research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of aqua­bis­­(nicotinamide-κN)bis­­(4-sulfamoylbenzoato-κO1)copper(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, cDepartment of Chemistry, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, and dInternational Scientific Research Centre, Baku State University, 1148 Baku, Azerbaijan
*Correspondence e-mail: merzifon@hacettepe.edu.tr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 12 December 2017; accepted 12 December 2017; online 1 January 2018)

In the crystal of the title complex, [Cu(C7H6NO4S)2(C6H6N2O)2(H2O)], the CuII cation and the O atom of the coordinated water mol­ecule reside on a twofold rotation axis. The CuII ion is coordinated by two carboxyl­ate O atoms of the two symmetry-related 4-sulfamoylbenzoate (SB) anions and by two N atoms of the two symmetry-related nicotinamide (NA) mol­ecules at distances of 1.978 (2) and 2.025 (3) Å, respectively, forming a slightly distorted square-planar arrangement. The distorted square-pyramidal coordination environment is completed by the water O atom in the axial position at a distance of 2.147 (4) Å. In the crystal, the mol­ecules are linked via O—H⋯O and N—H⋯O hydrogen bonds with R22(8) and R22(18) ring motifs, forming a three-dimensional architecture. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯O/O⋯H (42.2%), H⋯H (25.7%) and H⋯C/C⋯H (20.0%) inter­actions.

1. Chemical context

Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). The NA ring is the reactive part of nicotinamide adenine dinucleo­tide (NAD) and its phosphate (NADP), which are the major electron carriers in many biological oxidation-reduction reactions (You et al., 1978[You, K. S., Arnold, L. J. Jr, Allison, W. S. & Kaplan, N. O. (1978). Trends Biochem. Sci. 3, 265-268.]). The nicotinic acid derivative N,N-di­ethyl­nicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]).

Transition metal complexes with ligands of biochemical inter­est such as imidazole and some N-protected amino acids show inter­esting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]). The crystal structures of metal complexes with benzoic acid derivatives have been reported extensively because of the varieties of the coordination modes, for example, Co and Cd complexes with 4-amino­benzoic acid (Chen & Chen, 2002[Chen, H.-J. & Chen, X.-M. (2002). Inorg. Chim. Acta, 329, 13-21.]). The structures of some mononuclear complexes obtained from the reactions of transition metal(II) ions with nicotinamide (NA) and some benzoic acid derivatives as ligands have been determined previously, e.g. [Zn(C7H5O3)2(C6H6N2O)2] [(II); Necefoğlu et al., 2002[Necefoğlu, H., Hökelek, T., Ersanlı, C. C. & Erdönmez, A. (2002). Acta Cryst. E58, m758-m761.]], [Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2] [(III); Hökelek et al., 2008[Hökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m505-m506.]] and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2] [(IV); Hökelek et al., 2009[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m607-m608.]].

[Scheme 1]

The structure determination of the title compound, (I)[link], a copper complex with two 4-sulfamoylbenzoate (SB) anions and two nicotinamide (NA) ligands and one coordinated water mol­ecule, was undertaken in order to compare the results obtained with those reported previously. In this context, we synthesized the CuII-containing title compound, aqua­bis(nicotinamide-κN)bis­(4-sulfamoylbenzoato-κO1)copper(II), [Cu(C7H6NO4S)2(C6H6N2O)2(H2O)], and report herein its crystal and mol­ecular structures along with the Hirshfeld surface analysis.

2. Structural commentary

The asymmetric unit of the crystal structure of the mononuclear title complex, (I)[link], contains one half of the CuII ion, one 4-sulfamoylbenzoate (SB) anion and one nicotinamide (NA) mol­ecule together with one half water mol­ecule, all ligands coordinating in a monodentate manner (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title complex with the atom-numbering scheme. Unlabelled atoms are related to labelled ones by the symmetry operation 1 − x, y, [{3\over 2}] − z. Displacement ellipsoids are drawn at the 50% probability level.

The CuII ion, located on a twofold rotation axis, is penta-coordinated via two nitro­gen atoms of NA and two oxygen atoms of SB anions and one oxygen atom of the water mol­ecule. The two carboxyl­ate O atoms [O2 and O2i; symmetry code: (i) 1 − x, y, [{3\over 2}] − z] of two symmetry-related monodentate SB anions and the two pyridine N atoms (N1 and N1i) of two symmetry-related monodentate NA ligands are at distances of 1.978 (2) and 2.025 (3) Å, respectively, from the Cu1 atom and form a slightly distorted square-planar arrangement. The sum of the bond angles N1—Cu1—O2i [87.79 (10)°], N1i—Cu1—O2i [92.08 (10)°], O2—Cu1—N1 [92.08 (10)°] and O2—Cu1—N1i [87.79 (10)°] in the basal plane around CuII ion is 359.74°. This confirms the presence of CuII ion with very slight deviation from the basal plane. The slightly distorted square-pyramidal coordination environment is completed by the water O atom (O6) at a distance of 2.147 (4) Å in the axial position.

The near equalities of the C1—O1 [1.237 (4) Å] and C1—O2 [1.273 (4) Å] bonds in the carboxyl­ate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The O2—C1—O1 bond angle [125.2 (3)°] seems to be increased compared to that present in a free acid [122.2°]. The corresponding values for this angle in the closely related structures mentioned above are 123.5 (2) and 120.4 (2)° in (II), 125.2 (5)° in (III), and 124.3 (2)° in (IV); the benzoate ions are coordinated to the metal atoms only monodentately in (III) and (IV), and both monodentately and bidentately in (II). In the SB anion, the carboxyl­ate group is twisted away from the attached C2–C7 benzene ring by 20.92 (17)°, while the benzene and N1/C8–C12 pyridine rings are oriented at a dihedral angle of 81.86 (12)°.

3. Supra­molecular features

In the crystal, O—HW⋯OC, N—HNA⋯ONA, N—HSB⋯OC and N—HSB⋯OSB (W = water, C = carboxyl­ate, NA = nicotinamide and SB = 4-sulfamoylbenzoate) hydrogen bonds (Table 1[link]) link the mol­ecules, enclosing R22(8) and R22(18) ring motifs (Fig. 2[link]) into a three-dimensional architecture. Hydrogen bonding and van der Waals contacts are the dominant inter­actions in the crystal packing. No significant ππ, C—H⋯π or C—H⋯O inter­actions are observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O5i 0.78 (5) 2.23 (5) 3.009 (7) 176 (5)
N3—H31⋯O1ii 0.88 (7) 2.33 (7) 3.165 (6) 159 (6)
N3—H32⋯O4iii 0.93 (6) 2.54 (6) 3.452 (6) 165 (6)
O6—H61⋯O1iv 0.83 (5) 1.79 (5) 2.603 (4) 167 (4)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y-1, z; (iv) x, y+1, z.
[Figure 2]
Figure 2
Part of the crystal structure, viewed down the b axis. O—HW⋯OC, N—HNA⋯ONA, N—HSB⋯OC and N—HSB⋯OSB (W = water, C = carboxyl­ate, NA = nicotinamide and SB = 4-sulfamoylbenzoate) hydrogen bonds, enclosing R22(8) and R22(18) ring motifs, are shown as dashed lines. H atoms not involved in these inter­actions have been omitted for clarity.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title complex, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 3[link]), the white surfaces indicate contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spots appearing near SB-O1, SB-O4, NA-O5 and hydrogen atoms H21, H31, H32 and H61 indicate their role as the respective donors and acceptors in the dominant O—H⋯O and N—H⋯O hydrogen bonds; they also appear as blue and red regions, respectively, corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO. Available at: https://hirshfeldsurface.net/]) as shown in Fig. 4[link]. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The overall two-dimensional fingerprint plot and those delineated into H⋯O/O⋯H, H⋯H, H⋯C/C⋯H, H⋯N/N⋯H, O⋯C/C⋯O, O⋯O and N⋯C/C⋯N contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 5[link] ah, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯O/O⋯H contributing 42.2% to the overall crystal packing, which is reflected in Fig. 5[link]b as a pair of spikes with the tip at de + di ∼1.63 Å. The short H⋯O/O⋯H contacts are masked by strong O—H⋯O hydrogen bonding in this plot. In the fingerprint plot delineated into H⋯H contacts (Fig. 5[link]c), the 25.7% contribution to the overall crystal packing is reflected as widely scattered points of high density due to the large hydrogen content of the mol­ecule. In the absence of C—H⋯π inter­actions in the crystal, the pair of characteristic wings resulting in the fingerprint plot delineated into H⋯C/C⋯H contacts with a 20.0% contribution to the HS, Fig. 5[link]d, and the pair of edges at de + di ∼2.58 Å result from short inter­atomic H⋯C/C⋯H contacts. The H⋯N/N⋯H (Fig. 5[link]e) and O⋯C/C⋯O (Fig. 5[link]f) contacts in the structure with 3.1% and 2.9% contributions to the HS have symmetrical distributions of points with the tips at de + di ∼2.8 Å and de + di ∼2.4 Å, arising from short inter­atomic H⋯N/N⋯H and O⋯C/C⋯O contacts, respectively. The O⋯O contacts assigned to short inter­atomic O⋯O contacts with a 1.6% contribution to the HS appear as an arrow-shaped distribution of points in Fig. 5[link]g, with the vertex at de = di ∼3.5 Å. Finally, the N⋯C/C⋯N contacts in the structure with a 1.6% contribution to the HS has a nearly symmetrical distribution of points, Fig. 5[link]h, with the scattered points of low density. The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯O/O⋯H, H⋯H, H⋯C/C⋯H, H⋯N/N⋯H and O⋯C/C⋯O inter­actions in Fig. 6[link]ae, respectively.

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title complex plotted over dnorm in the range −0.7548 to 1.5398 a.u.
[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title complex plotted over electrostatic potential energy in the range −0.1045 to 0.2914 a.u. using the STO-3G basis set at the Hartree–Fock level of theory. N—H⋯O and O—H⋯O hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
[Figure 5]
Figure 5
The full two-dimensional fingerprint plots for the title complex, showing (a) all inter­actions, and delineated into (b) H⋯O/O⋯H, (c) H⋯H, (d) H⋯C/C⋯H, (e) H⋯N/N⋯H, (f) O⋯C/C⋯O, (g) O⋯O and (h) N⋯C/C⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.
[Figure 6]
Figure 6
Representations of the Hirshfeld surface with the function dnorm plotted onto the surface for (a) H⋯O/O⋯H, (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯N/N⋯H and (e) O⋯C/C⋯O inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯O/O⋯H, H⋯H and H⋯C/C⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Synthesis and crystallization

The title compound was prepared by the reaction of CuSO4·5H2O (1.25 g, 5 mmol) in H2O (100 ml) and nicotinamide (1.22 g, 10 mmol) in water (25 ml) with sodium 4-sulfamoylbenzoate (2.23 g, 10 mmol) in water (150 ml) at room temperature. The mixture was filtered and set aside for several days at ambient temperature to crystallize, giving blue single crystals (yield: 2.11 g, 29%). Combustion analysis: found; C, 42.85; H, 3.70; N, 11.68; S, 8.70%. Calculated: C26H26CuN6O11S2 C, 42.96; H, 3.58; N, 11.57; S, 8.81%. FT–IR: 3363, 3163, 1692, 1677, 1602, 1519, 1432, 1380, 1340, 1301, 1162, 1138, 1093, 1058, 778, 730, 688, 615, 532, 479, 427 cm−1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms of the water mol­ecule and the NH2 group of the nicotinamide (NA) mol­ecule were located in a difference-Fourier map and refined freely. H atoms of the NH2 group of the 4-sulfomylbenzoate (SB) group were also located in a difference-Fourier map and the positions were refined with Uiso(H) = 1.5Ueq(N). The aromatic C-bound H atoms were positioned geometrically with C—H = 0.93 Å, and refined as riding with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C7H6NO4S)2(C6H6N2O)2(H2O)]
Mr 726.20
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 24.2353 (4), 5.6080 (2), 24.9702 (4)
β (°) 118.027 (11)
V3) 2995.7 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.94
Crystal size (mm) 0.22 × 0.17 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.812, 0.853
No. of measured, independent and observed [I > 2σ(I)] reflections 26534, 3069, 2535
Rint 0.049
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.109, 1.10
No. of reflections 3069
No. of parameters 227
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.50, −0.58
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2015).

Aquabis(nicotinamide-κN)bis(4-sulfamoylbenzoato-κO1)copper(II) top
Crystal data top
[Cu(C7H6NO4S)2(C6H6N2O)2(H2O)]F(000) = 1492
Mr = 726.20Dx = 1.610 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9671 reflections
a = 24.2353 (4) Åθ = 3.2–26.5°
b = 5.6080 (2) ŵ = 0.94 mm1
c = 24.9702 (4) ÅT = 296 K
β = 118.027 (11)°Block, blue
V = 2995.7 (3) Å30.22 × 0.17 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3069 independent reflections
Radiation source: fine-focus sealed tube2535 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 26.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 3030
Tmin = 0.812, Tmax = 0.853k = 67
26534 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0186P)2 + 15.4435P]
where P = (Fo2 + 2Fc2)/3
3069 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.37776 (10)0.75000.02603 (16)
S10.24180 (5)0.3629 (2)0.89016 (5)0.0522 (3)
O10.40911 (14)0.0206 (5)0.75744 (16)0.0598 (9)
O20.41703 (10)0.3706 (4)0.74704 (10)0.0324 (5)
O30.28139 (15)0.2819 (9)0.95048 (13)0.0852 (13)
O40.22142 (16)0.6045 (7)0.87921 (18)0.0791 (11)
O50.52585 (16)0.8045 (7)0.56765 (14)0.0885 (13)
O60.50000.7606 (7)0.75000.0580 (13)
H610.475 (2)0.848 (8)0.755 (2)0.066 (15)*
N10.46156 (12)0.3576 (5)0.65848 (12)0.0310 (6)
N20.4387 (3)0.7680 (9)0.48231 (18)0.0793 (16)
H210.449 (2)0.875 (10)0.469 (2)0.073 (17)*
H220.402 (3)0.725 (14)0.465 (3)0.14 (3)*
N30.18052 (17)0.1999 (9)0.86238 (19)0.0613 (11)
H310.153 (3)0.239 (11)0.825 (3)0.092*
H320.191 (3)0.041 (11)0.874 (3)0.092*
C10.39732 (15)0.1892 (6)0.76359 (16)0.0330 (7)
C20.35674 (14)0.2360 (6)0.79293 (14)0.0268 (6)
C30.35135 (16)0.0600 (6)0.82907 (16)0.0349 (8)
H30.37210.08430.83400.042*
C40.31532 (16)0.0973 (7)0.85791 (16)0.0391 (8)
H40.31210.02010.88260.047*
C50.28411 (15)0.3119 (7)0.84941 (15)0.0348 (8)
C60.28860 (16)0.4881 (7)0.81305 (16)0.0379 (8)
H60.26670.63030.80710.045*
C70.32605 (15)0.4514 (6)0.78542 (16)0.0344 (8)
H70.33050.57120.76200.041*
C80.47946 (16)0.5133 (6)0.62909 (15)0.0328 (7)
H80.51160.61920.65180.039*
C90.45234 (16)0.5243 (7)0.56628 (15)0.0368 (8)
C100.40550 (18)0.3622 (8)0.53334 (17)0.0499 (10)
H100.38650.36320.49120.060*
C110.38710 (19)0.1995 (8)0.56309 (18)0.0523 (10)
H110.35580.08920.54140.063*
C120.41574 (16)0.2027 (7)0.62562 (16)0.0392 (8)
H120.40290.09400.64570.047*
C130.47507 (18)0.7119 (7)0.53885 (16)0.0433 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0283 (3)0.0251 (3)0.0346 (3)0.0000.0230 (2)0.000
S10.0401 (5)0.0787 (8)0.0529 (6)0.0098 (5)0.0344 (5)0.0187 (6)
O10.0730 (19)0.0313 (15)0.112 (3)0.0088 (14)0.074 (2)0.0004 (16)
O20.0299 (11)0.0354 (13)0.0409 (12)0.0012 (10)0.0242 (10)0.0018 (11)
O30.061 (2)0.159 (4)0.0415 (16)0.010 (2)0.0294 (15)0.012 (2)
O40.079 (2)0.076 (2)0.118 (3)0.0090 (19)0.076 (2)0.032 (2)
O50.077 (2)0.113 (3)0.0510 (18)0.054 (2)0.0096 (17)0.0285 (19)
O60.062 (3)0.0222 (19)0.125 (4)0.0000.073 (3)0.000
N10.0304 (13)0.0338 (15)0.0363 (14)0.0026 (12)0.0218 (12)0.0023 (12)
N20.088 (3)0.082 (3)0.041 (2)0.037 (3)0.007 (2)0.024 (2)
N30.042 (2)0.086 (3)0.070 (2)0.011 (2)0.0388 (19)0.007 (2)
C10.0293 (16)0.0304 (18)0.0480 (19)0.0003 (14)0.0253 (15)0.0002 (15)
C20.0242 (14)0.0255 (16)0.0349 (16)0.0009 (13)0.0173 (13)0.0004 (13)
C30.0351 (17)0.0266 (17)0.048 (2)0.0040 (14)0.0236 (16)0.0042 (15)
C40.0406 (19)0.042 (2)0.0438 (19)0.0010 (16)0.0271 (17)0.0084 (17)
C50.0261 (16)0.048 (2)0.0380 (18)0.0042 (15)0.0215 (15)0.0063 (16)
C60.0343 (17)0.0341 (19)0.053 (2)0.0072 (15)0.0268 (17)0.0018 (17)
C70.0366 (18)0.0305 (17)0.0442 (19)0.0062 (14)0.0257 (16)0.0064 (15)
C80.0365 (17)0.0331 (18)0.0324 (17)0.0041 (15)0.0191 (14)0.0028 (14)
C90.0379 (18)0.0387 (19)0.0351 (18)0.0036 (16)0.0183 (15)0.0030 (16)
C100.049 (2)0.062 (3)0.0333 (18)0.017 (2)0.0154 (17)0.0004 (19)
C110.052 (2)0.058 (3)0.044 (2)0.023 (2)0.0201 (19)0.007 (2)
C120.0397 (19)0.040 (2)0.046 (2)0.0100 (16)0.0270 (17)0.0002 (17)
C130.050 (2)0.046 (2)0.0348 (19)0.0064 (18)0.0214 (17)0.0045 (17)
Geometric parameters (Å, º) top
Cu1—O21.978 (2)C1—C21.500 (4)
Cu1—O2i1.978 (2)C2—C71.384 (4)
Cu1—N12.025 (3)C2—C31.384 (5)
Cu1—N1i2.025 (3)C3—C41.384 (5)
Cu1—O62.147 (4)C3—H30.9300
S1—O41.424 (4)C4—C51.384 (5)
S1—O31.428 (3)C4—H40.9300
S1—N31.598 (4)C5—C61.380 (5)
S1—C51.775 (3)C6—C71.389 (5)
O1—C11.237 (4)C6—H60.9300
O2—C11.273 (4)C7—H70.9300
O5—C131.212 (5)C8—C91.388 (5)
O6—H610.83 (4)C8—H80.9300
N1—C81.337 (4)C9—C101.383 (5)
N1—C121.344 (4)C9—C131.495 (5)
N2—C131.303 (5)C10—C111.377 (5)
N2—H210.78 (6)C10—H100.9300
N2—H220.82 (7)C11—C121.379 (5)
N3—H310.88 (5)C11—H110.9300
N3—H320.93 (6)C12—H120.9300
O2—Cu1—O2i177.67 (14)C4—C3—C2120.5 (3)
O2—Cu1—N192.08 (10)C4—C3—H3119.8
O2i—Cu1—N187.79 (10)C2—C3—H3119.8
O2—Cu1—N1i87.79 (10)C5—C4—C3119.0 (3)
O2i—Cu1—N1i92.08 (10)C5—C4—H4120.5
N1—Cu1—N1i173.61 (16)C3—C4—H4120.5
O2—Cu1—O691.16 (7)C6—C5—C4121.1 (3)
O2i—Cu1—O691.16 (7)C6—C5—S1120.5 (3)
N1—Cu1—O693.20 (8)C4—C5—S1118.3 (3)
N1i—Cu1—O693.20 (8)C5—C6—C7119.5 (3)
O4—S1—O3120.4 (3)C5—C6—H6120.3
O4—S1—N3107.1 (2)C7—C6—H6120.3
O3—S1—N3107.6 (2)C2—C7—C6119.8 (3)
O4—S1—C5106.55 (19)C2—C7—H7120.1
O3—S1—C5105.69 (18)C6—C7—H7120.1
N3—S1—C5109.17 (19)N1—C8—C9123.1 (3)
C1—O2—Cu1122.3 (2)N1—C8—H8118.5
Cu1—O6—H61126 (3)C9—C8—H8118.5
C8—N1—C12118.4 (3)C10—C9—C8117.6 (3)
C8—N1—Cu1119.1 (2)C10—C9—C13124.5 (3)
C12—N1—Cu1122.3 (2)C8—C9—C13117.9 (3)
C13—N2—H21117 (4)C11—C10—C9119.9 (3)
C13—N2—H22122 (5)C11—C10—H10120.1
H21—N2—H22118 (6)C9—C10—H10120.1
S1—N3—H31113 (4)C10—C11—C12119.0 (4)
S1—N3—H32110 (4)C10—C11—H11120.5
H31—N3—H32122 (6)C12—C11—H11120.5
O1—C1—O2125.2 (3)N1—C12—C11122.1 (3)
O1—C1—C2118.0 (3)N1—C12—H12118.9
O2—C1—C2116.8 (3)C11—C12—H12118.9
C7—C2—C3120.1 (3)O5—C13—N2121.3 (4)
C7—C2—C1121.4 (3)O5—C13—C9121.3 (3)
C3—C2—C1118.6 (3)N2—C13—C9117.4 (4)
N1—Cu1—O2—C1107.8 (3)O4—S1—C5—C4172.7 (3)
N1i—Cu1—O2—C165.8 (3)O3—S1—C5—C443.5 (4)
O6—Cu1—O2—C1158.9 (2)N3—S1—C5—C472.0 (3)
O2—Cu1—N1—C8130.0 (3)C4—C5—C6—C71.3 (5)
O2i—Cu1—N1—C852.3 (3)S1—C5—C6—C7174.9 (3)
O6—Cu1—N1—C838.8 (2)C3—C2—C7—C61.6 (5)
O2—Cu1—N1—C1245.7 (3)C1—C2—C7—C6179.7 (3)
O2i—Cu1—N1—C12132.0 (3)C5—C6—C7—C22.2 (5)
O6—Cu1—N1—C12137.0 (3)C12—N1—C8—C90.9 (5)
Cu1—O2—C1—O133.8 (5)Cu1—N1—C8—C9175.0 (3)
Cu1—O2—C1—C2146.0 (2)N1—C8—C9—C101.3 (6)
O1—C1—C2—C7160.2 (4)N1—C8—C9—C13178.0 (3)
O2—C1—C2—C719.9 (5)C8—C9—C10—C110.6 (6)
O1—C1—C2—C321.1 (5)C13—C9—C10—C11178.6 (4)
O2—C1—C2—C3158.8 (3)C9—C10—C11—C120.4 (7)
C7—C2—C3—C40.1 (5)C8—N1—C12—C110.2 (5)
C1—C2—C3—C4178.8 (3)Cu1—N1—C12—C11176.0 (3)
C2—C3—C4—C50.8 (5)C10—C11—C12—N10.8 (6)
C3—C4—C5—C60.2 (5)C10—C9—C13—O5159.7 (5)
C3—C4—C5—S1176.5 (3)C8—C9—C13—O521.1 (6)
O4—S1—C5—C63.5 (4)C10—C9—C13—N218.7 (7)
O3—S1—C5—C6132.7 (3)C8—C9—C13—N2160.4 (4)
N3—S1—C5—C6111.8 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O5ii0.78 (5)2.23 (5)3.009 (7)176 (5)
N3—H31···O1iii0.88 (7)2.33 (7)3.165 (6)159 (6)
N3—H32···O4iv0.93 (6)2.54 (6)3.452 (6)165 (6)
O6—H61···O1v0.83 (5)1.79 (5)2.603 (4)167 (4)
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x+1/2, y+1/2, z+3/2; (iv) x, y1, z; (v) x, y+1, z.
 

Acknowledgements

The authors acknowledge the Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer.

References

First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationChen, H.-J. & Chen, X.-M. (2002). Inorg. Chim. Acta, 329, 13–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m505–m506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m607–m608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNecefoğlu, H., Hökelek, T., Ersanlı, C. C. & Erdönmez, A. (2002). Acta Cryst. E58, m758–m761.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar
First citationYou, K. S., Arnold, L. J. Jr, Allison, W. S. & Kaplan, N. O. (1978). Trends Biochem. Sci. 3, 265–268.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds