research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and hydrogen bonding in N-(1-de­­oxy-β-D-fructo­pyranos-1-yl)-2-amino­isobutyric acid

CROSSMARK_Color_square_no_text.svg

aDepartment of Biochemistry, University of Missouri, Columbia, MO 65211, USA, and bDepartment of Chemistry, University of Missouri, Columbia, MO 65211, USA
*Correspondence e-mail: MossineV@missouri.edu

Edited by G. Smith, Queensland University of Technology, Australia (Received 2 December 2017; accepted 18 December 2017; online 1 January 2018)

The title compound, alternatively called D-fructose-2-amino­isobutyric acid (FruAib), C10H19NO7, (I), crystallizes exclusively in the β-pyran­ose form, with two conformationally non-equivalent mol­ecules [(IA) and (IB)] in the asymmetric unit. In solution, FruAib establishes an equilibrium, with 75.6% of the population consisting of β-pyran­ose, 10.4% β-furan­ose, 10.1% α-furan­ose, 3.0% α-pyran­ose and <0.7% the acyclic forms. The carbohydrate ring in (I) has the normal 2C5 chair conformation and the amino acid portion is in the zwitterion form. Bond lengths and valence angles compare well with the average values from related pyran­ose structures. All carboxyl, hy­droxy and ammonium groups are involved in hydrogen bonding and form a three-dimensional network of infinite chains that are connected through homodromic rings and short chains. Intra­molecular hydrogen bonds bridge the amino acid and sugar portions in both mol­ecules. A comparative Hirshfeld surfaces analysis of FruAib and four other sugar–amino acids suggests an increasing role of intra­molecular heteroatom inter­actions in crystal structures with an increasing proportion of C—H bonds.

1. Chemical context

D-Fructose-amino acids are derivatives of fructosamine and represent the major fraction of the early Maillard reaction products which form non-enzymatically both in processed foods and in vivo (Mossine & Mawhinney, 2010[Mossine, V. V. & Mawhinney, T. P. (2010). Adv. Carbohydr. Chem. Biochem. 64, 291-402.]). Naturally occurring D-fructose-amino acids act as inter­mediates in the formation of food aroma and colour, while elevated fructosamine content in humans has been linked to the development of diabetic complications and tissue damage. Synthetic fructo­samine derivatives have been offered as lectin blockers and anti­oxidants that might stimulate immune system (Tarnawski, Kuliś-Orzechowska & Szelepin, 2007[Tarnawski, M., Kuliś-Orzechowska, R. & Szelepin, B. (2007). Int. Immunopharmacol. 7, 1577-1581.]), be potentially useful in prevention of cancer metastasis (Mossine et al., 2010[Mossine, V. V., Glinsky, V. V. & Mawhinney, T. P. (2010). In The Maillard Reaction: Interface between Aging, Nutrition and Metabolism, edited by M. C. Thomas and J. Forbes, pp. 170-179. Royal Society of Chemistry.]), or neuroinflammation (Song et al., 2016[Song, H., Lu, Y., Qu, Z., Mossine, V. V., Martin, M. B., Hou, J., Cui, J., Peculis, B. A., Mawhinney, T. P., Cheng, J., Greenlief, C. M., Fritsche, K., Schmidt, F. J., Walter, R. B., Lubahn, D. B., Sun, G. Y. & Gu, Z. (2016). Sci. Rep. 6, 35323.]). The chemical and biological reactivity of fructosamines stems from their structural instability. Thus, in solutions, fructosamine derivatives rapidly establish a equilibrium between several cyclic and acyclic forms (Kaufmann et al., 2016[Kaufmann, M., Meissner, P. M., Pelke, D., Mügge, C. & Kroh, L. W. (2016). Carbohydr. Res. 428, 87-99.]), as exemplified in Fig. 1[link] for the title compound. The acyclic tautomers, while present in minute (<1%) proportions, are responsible for chemical transformations of fructosamines in numerous redox, isomerization, or degradation reactions. The cyclic conformers are responsible for the carbohydrate recognition by proteins such as lectins, transporters or enzymes, and thus define a number of biological activities of fructosamines (Mossine & Mawhinney, 2010[Mossine, V. V. & Mawhinney, T. P. (2010). Adv. Carbohydr. Chem. Biochem. 64, 291-402.]).

[Scheme 1]
[Figure 1]
Figure 1
Equilibrium in aqueous solution of (I)[link], at 293 K and pH 6.

As a part of our structure–activity studies, we have prepared D-fructose-2-amino­isobutyric acid (FruAib), a structural analogue of an efficient blocker of galectins-1, −3 and −4, D-fructose-L-leucine (Mossine et al., 2008[Mossine, V. V., Glinsky, V. V. & Mawhinney, T. P. (2008). In Galectins, Klyosov, A. A., Platt, D. & Witczak, Z. J., Eds. John Wiley & Sons, pp. 235-270.]). In this work, we report on the mol­ecular and crystal structure of FruAib, C10H19NO7 (I)[link], with an emphasis on hydrogen-bonding patterns in the structure. A comparative Hirshfeld surfaces analysis of FruAib and four other sugar-amino acids is also completed.

2. Structural commentary

Crystalline FruAib has two conformationally nonequivalent mol­ecules, (IA) and (IB), in the asymmetric unit. The mol­ecular structures and atomic numbering are shown in Figs. 2[link] and 3[link]. The mol­ecules may be considered as conjugates of a carbohydrate, 1-amino-1-de­oxy-D-fructose, and an amino acid, 2-amino­isobutyric acid, which are joined through the common amino group. The β-D-fructo­pyran­ose rings of the carbohydrate portions in both (IA) and (IB) exist in the 2C5 chair conformation, with puckering parameters Q = 0.582 Å, q = 177.7°, and f = 224° for (IA) and Q =0.565 Å, q = 175.5°, and f = 268° for (IB). These parameters correspond to a conformation with the lowest energy possible for fructose (French et al., 1997[French, A. D., Dowd, M. K. & Reilly, P. J. (1997). J. Mol. Struct. Theochem, 395-396, 271-287.]), with (IB) providing a better fit. The bond distances and the valence angles are close to the average values for a number of crystalline pyran­ose structures (Jeffrey & Taylor, 1980[Jeffrey, G. A. & Taylor, R. (1980). J. Comput. Chem. 1, 99-109.]). In the solution of FruAib, the β-D-pyran­ose anomer dominates the equilibrium, at 76.6%, as follows from the 13C NMR spectrum (Fig. 1[link], Supporting Table S1). In the 1H NMR spectrum of the major anomer (see Section 5), the vicinal proton–proton coupling constants J3,4 = 9.8 Hz and J4,5 = 3.4 Hz indicate H4 is in the trans disposition to H3 and in the gauche disposition to H5. Hence, the predominant conformation of FruAib in solution is the 2C5 β-D-fructo­pyran­ose, as well.

[Figure 2]
Figure 2
Atomic numbering and displacement ellipsoids at the 50% probability level for mol­ecule (IA). Intra­molecular N—H⋯O and O—H⋯O inter­actions are shown as dotted lines.
[Figure 3]
Figure 3
Atomic numbering and displacement ellipsoids at the 50% probability level for mol­ecule (IB). Intra­molecular N—H⋯O and O—H⋯O inter­actions are shown as dotted lines.

The amino acid portions of both (IA) and (IB) are in the zwitterion form with a positively charged tetra­hedral secondary ammonium nitro­gen and a negatively charged deprotonated carboxyl group. Each mol­ecule has three intra­molecular inter­actions (Table 1[link]), two of which bridge the carboxyl­ate, ammonium, and the carbohydrate portions of the mol­ecules. The intra­molecular hydrogen-bonding patterns differ in the mol­ecules. Thus, in (IB), the string of short heteroatom contacts stretches from O4B through O7B and can be denoted in terms of the S23(5) pattern descriptor. In (IA), the intra­molecular hydrogen bonding is fragmented between the shorter zwitterionic bridge O7A⋯H1NA⋯O6A [the S12(3) pattern] and the O2A—H⋯O3A contact. In the 1H NMR spectrum of FruAib (see Section 5), the two protons attached to C1 produce two distinct signals at 3.297 and 3.210 ppm, with J1A,1B = −12.7 Hz. The inequality of these protons indicates restricted rotation around the C1—C2 and C1—C7 bonds, thus suggesting that the intra­molecular hydrogen bonds retain the structure in solution (Mossine et al., 1994[Mossine, V. V., Glinsky, G. V. & Feather, M. S. (1994). Carbohydr. Res. 262, 257-270.]). There are non-equivalences in carboxyl­ate C—O distances that are observed in both mol­ecules and which could be attributed to unequal participation of the oxygen atoms in hydrogen bonding. In (IA), O8A is involved in a three-center hydrogen-bonding inter­action, with H⋯O8A distances of 1.79 and 1.98 Å, while for the O7A inter­action, the distances are 1.91 and 2.30 Å (Table 1[link]), which explains the elongation of the C8A—O8A bond (1.260 Å), as compared to the C8A—O7A distance (1.249 Å). Similar considerations can be applied to (IB), where O7B is involved in two short heteroatom contacts and O8B participates in only one (Table 1[link]), hence the difference in the C8B—O7B (1.263 Å) and C8B—O8B (1.241 Å) bond lengths.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯O6A 0.86 (3) 2.40 (3) 2.813 (3) 110 (2)
N1A—H1NA⋯O7A 0.86 (3) 2.30 (3) 2.674 (2) 107 (2)
O2B—H2OB⋯O8Ai 0.84 (3) 1.78 (3) 2.596 (3) 165 (3)
N1A—H2NA⋯O7B 0.98 (3) 1.78 (3) 2.743 (3) 169 (3)
O5A—H5OA⋯O2Bii 0.76 (4) 2.14 (4) 2.886 (3) 168 (4)
O5B—H5OB⋯O3Aiii 0.83 (4) 1.99 (4) 2.804 (3) 165 (3)
O2A—H2OA⋯O3A 0.82 (4) 2.62 (3) 2.847 (2) 97 (3)
O3A—H3OA⋯O4Biv 0.78 (4) 2.08 (4) 2.785 (3) 149 (3)
O4A—H4OA⋯O8Av 0.84 (4) 2.00 (4) 2.822 (3) 170 (4)
O2A—H2OA⋯O8B 0.82 (4) 1.87 (4) 2.657 (3) 161 (4)
O4B—H4OB⋯O3B 0.84 (4) 2.51 (4) 2.886 (2) 108 (3)
O4B—H4OB⋯O4Avi 0.84 (5) 2.14 (5) 2.864 (3) 145 (5)
N1B—H2NB⋯O7Ai 0.90 (3) 1.91 (3) 2.795 (3) 168 (3)
N1B—H1NB⋯O3B 0.90 (4) 2.02 (4) 2.800 (3) 144 (3)
N1B—H1NB⋯O7B 0.90 (4) 2.40 (3) 2.681 (3) 100 (2)
O3B—H3OB⋯O5Bvii 0.86 (4) 1.92 (4) 2.717 (3) 154 (4)
Symmetry codes: (i) x+1, y-1, z; (ii) x-1, y+1, z+1; (iii) x, y, z-1; (iv) x-1, y, z+1; (v) x, y, z+1; (vi) x+1, y, z-1; (vii) x+1, y, z.

3. Supra­molecular features

FruAib crystallizes in the triclinic space group P1, with two non-equivalent mol­ecules per unit cell. The mol­ecular packing of (I)[link] features infinite chains of hydrogen bonds spiralling along the a axis (Fig. 4[link]). The basic hydrogen-bonding patterns are depicted in Fig. 5[link] and include the main infinite chain pattern C55(12); in the crystal, these infinite chains are connected through homodromic rings [R44(8)] and short chains [D12(5) and D(4)]. Thus, hydrogen bonds form a three-dimensional network of short heteroatomic contacts throughout the crystal of (I)[link]. In addition, there are a number of close C—H⋯O contacts that may qualify as weak hydrogen bonds (Table 2[link]). Inter­estingly, mol­ecule (IA) provides most of donors for these contacts.

Table 2
Suspected C—H⋯O contacts (Å, °) in (I)

D—H⋯A D—H H⋯A DA D—H⋯A Symmetry code
C1A—H1A1⋯O3A 0.99 2.56 2.909 (3) 101  
C4A—H4A⋯O4B 1.00 2.63 3.608 (3) 167 x, y, z + 1
C9A—H9A1⋯O8A 0.98 2.55 3.313 (3) 135 x + 1, y, z
C9A—H9A3⋯O3B 0.98 2.66 3.575 (3) 156  
C9A—H9A3⋯O7B 0.98 2.68 3.381 (3) 129  
C10A—H10A⋯O7B 0.98 2.72 3.451 (3) 132  
C10A—H10B⋯O3B 0.98 2.64 3.076 (3) 107 x − 1, y, z
C5B—H5B⋯O8A 1.00 2.41 3.355 (3) 156 x, y, z − 1
C6B—H6B2⋯O5A 0.99 2.61 3.556 (3) 161 x + 1, y − 1, z
C10B—H10E⋯O5A 0.98 2.71 3.517 (3) 140 x + 1, y − 1, z
C10B—H10F⋯O7A 0.98 2.70 3.443 (3) 133 x + 1, y − 1, z
[Figure 4]
Figure 4
The mol­ecular packing in (I)[link]. Color code for crystallographic axes: red −a, green −b, blue −c. Hydrogen bonds are shown as cyan dotted lines.
[Figure 5]
Figure 5
Hydrogen-bond patterns in the crystal structure of (I)[link].

4. Database survey

Search of SciFinder, Google Scholar, and the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) by both structure and chemical names revealed no previous structural description of D-fructose-2-amino­isobutyric acid: thus the compound appears to be novel. The D-fructosamine portion of the mol­ecule is more inter­esting for a structure comparison survey due to its conformational instability and practical significance to food and health sciences. The most closely related structures are D-fructose-glycine (FruGly, CCDC 1307697; Mossine et al., 1995[Mossine, V. V., Glinsky, G. V., Barnes, C. L. & Feather, M. S. (1995). Carbohydr. Res. 266, 5-14.]) and D-fructose-L-proline (FruPro, CCDC 628806, 628807, 631528; Tarnawski, Ślepokura et al., 2007[Tarnawski, M., Ślepokura, K., Lis, T., Kuliś-Orzechowska, R. & Szelepin, B. (2007). Carbohydr. Res. 342, 1264-1270.]). These D-fructose-amino acids crystallize in the 2C5 β-pyran­ose conformations and exist as zwitterions as well, with the intra­molecular hydrogen bonding that necessarily involves the amino acid carboxyl­ate, the ammonium group and one hy­droxy group donated by the carbohydrate moiety. However, none of these structures features the involvement of the pyran­ose ring O6 in the intra­molecular hydrogen bonding found in (IA). On the other hand, (IB) is structurally close to both FruGly (Mossine et al., 1995[Mossine, V. V., Glinsky, G. V., Barnes, C. L. & Feather, M. S. (1995). Carbohydr. Res. 266, 5-14.]) and FruPro (Tarnawski, Ślepokura et al., 2007[Tarnawski, M., Ślepokura, K., Lis, T., Kuliś-Orzechowska, R. & Szelepin, B. (2007). Carbohydr. Res. 342, 1264-1270.]). In the mol­ecules, the conformations around the C1—C2 bond are trans–gauche, with respective values of the N—C1—C2—O6 torsion angle falling into the 165–177° range and are stabilized with the similar intra­molecular hydrogen-bonding pattern O3⋯H1N⋯O7.

A compendium of structures close to (I)[link] is presented in Table 3[link]. In addition to FruPro and FruGly, two structures isomeric to FruGly were included: D-galactose-glycine (GalGly, CCDC123625; Mossine et al., 1996[Mossine, V. V., Barnes, C. L., Glinsky, G. V. & Feather, M. S. (1996). Carbohydr. Res. 284, 11-24.]) and D-glucose-glycine (GlcGly, CCDC123624; Mossine et al., 1996[Mossine, V. V., Barnes, C. L., Glinsky, G. V. & Feather, M. S. (1996). Carbohydr. Res. 284, 11-24.]). In sugar-amino acids, as demonstrated in Table 3[link], an increase in the proportion of C—H bonds leads to an increase in number of intra­molecular hydrogen bonds. Such tendency towards the `inter­nalization' of hydrogen bonding was also noticed as a result of a comparative analysis of the `fingerprint plots' based on the calculated Hirshfeld surfaces (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and delineated for the O⋯H/H⋯O contacts (Fig. 6[link]). Table 3[link] lists the relative abundances of these contacts calculated for (IA), (IB) and structurally close sugar-amino acids. There is an obvious trend towards decrease in the proportion of inter­molecular O⋯H contacts as the number of the C—H bonds in the structure increases, although a total number of hydrogen-bonds per mol­ecule increases as well.

Table 3
Hydrogen bonding and contributions of the O⋯H/H⋯O contacts to the Hirshfeld surfaces of sugar-amino acids

Notes: (*) All sugar-amino acids are in the pyran­ose form and all have four hy­droxy, one carboxyl and one ammonium group, and one pyran­ose ring oxygen; (**) hydrogen-bond selection criteria: DA < 2.9 Å; H⋯A < 2.7 Å; D—H⋯A >95°.

Structure* No. of CH/CH2/CH3 groups (total C—H) No. of intra/inter hydrogen-bonds** % of O⋯H/H⋯O contacts on Hirshfeld surface Reference
GalGly 3/3/0 (9) 2/6 55.7 Mossine et al. (1996[Mossine, V. V., Barnes, C. L., Glinsky, G. V. & Feather, M. S. (1996). Carbohydr. Res. 284, 11-24.])
GlcGly 3/3/0 (9) 3/6 57.6 Mossine et al. (1996[Mossine, V. V., Barnes, C. L., Glinsky, G. V. & Feather, M. S. (1996). Carbohydr. Res. 284, 11-24.])
FruGly 3/3/0 (9) 2/6 51.6 Mossine et al. (1995[Mossine, V. V., Glinsky, G. V., Barnes, C. L. & Feather, M. S. (1995). Carbohydr. Res. 266, 5-14.])
FruAib (IA) 3/2/2 (13) 3/5 44.0 This work
FruAib (IB) 3/2/2 (13) 3/5 45.9 This work
FruPro·H2O 4/5/0 (14) 3/6 49.2 Mossine et al. (2007[Mossine, V. V., Barnes, C. L. & Mawhinney, T. P. (2007). J. Carbohydr. Chem. 26, 249-266.])
FruPro·2H2O 4/5/0 (14) 3/6 49.3 Tarnawski, Ślepokura et al. (2007[Tarnawski, M., Ślepokura, K., Lis, T., Kuliś-Orzechowska, R. & Szelepin, B. (2007). Carbohydr. Res. 342, 1264-1270.])
FruPro·MeOH 4/5/1 (17) 4/5 40.2 Tarnawski, Ślepokura et al. (2007[Tarnawski, M., Ślepokura, K., Lis, T., Kuliś-Orzechowska, R. & Szelepin, B. (2007). Carbohydr. Res. 342, 1264-1270.])
[Figure 6]
Figure 6
Two-dimensional fingerprint plots produced for the Hirshfeld surfaces of (IA) and (IB). The full plots for (IA) and (IB) are shown in (a) and (b), respectively. Contributions to the plots from the H⋯H contacts are shown in (c) and (d) and the contributions from the O⋯H/H⋯O contacts are depicted in (e) and (f).

5. Synthesis and crystallization

2-Amino­isobutyric acid (2.1 g, 0.02 mol), D-glucose (9 g, 0.05 mol), and sodium acetate (0.82 g, 0.01 mol) were dissolved in 100 ml of a methanol/glycerol (3:1) mixture and refluxed for 3 h. The reaction progress was monitored by TLC on silica. The reaction mixture was diluted with 900 ml of water and passed through a column charged with 80 ml of Amberlite IRN-77 (H+-form). The target compound was then eluted with 0.2 M pyridine, and fractions containing pure FruAib were pooled and evaporated. The residue was redissolved in 100 ml of water, decolorized with 0.5 g of charcoal and evaporated to a syrup. The latter was dissolved in 30 ml of ethanol and made nearly cloudy with dropwise addition of acetone. Crystallization occurred within a week at room temperature. Yield 2.0 g (38%, based on starting Aib). Major (β-pyran­ose anomer) peaks (ppm) in the 13C NMR spectrum in D2O: 179.35 (C8); 98.33 (C2); 72.39 (C4); 72.21 (C3); 71.79 (C5); 67.00 (C7); 66.68 (C6); 51.72 (C1); 24.66, 24.47 (C9, C10). See Supporting Table S1 for minor peak assignments in the spectrum. Major signals (ppm) and resolved coupling constants (Hz) in the 1H NMR spectrum: 4.038 (dd, H6B); 4.021 (m, H5); 3.903 (dd, H4); 3.784 (d, H3); 3.775 (dd, H6A); 3.297 (d, H1B); 3.210 (d, H1A); 1.517 (s, 3H10); 1.512 (s, 3H9); J1A,1B = −12.7; J3,4 = 9.8; J4,5 = 3.4; J5,6A = 1.3; J6A,6B = −12.9.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Hy­droxy and nitro­gen-bound H atoms were located in difference-Fourier analyses and were allowed to refine fully. Other H atoms were placed at calculated positions and treated as riding, with C—H = 0.98 Å (meth­yl), 0.99 Å (methyl­ene) or 1.00 Å (methine) and with Uiso(H) = 1.2Ueq(methine or methyl­ene) or 1.5Ueq(meth­yl). As a result of the unrealistic value obtained for the Flack absolute structure parameter [−0.5 (3) for 2254 quotients (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])], the absolute configuration of the ring system (2R,3S,4R,5R) was assigned on the basis of the known configuration for the starting compound D-glucose (McNaught, 1996[McNaught, A. D. (1996). Pure Appl. Chem. 68, 1919-2008.]).

Table 4
Experimental details

Crystal data
Chemical formula C10H19NO7
Mr 265.26
Crystal system, space group Triclinic, P1
Temperature (K) 100
a, b, c (Å) 5.8008 (19), 9.636 (3), 10.676 (4)
α, β, γ (°) 87.766 (3), 86.330 (4), 82.042 (4)
V3) 589.5 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.25 × 0.20 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.86, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 6952, 5160, 4927
Rint 0.022
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.081, 1.03
No. of reflections 5160
No. of parameters 377
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.22
Absolute structure Flack x determined using 2254 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.5 (3)
Computer programs: APEX2 and SAINT (Bruker, 1998[Bruker. (1998). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), CIFTAB (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: X-SEED (Barbour, 2001) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CIFTAB (Sheldrick, 2008) and publCIF (Westrip, 2010).

(I) top
Crystal data top
C10H19NO7Z = 2
Mr = 265.26F(000) = 284
Triclinic, P1Dx = 1.494 Mg m3
a = 5.8008 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.636 (3) ÅCell parameters from 4131 reflections
c = 10.676 (4) Åθ = 2.8–27.6°
α = 87.766 (3)°µ = 0.13 mm1
β = 86.330 (4)°T = 100 K
γ = 82.042 (4)°Plate, colourless
V = 589.5 (3) Å30.25 × 0.20 × 0.08 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
4927 reflections with I > 2σ(I)
ω scansRint = 0.022
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
θmax = 27.6°, θmin = 1.9°
Tmin = 0.86, Tmax = 0.99h = 77
6952 measured reflectionsk = 1212
5160 independent reflectionsl = 1313
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.1P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.30 e Å3
5160 reflectionsΔρmin = 0.22 e Å3
377 parametersAbsolute structure: Flack x determined using 2254 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraintsAbsolute structure parameter: 0.5 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.4852 (3)0.7001 (2)0.59886 (18)0.0140 (4)
C1A0.2937 (4)0.6814 (2)0.6955 (2)0.0155 (4)
H1A10.2583870.5837900.6961050.019*
H1A20.1508650.7450670.6754020.019*
O2A0.5882 (3)0.6392 (2)0.84699 (16)0.0201 (4)
C2A0.3701 (4)0.7143 (2)0.8240 (2)0.0149 (4)
O3A0.1611 (3)0.54217 (18)0.93040 (17)0.0200 (4)
C3A0.1796 (4)0.6889 (2)0.9256 (2)0.0160 (4)
H3A0.0275650.7430400.9027640.019*
O4A0.0554 (3)0.7173 (2)1.14090 (17)0.0235 (4)
C4A0.2446 (4)0.7366 (2)1.0515 (2)0.0166 (4)
H4A0.3887690.6760381.0776160.020*
O5A0.0858 (3)0.9847 (2)1.01890 (19)0.0256 (4)
C5A0.2914 (4)0.8897 (2)1.0402 (2)0.0173 (5)
H5A0.3561550.9142731.1197670.021*
O6A0.3959 (3)0.85831 (17)0.81688 (15)0.0185 (3)
C6A0.4700 (4)0.9059 (3)0.9321 (2)0.0208 (5)
H6A10.4928271.0057180.9212780.025*
H6A20.6212860.8511620.9519120.025*
O7A0.2928 (3)0.95121 (17)0.51308 (16)0.0205 (4)
C7A0.4156 (4)0.7112 (2)0.4646 (2)0.0140 (4)
O8A0.1246 (3)0.86077 (17)0.35794 (16)0.0204 (4)
C8A0.2629 (4)0.8535 (2)0.4449 (2)0.0147 (4)
C9A0.6394 (4)0.7138 (3)0.3809 (2)0.0190 (5)
H9A10.7187560.7916340.4040610.028*
H9A20.6004150.7262030.2928460.028*
H9A30.7423400.6251570.3922350.028*
C10A0.2936 (4)0.5854 (2)0.4386 (2)0.0176 (5)
H10A0.3868940.4990350.4679240.026*
H10B0.2762260.5813220.3481470.026*
H10C0.1392890.5951940.4830130.026*
N1B0.9798 (3)0.1994 (2)0.51896 (19)0.0148 (4)
C1B0.7661 (4)0.1679 (2)0.4597 (2)0.0162 (4)
H1B10.6283790.2300400.4942200.019*
H1B20.7423140.0697610.4810610.019*
O2B0.9828 (3)0.10708 (18)0.26199 (16)0.0177 (3)
C2B0.7867 (4)0.1888 (2)0.3164 (2)0.0153 (4)
O3B1.0020 (3)0.39052 (17)0.31557 (16)0.0179 (3)
C3B0.7993 (4)0.3425 (2)0.2743 (2)0.0147 (4)
H3B0.6603810.4011440.3143430.018*
O4B0.7785 (3)0.50320 (19)0.09278 (18)0.0220 (4)
C4B0.7840 (4)0.3599 (2)0.1331 (2)0.0157 (4)
H4B0.9230450.3034460.0909980.019*
O5B0.3592 (3)0.39757 (19)0.13899 (18)0.0212 (4)
C5B0.5615 (4)0.3074 (3)0.0932 (2)0.0178 (5)
H5B0.5646380.3060470.0005060.021*
O6B0.5737 (3)0.15023 (18)0.28044 (16)0.0184 (3)
C6B0.5487 (4)0.1611 (3)0.1472 (2)0.0196 (5)
H6B10.3969390.1327580.1290610.023*
H6B20.6732140.0952840.1050880.023*
O7B0.7832 (3)0.45290 (18)0.59469 (17)0.0248 (4)
C7B0.9506 (4)0.2216 (2)0.6593 (2)0.0158 (4)
O8B0.6794 (4)0.3715 (2)0.78640 (18)0.0301 (5)
C8B0.7867 (4)0.3608 (2)0.6822 (2)0.0174 (5)
C9B1.1926 (4)0.2407 (3)0.7005 (3)0.0241 (5)
H9B11.2990350.1532090.6890550.036*
H9B21.1809880.2648860.7891590.036*
H9B31.2525030.3160920.6494240.036*
C10B0.8641 (5)0.0944 (3)0.7269 (2)0.0221 (5)
H10D0.7059800.0871000.7029850.033*
H10E0.8625550.1049680.8178640.033*
H10F0.9682500.0093010.7031460.033*
H1NA0.536 (5)0.778 (3)0.613 (3)0.016 (7)*
H2OB1.012 (6)0.032 (3)0.303 (3)0.021 (7)*
H2NA0.599 (5)0.616 (3)0.607 (3)0.019 (7)*
H5OA0.040 (6)1.015 (4)1.082 (4)0.027 (9)*
H5OB0.311 (6)0.453 (4)0.082 (4)0.032 (9)*
H3OA0.030 (7)0.539 (4)0.951 (3)0.029 (9)*
H4OA0.086 (7)0.750 (4)1.208 (4)0.045 (11)*
H2OA0.590 (6)0.555 (4)0.840 (3)0.033 (9)*
H4OB0.852 (10)0.549 (5)0.138 (5)0.074 (15)*
H2NB1.090 (5)0.124 (3)0.507 (3)0.017 (7)*
H1NB1.021 (6)0.276 (4)0.478 (3)0.029 (8)*
H3OB1.114 (7)0.365 (4)0.261 (4)0.045 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0143 (9)0.0143 (9)0.0131 (9)0.0003 (7)0.0011 (7)0.0013 (7)
C1A0.0159 (10)0.0182 (11)0.0124 (10)0.0020 (8)0.0001 (8)0.0009 (8)
O2A0.0173 (8)0.0212 (9)0.0204 (9)0.0038 (7)0.0035 (6)0.0043 (7)
C2A0.0162 (10)0.0133 (10)0.0150 (10)0.0010 (8)0.0018 (8)0.0020 (8)
O3A0.0232 (9)0.0181 (8)0.0197 (8)0.0070 (7)0.0012 (7)0.0010 (7)
C3A0.0196 (11)0.0155 (10)0.0129 (10)0.0019 (8)0.0001 (8)0.0012 (8)
O4A0.0285 (9)0.0306 (10)0.0135 (8)0.0125 (8)0.0040 (7)0.0050 (7)
C4A0.0183 (11)0.0174 (11)0.0144 (11)0.0040 (9)0.0002 (8)0.0008 (9)
O5A0.0301 (10)0.0236 (9)0.0199 (9)0.0087 (8)0.0009 (8)0.0050 (8)
C5A0.0217 (11)0.0157 (11)0.0147 (11)0.0024 (9)0.0006 (8)0.0033 (9)
O6A0.0255 (9)0.0161 (8)0.0145 (8)0.0054 (7)0.0011 (6)0.0018 (6)
C6A0.0246 (12)0.0197 (11)0.0197 (12)0.0078 (9)0.0005 (9)0.0054 (9)
O7A0.0259 (9)0.0160 (8)0.0188 (8)0.0021 (7)0.0040 (7)0.0038 (7)
C7A0.0158 (10)0.0153 (10)0.0109 (10)0.0015 (8)0.0014 (8)0.0007 (8)
O8A0.0221 (9)0.0177 (8)0.0212 (9)0.0011 (7)0.0076 (7)0.0001 (7)
C8A0.0149 (10)0.0152 (10)0.0131 (10)0.0006 (8)0.0029 (8)0.0001 (8)
C9A0.0178 (11)0.0208 (11)0.0169 (11)0.0004 (9)0.0030 (9)0.0005 (9)
C10A0.0210 (11)0.0152 (10)0.0171 (11)0.0028 (9)0.0028 (9)0.0033 (9)
N1B0.0150 (9)0.0152 (9)0.0138 (9)0.0004 (7)0.0006 (7)0.0013 (8)
C1B0.0148 (10)0.0182 (11)0.0155 (11)0.0021 (8)0.0011 (8)0.0003 (8)
O2B0.0199 (8)0.0157 (8)0.0160 (8)0.0030 (6)0.0002 (6)0.0006 (7)
C2B0.0144 (10)0.0159 (11)0.0153 (11)0.0014 (8)0.0012 (8)0.0003 (9)
O3B0.0170 (8)0.0211 (8)0.0171 (8)0.0072 (7)0.0007 (7)0.0023 (7)
C3B0.0129 (10)0.0155 (10)0.0158 (11)0.0023 (8)0.0003 (8)0.0005 (8)
O4B0.0236 (9)0.0201 (9)0.0236 (9)0.0073 (7)0.0063 (7)0.0068 (7)
C4B0.0138 (10)0.0173 (11)0.0156 (11)0.0016 (8)0.0004 (8)0.0008 (8)
O5B0.0153 (8)0.0230 (9)0.0242 (9)0.0002 (7)0.0014 (7)0.0055 (7)
C5B0.0162 (11)0.0234 (12)0.0142 (11)0.0032 (9)0.0023 (8)0.0011 (9)
O6B0.0180 (8)0.0213 (8)0.0174 (8)0.0063 (6)0.0033 (6)0.0001 (7)
C6B0.0202 (11)0.0194 (11)0.0200 (12)0.0037 (9)0.0045 (9)0.0029 (9)
O7B0.0320 (10)0.0188 (8)0.0197 (9)0.0081 (7)0.0022 (7)0.0017 (7)
C7B0.0181 (11)0.0168 (11)0.0116 (10)0.0008 (8)0.0008 (8)0.0003 (8)
O8B0.0396 (12)0.0237 (9)0.0224 (10)0.0062 (8)0.0097 (8)0.0014 (7)
C8B0.0178 (11)0.0159 (10)0.0176 (11)0.0023 (9)0.0018 (9)0.0028 (9)
C9B0.0194 (12)0.0299 (13)0.0225 (12)0.0021 (10)0.0069 (9)0.0063 (10)
C10B0.0266 (13)0.0206 (12)0.0173 (11)0.0007 (10)0.0018 (9)0.0028 (9)
Geometric parameters (Å, º) top
O2A—C2A1.399 (3)O3B—H3OB0.86 (4)
O3A—C3A1.431 (3)C4A—H4A1.0000
O4A—C4A1.435 (3)O4B—H4OB0.84 (6)
O6A—C2A1.415 (3)C5A—H5A1.0000
O6A—C6A1.440 (3)O5B—H5OB0.83 (4)
O7A—C8A1.250 (3)C6A—H6A20.9900
O8A—C8A1.259 (3)C6A—H6A10.9900
N1A—C1A1.492 (3)C9A—H9A30.9800
N1A—C7A1.510 (3)C9A—H9A10.9800
O2A—H2OA0.82 (4)C9A—H9A20.9800
O3A—H3OA0.78 (4)C10A—H10C0.9800
O4A—H4OA0.83 (4)C10A—H10B0.9800
O5A—H5OA0.76 (4)C10A—H10A0.9800
C1A—C2A1.526 (3)C1B—C2B1.535 (3)
N1A—H1NA0.87 (3)N1B—H2NB0.91 (3)
N1A—H2NA0.98 (3)N1B—H1NB0.90 (4)
C2A—C3A1.536 (3)C2B—C3B1.541 (3)
O2B—C2B1.398 (3)C3B—C4B1.517 (3)
C3A—C4A1.524 (3)C4B—C5B1.540 (3)
O3B—C3B1.423 (3)C5B—C6B1.512 (4)
C4A—C5A1.535 (3)C7B—C10B1.526 (3)
O4B—C4B1.427 (3)C7B—C8B1.551 (3)
C5A—C6A1.519 (3)C7B—C9B1.535 (3)
O5B—C5B1.431 (3)C1B—H1B10.9900
O6B—C2B1.418 (3)C1B—H1B20.9900
O6B—C6B1.437 (3)C3B—H3B1.0000
C7A—C8A1.541 (3)C4B—H4B1.0000
C7A—C10A1.529 (3)C5B—H5B1.0000
C7A—C9A1.531 (3)C6B—H6B10.9900
O7B—C8B1.262 (3)C6B—H6B20.9900
O8B—C8B1.240 (3)C9B—H9B10.9800
C1A—H1A10.9900C9B—H9B20.9800
C1A—H1A20.9900C9B—H9B30.9800
N1B—C1B1.500 (3)C10B—H10D0.9800
N1B—C7B1.517 (3)C10B—H10E0.9800
O2B—H2OB0.83 (3)C10B—H10F0.9800
C3A—H3A1.0000
C2A—O6A—C6A112.33 (18)C7A—C10A—H10C109.00
C1A—N1A—C7A115.41 (17)C7A—C10A—H10A110.00
C2A—O2A—H2OA112 (2)C7A—C10A—H10B109.00
C3A—O3A—H3OA104 (3)H10A—C10A—H10B109.00
C4A—O4A—H4OA107 (3)H10A—C10A—H10C109.00
C5A—O5A—H5OA107 (3)H10B—C10A—H10C109.00
C7A—N1A—H1NA106 (2)C7B—N1B—H2NB107 (2)
C7A—N1A—H2NA107.4 (19)C7B—N1B—H1NB111 (2)
H1NA—N1A—H2NA115 (3)H2NB—N1B—H1NB112 (3)
N1A—C1A—C2A108.99 (18)N1B—C1B—C2B111.65 (18)
C1A—N1A—H1NA108 (2)C1B—N1B—H2NB106.7 (19)
C1A—N1A—H2NA105.3 (18)C1B—N1B—H1NB106 (2)
O2A—C2A—O6A107.46 (18)O2B—C2B—O6B113.03 (17)
O6A—C2A—C1A105.52 (16)O6B—C2B—C1B102.24 (17)
O6A—C2A—C3A109.62 (16)O6B—C2B—C3B108.88 (17)
C1A—C2A—C3A109.73 (18)C1B—C2B—C3B112.86 (16)
O2A—C2A—C1A110.90 (17)O2B—C2B—C1B112.22 (18)
O2A—C2A—C3A113.29 (17)O2B—C2B—C3B107.61 (18)
O3A—C3A—C2A107.71 (16)O3B—C3B—C2B111.53 (18)
O3A—C3A—C4A111.05 (17)O3B—C3B—C4B112.03 (18)
C2A—C3A—C4A109.56 (18)C2B—C3B—C4B110.23 (16)
O4A—C4A—C3A107.02 (18)O4B—C4B—C3B111.32 (17)
C3A—C4A—C5A110.21 (17)C3B—C4B—C5B110.08 (18)
O4A—C4A—C5A112.35 (17)O4B—C4B—C5B108.48 (19)
O5A—C5A—C4A112.39 (19)O5B—C5B—C4B110.2 (2)
O5A—C5A—C6A108.72 (18)O5B—C5B—C6B108.56 (19)
C4A—C5A—C6A109.36 (18)C4B—C5B—C6B109.76 (19)
O6A—C6A—C5A111.20 (19)O6B—C6B—C5B113.0 (2)
C2B—O6B—C6B113.45 (17)N1B—C7B—C8B108.36 (17)
N1A—C7A—C8A108.17 (16)C8B—C7B—C9B107.71 (18)
C8A—C7A—C10A113.58 (19)C8B—C7B—C10B113.61 (19)
C9A—C7A—C10A111.62 (18)C9B—C7B—C10B110.7 (2)
N1A—C7A—C9A107.01 (18)N1B—C7B—C9B106.01 (19)
N1A—C7A—C10A108.96 (16)N1B—C7B—C10B110.12 (17)
C8A—C7A—C9A107.24 (18)O8B—C8B—C7B116.38 (19)
O7A—C8A—O8A126.3 (2)O7B—C8B—O8B127.0 (2)
O7A—C8A—C7A117.51 (19)O7B—C8B—C7B116.61 (19)
O8A—C8A—C7A116.13 (18)N1B—C1B—H1B1109.00
N1A—C1A—H1A2110.00N1B—C1B—H1B2109.00
C2A—C1A—H1A1110.00C2B—C1B—H1B1109.00
C2A—C1A—H1A2110.00C2B—C1B—H1B2109.00
H1A1—C1A—H1A2108.00H1B1—C1B—H1B2108.00
N1A—C1A—H1A1110.00O3B—C3B—H3B108.00
C1B—N1B—C7B115.17 (17)C2B—C3B—H3B108.00
C2B—O2B—H2OB110 (2)C4B—C3B—H3B108.00
O3A—C3A—H3A109.00O4B—C4B—H4B109.00
C4A—C3A—H3A109.00C3B—C4B—H4B109.00
C2A—C3A—H3A110.00C5B—C4B—H4B109.00
C3B—O3B—H3OB107 (3)O5B—C5B—H5B109.00
O4A—C4A—H4A109.00C4B—C5B—H5B109.00
C5A—C4A—H4A109.00C6B—C5B—H5B109.00
C3A—C4A—H4A109.00O6B—C6B—H6B1109.00
C4B—O4B—H4OB113 (3)O6B—C6B—H6B2109.00
C4A—C5A—H5A109.00C5B—C6B—H6B1109.00
O5A—C5A—H5A109.00C5B—C6B—H6B2109.00
C6A—C5A—H5A109.00H6B1—C6B—H6B2108.00
C5B—O5B—H5OB110 (3)C7B—C9B—H9B1109.00
C5A—C6A—H6A2109.00C7B—C9B—H9B2110.00
O6A—C6A—H6A2109.00C7B—C9B—H9B3109.00
O6A—C6A—H6A1109.00H9B1—C9B—H9B2109.00
C5A—C6A—H6A1109.00H9B1—C9B—H9B3109.00
H6A1—C6A—H6A2108.00H9B2—C9B—H9B3110.00
C7A—C9A—H9A2109.00C7B—C10B—H10D109.00
C7A—C9A—H9A1109.00C7B—C10B—H10E110.00
H9A1—C9A—H9A3109.00C7B—C10B—H10F109.00
C7A—C9A—H9A3109.00H10D—C10B—H10E109.00
H9A1—C9A—H9A2109.00H10D—C10B—H10F109.00
H9A2—C9A—H9A3109.00H10E—C10B—H10F109.00
C6A—O6A—C2A—O2A61.2 (2)C9A—C7A—C8A—O8A89.4 (2)
C6A—O6A—C2A—C1A179.57 (18)C10A—C7A—C8A—O7A147.9 (2)
C6A—O6A—C2A—C3A62.3 (2)N1A—C7A—C8A—O7A26.8 (3)
C2A—O6A—C6A—C5A61.7 (2)N1A—C7A—C8A—O8A155.48 (19)
C1A—N1A—C7A—C10A53.2 (2)C1B—N1B—C7B—C10B56.0 (2)
C1A—N1A—C7A—C8A70.7 (2)C1B—N1B—C7B—C8B68.8 (2)
C1A—N1A—C7A—C9A174.04 (18)C1B—N1B—C7B—C9B175.78 (18)
C7A—N1A—C1A—C2A163.70 (16)C7B—N1B—C1B—C2B163.55 (16)
N1A—C1A—C2A—O6A64.6 (2)N1B—C1B—C2B—O6B178.40 (16)
N1A—C1A—C2A—C3A177.35 (16)N1B—C1B—C2B—C3B64.8 (2)
N1A—C1A—C2A—O2A51.4 (2)N1B—C1B—C2B—O2B57.0 (2)
O2A—C2A—C3A—O3A59.4 (2)O2B—C2B—C3B—O3B61.3 (2)
O6A—C2A—C3A—O3A179.43 (17)O6B—C2B—C3B—O3B175.87 (17)
O6A—C2A—C3A—C4A58.5 (2)O6B—C2B—C3B—C4B59.0 (2)
C1A—C2A—C3A—O3A65.1 (2)C1B—C2B—C3B—O3B63.1 (2)
C1A—C2A—C3A—C4A173.98 (16)C1B—C2B—C3B—C4B171.81 (19)
O2A—C2A—C3A—C4A61.5 (2)O2B—C2B—C3B—C4B63.8 (2)
O3A—C3A—C4A—C5A173.44 (18)O3B—C3B—C4B—C5B179.66 (18)
C2A—C3A—C4A—O4A177.02 (16)C2B—C3B—C4B—O4B175.84 (18)
O3A—C3A—C4A—O4A64.1 (2)O3B—C3B—C4B—O4B59.3 (2)
C2A—C3A—C4A—C5A54.6 (2)C2B—C3B—C4B—C5B55.5 (2)
O4A—C4A—C5A—C6A172.33 (18)O4B—C4B—C5B—C6B173.64 (18)
C3A—C4A—C5A—O5A67.8 (2)C3B—C4B—C5B—O5B67.9 (2)
O4A—C4A—C5A—O5A51.5 (2)O4B—C4B—C5B—O5B54.1 (2)
C3A—C4A—C5A—C6A53.1 (2)C3B—C4B—C5B—C6B51.6 (2)
O5A—C5A—C6A—O6A67.5 (2)O5B—C5B—C6B—O6B68.2 (2)
C4A—C5A—C6A—O6A55.5 (3)C4B—C5B—C6B—O6B52.4 (2)
C6B—O6B—C2B—C3B60.3 (2)N1B—C7B—C8B—O7B27.2 (3)
C2B—O6B—C6B—C5B58.7 (2)N1B—C7B—C8B—O8B155.3 (2)
C6B—O6B—C2B—O2B59.3 (2)C9B—C7B—C8B—O7B87.1 (2)
C6B—O6B—C2B—C1B179.89 (18)C9B—C7B—C8B—O8B90.4 (3)
C9A—C7A—C8A—O7A88.3 (2)C10B—C7B—C8B—O7B149.9 (2)
C10A—C7A—C8A—O8A34.4 (3)C10B—C7B—C8B—O8B32.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O6A0.86 (3)2.40 (3)2.813 (3)110 (2)
N1A—H1NA···O7A0.86 (3)2.30 (3)2.674 (2)107 (2)
O2B—H2OB···O8Ai0.84 (3)1.78 (3)2.596 (3)165 (3)
N1A—H2NA···O7B0.98 (3)1.78 (3)2.743 (3)169 (3)
O5A—H5OA···O2Bii0.76 (4)2.14 (4)2.886 (3)168 (4)
O5B—H5OB···O3Aiii0.83 (4)1.99 (4)2.804 (3)165 (3)
O2A—H2OA···O3A0.82 (4)2.62 (3)2.847 (2)97 (3)
O3A—H3OA···O4Biv0.78 (4)2.08 (4)2.785 (3)149 (3)
O4A—H4OA···O8Av0.84 (4)2.00 (4)2.822 (3)170 (4)
O2A—H2OA···O8B0.82 (4)1.87 (4)2.657 (3)161 (4)
O4B—H4OB···O3B0.84 (4)2.51 (4)2.886 (2)108 (3)
O4B—H4OB···O4Avi0.84 (5)2.14 (5)2.864 (3)145 (5)
N1B—H2NB···O7Ai0.90 (3)1.91 (3)2.795 (3)168 (3)
N1B—H1NB···O3B0.90 (4)2.02 (4)2.800 (3)144 (3)
N1B—H1NB···O7B0.90 (4)2.40 (3)2.681 (3)100 (2)
O3B—H3OB···O5Bvii0.86 (4)1.92 (4)2.717 (3)154 (4)
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z+1; (iii) x, y, z1; (iv) x1, y, z+1; (v) x, y, z+1; (vi) x+1, y, z1; (vii) x+1, y, z.
Suspected C—H···O contacts (Å, °) in (I) top
D—H···AD—HH···AD···AD—H···ASymmetry code
C1A—H1A1···O3A0.992.562.909 (3)101
C4A—H4A···O4B1.002.633.608 (3)167x, y, z + 1
C9A—H9A1···O8A0.982.553.313 (3)135x + 1, y, z
C9A—H9A3···O3B0.982.663.575 (3)156
C9A—H9A3···O7B0.982.683.381 (3)129
C10A—H10A···O7B0.982.723.451 (3)132
C10A—H10B···O3B0.982.643.076 (3)107x - 1, y, z
C5B—H5B···O8A1.002.413.355 (3)156x, y, z - 1
C6B—H6B2···O5A0.992.613.556 (3)161x + 1, y - 1, z
C10B—H10E···O5A0.982.713.517 (3)140x + 1, y - 1, z
C10B—H10F···O7A0.982.703.443 (3)133x + 1, y - 1, z
Hydrogen bonding and contributions of the O···H/H···O contacts to the Hirshfeld surfaces of sugar-amino acids top
Notes: (*) All sugar-amino acids are in the pyranose form and all have four hydroxy, one carboxyl and one ammonium group, and one pyranose ring oxygen; (**)hydrogen-bond selection criteria: D···A < 2.9 Å; H···A < 2.7 Å; D—H···A >95°.
Structure*No. of CH/CH2/CH3 groups (total C—H)No. of intra/inter hydrogen-bonds**% of O···H/H···O contacts on Hirshfeld surfaceReference
GalGly3/3/0 (9)2/655.7Mossine et al. (1996)
GlcGly3/3/0 (9)3/657.6Mossine et al. (1996)
FruGly3/3/0 (9)2/651.6Mossine et al. (1995)
FruAib (IA)3/2/2 (13)3/544.0This work
FruAib (IB)3/2/2 (13)3/545.9This work
FruPro·H2O4/5/0 (14)3/649.2Mossine et al. (2007)
FruPro·2H2O4/5/0 (14)3/649.3Tarnawski, Ślepokura et al. (2007)
FruPro·MeOH4/5/1 (17)4/540.2Tarnawski, Ślepokura et al. (2007)
Table S1. C13-NMR spectrum and anomeric distribution of D-fructose-2-aminoisobutyric acid in D2O top
carbonα-pyranoseβ-pyranoseα-furanoseβ-furanose
C151.5551.7249.8151.35
C299.0898.33104.65101.85
C373.1272.2185.2680.64
C474.8572.3978.6977.17
C568.7471.7985.3283.78
C665.8066.6863.6364.76
C7n.r.67.0066.7666.85
C8n.r.179.35179.37179.46
C9 or C1024.5524.6624.6424.64
C9 or C1024.1624.4724.3624.43
References
% for FruAib3.075.610.110.4This work
% for D-Fru2.168.65.723.0Kaufmann et al., 2016
% for FruGly5661514Mossine et al., 1994
% for FruAla5.171.510.811.6Kaufmann et al., 2016
% for FruPro4.264.812.916.9Kaufmann et al., 2016

Acknowledgements

The authors thank Dr Shaokai Jiang for assistance with acquiring NMR spectra.

Funding information

Funding for this research was provided by: University of Missouri Agriculture Experiment Station Chemical Laboratories.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker. (1998). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFrench, A. D., Dowd, M. K. & Reilly, P. J. (1997). J. Mol. Struct. Theochem, 395–396, 271–287.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJeffrey, G. A. & Taylor, R. (1980). J. Comput. Chem. 1, 99–109.  CrossRef CAS Web of Science Google Scholar
First citationKaufmann, M., Meissner, P. M., Pelke, D., Mügge, C. & Kroh, L. W. (2016). Carbohydr. Res. 428, 87–99.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcNaught, A. D. (1996). Pure Appl. Chem. 68, 1919–2008.  CrossRef CAS Web of Science Google Scholar
First citationMossine, V. V., Barnes, C. L., Glinsky, G. V. & Feather, M. S. (1996). Carbohydr. Res. 284, 11–24.  CrossRef CAS PubMed Google Scholar
First citationMossine, V. V., Barnes, C. L. & Mawhinney, T. P. (2007). J. Carbohydr. Chem. 26, 249–266.  CrossRef CAS Google Scholar
First citationMossine, V. V., Glinsky, G. V., Barnes, C. L. & Feather, M. S. (1995). Carbohydr. Res. 266, 5–14.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationMossine, V. V., Glinsky, G. V. & Feather, M. S. (1994). Carbohydr. Res. 262, 257–270.  CrossRef CAS PubMed Google Scholar
First citationMossine, V. V., Glinsky, V. V. & Mawhinney, T. P. (2008). In Galectins, Klyosov, A. A., Platt, D. & Witczak, Z. J., Eds. John Wiley & Sons, pp. 235–270.  Google Scholar
First citationMossine, V. V., Glinsky, V. V. & Mawhinney, T. P. (2010). In The Maillard Reaction: Interface between Aging, Nutrition and Metabolism, edited by M. C. Thomas and J. Forbes, pp. 170–179. Royal Society of Chemistry.  Google Scholar
First citationMossine, V. V. & Mawhinney, T. P. (2010). Adv. Carbohydr. Chem. Biochem. 64, 291–402.  CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, H., Lu, Y., Qu, Z., Mossine, V. V., Martin, M. B., Hou, J., Cui, J., Peculis, B. A., Mawhinney, T. P., Cheng, J., Greenlief, C. M., Fritsche, K., Schmidt, F. J., Walter, R. B., Lubahn, D. B., Sun, G. Y. & Gu, Z. (2016). Sci. Rep. 6, 35323.  CrossRef PubMed Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTarnawski, M., Kuliś-Orzechowska, R. & Szelepin, B. (2007). Int. Immunopharmacol. 7, 1577–1581.  CrossRef PubMed CAS Google Scholar
First citationTarnawski, M., Ślepokura, K., Lis, T., Kuliś-Orzechowska, R. & Szelepin, B. (2007). Carbohydr. Res. 342, 1264–1270.  CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds