta Cryst. E71, m126.  CSD CrossRef IUCr Journals Google Scholar
First citationSuckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015a). Inorg. Chem. 54, 2893–2901.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015b). Eur. J. Inorg. Chem. pp. 3236–3245.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Jess, I. & Näther, C. (2012b). Acta Cryst. E68, m1528.  CSD CrossRef IUCr Journals Google Scholar
First citationWöhlert, S., Ruschewitz, U. & Näther, C. (2012a). Cryst. Growth Des. 12, 2715–2718.  Google Scholar
First citationWöhlert, S., Wriedt, M., Fic, T., Tomkowicz, Z., Haase, W. & Näther, C. (2013). Inorg. Chem. 52, 1061–1068.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds