research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a new mol­ecular salt: 4-amino­benzenaminium 5-carb­­oxy­penta­noate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Dr. Harisingh Gour University, Sagar, MP 470 003, India, and bBirla Institute of Technology & Science, Pilani Hyderabad Campus, Jawahar Nagar, Shamirpeet Mandal, Ranga Reddy District, Secunderabad, Andhra Pradesh 500 078, India
*Correspondence e-mail: rpallepogu@gmail.com

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 11 December 2017; accepted 11 January 2018; online 26 January 2018)

The asymmetric unit of the title mol­ecular salt (systematic name: 4-amino­anilinium 5-carb­oxy­penta­noate), C6H9N2+·C6H9O4, consists of half a 4-amino­benzenaminium cation (4-ABA) and half a 5-carb­oxy­penta­noate anion (5-CP); the other half of each ion is generated by inversion symmetry. Protonation of p-phenyl­enedi­amine (PPDA) leads to the formation of a 1:1 salt, but scrutiny of the crystal structure reveals that both of the amine groups of PPDA are partially protonated, with a half-occupied H atom. For the 5-CP anion, an H atom is positioned on an inversion center midway between two O atoms of inversion-related 5-CP ions. In the crystal, the 5-CP anions are linked by the O—H⋯O hydrogen bond to form chains propagating along the [1-10] direction. The chains are linked via N—H⋯O and N—H⋯N hydrogen bonds involving the 4-ABA cations, forming a three-dimensional supra­molecular framework. The title salt was also prepared by mechanochemical synthesis using liquid-assisted grinding (LAG). Its PXRD pattern matches that of the simulated pattern of the crystal structure of the title mol­ecular salt.

1. Chemical context

p-Phenyl­enedi­amine (PPDA) has been widely used to synthesize hair dyes, engineering polymers and composites. The coordination chemistry of PPDA is well documented (Adams et al., 2011[Adams, C. J., Haddow, M. F., Lusi, M. & Orpen, A. G. (2011). CrystEngComm, 13, 4324-4331.]; Bourne & Mangombo, 2004[Bourne, S. A. & Mangombo, Z. (2004). CrystEngComm, 6, 437-442.]). Adipic acid (AA) is an industrial chemical used to manufacture nylon and is also used in many drugs and food additives (Rowe et al., 2009[Rowe, R. C., Sheskey, P. J. & Quinn, M. E. (2009). Adipic Acid. In Handbook of Pharmaceutical Excipients, 6th ed., pp. 11-12. London: Pharmaceutical Press.]). A number of salts and co-crystals involving p-phenyl­enedi­amine have been reported (Thakuria et al., 2007[Thakuria, H., Borah, B. M., Pramanik, A. & Das, G. (2007). J. Chem. Crystallogr. 37, 807-816.]; Delori et al., 2016[Delori, A., Urquhart, A. J. & Oswald, I. D. H. (2016). CrystEngComm, 18, 5360-5364.]), and adipic acid is also widely known as a co-former in co-crystal formation (Swinton Darious et al., 2016[Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2016). Acta Cryst. E72, 805-808.]; Lemmerer et al., 2012[Lemmerer, A., Bernstein, J. & Kahlenberg, V. (2012). Acta Cryst. E68, o190.]; Lin et al., 2012[Lin, S., Jia, R., Gao, F. & Zhou, X. (2012). Acta Cryst. E68, o3457.]; Matulková et al., 2014[Matulková, I., Císařová, I., Němec, I. & Fábry, J. (2014). Acta Cryst. C70, 927-933.]; Thanigaimani et al., 2012[Thanigaimani, K., Razak, I. A., Arshad, S., Jagatheesan, R. & Santhanaraj, K. J. (2012). Acta Cryst. E68, o2938-o2939.]). A 2:1 salt of 4-amino­anilinium (PPDAH) and sebacate, and a 1:1 salt of PPDAH and di­hydrogen trimesate have been reported recently (Delori et al., 2016[Delori, A., Urquhart, A. J. & Oswald, I. D. H. (2016). CrystEngComm, 18, 5360-5364.]). We have previously reported various salts of o-phenyl­enedi­amine with aromatic carb­oxy­lic acids (Mishra & Pallepogu, 2018[Mishra, R. & Pallepogu, R. (2018). Acta Cryst. B74, 32-41.]). Herein, we report on the synthesis and crystal structure of the 1:1 salt formed between p-phenyl­enedi­amine and adipic acid, (I)[link].

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title salt (I)[link], illustrated in Fig. 1[link], consists of half each of a 4-amino­benzenaminium cation (4-ABA) and a 5-carb­oxy­penta­noate anion (5-CP); both ions (space group P[\overline{1}]) lie about inversion centres. Partial protonation (50%) has occurred at atom N1 of the cation, resulting in the formation of a salt with the formula unit C6H9O4·C6H9N2+. One of the two adipic acid H atoms binds to atom N1 with a site-occupancy factor (SOF) of 0.5 (for atom H1NC), thereby positioned at two sites (because of inversion symmetry) in the cation. The other acid H atom (H2O) is located on an inversion center and is therefore shared equally by two O2 atoms of inversion-related anions. The C1—N1 bond length [1.4361 (13) Å] in the 4-ABA cation is longer than literature values for a non-protonated amine (C–NH2) group [cf. 1.418 (2) Å; Czapik et al., 2010[Czapik, A., Konowalska, H. & Gdaniec, M. (2010). Acta Cryst. C66, o128-o132.]] and this can be attributed to the partial protonation with SOF = 0.50 at each site. In the 5-CP anion, the C6=O1 and C6—O2 bond lengths [1.2379 (12) and 1.2802 (11) Å, respectively] are similar to the values reported for 2-methyl­imidazolium hydrogen adipate monohydrate [1.244 (2) and 1.264 (2) Å, respectively; Meng et al., 2009[Meng, X.-G., Cheng, C.-X. & Yan, G. (2009). Acta Cryst. C65, o217-o221.]] in which a carb­oxy­lic acid H atom is also statistically distributed between the two carb­oxy groups and a hydrogen-bonded chain is formed. In (I)[link], the position of this H atom (H2O) was located in a difference-Fourier map and found to be situated on an inversion centre ([1\over2], [1\over2], [1\over2]). It is positioned symmetrically between two O2 atoms of two inversion-related 5-CP ions, which accounts for the long O—H bond length of 1.22 Å (see Table 1[link]). The C4ii—C4—C5—C6 torsion angle of −179.82 (9)° indicates that the carbon chain in the anion is fully extended [see Fig. 1[link] for symmetry code (ii)].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O2i 1.22 1.22 2.439 (1) 180
O2—H2O⋯O1i 1.22 2.45 3.178 (1) 116
N1—H1NA⋯O1ii 0.91 (2) 1.97 (2) 2.871 (1) 171 (1)
N1—H1NB⋯O1 0.90 (2) 2.24 (2) 3.060 (1) 152 (1)
N1—H1NB⋯O2i 0.90 (2) 2.51 (2) 3.098 (1) 123 (1)
N1—H1NC⋯N1iii 0.95 (2) 1.89 (2) 2.840 (1) 174 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+2.
[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt (I)[link], with atom labelling for the asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) −x + 1, −y + 2, −z + 2; (ii) −x + 2, −y, −z + 1; (iii) −x + 1, −y + 1, −z + 1].

3. Supra­molecular features

In general, adipic acid (AA) forms R22(8) homosynthons facilitated by strong O—H⋯O inter­actions; however, it is known to form heterosynthons when co-crystallized with amines (Lemmerer et al., 2010[Lemmerer, A., Bernstein, J. & Kahlenberg, V. (2010). CrystEngComm, 12, 2856-2864.], 2012[Lemmerer, A., Bernstein, J. & Kahlenberg, V. (2012). Acta Cryst. E68, o190.]). In the crystal structure of (I)[link], the formation of the R22(8) homosynthon is not favoured because of the inversion-related arrangement of the 5-CP anions, which forms a linear chain along the [1[\overline{1}]0] direction (Fig. 2[link], Table 1[link]) as a result of the sharing of the H atom (H2O) between the O2 atoms of inversion-related anions as discussed above; otherwise this could be supposed to be the contribution of a strong O—H⋯O hydrogen bond. The crystal structure features inter­ionic N—H⋯O and O—H⋯O hydrogen bonds between the anions and cations (Table 1[link], Fig. 3[link]). One of the H atoms (H1BA) on N1 is a bifurcated hydrogen-bond donor and the carboxyl­ate O1 atom of the anion acts as a triple acceptor, accepting H atoms from two different NH3 groups (H1NA and H1NB), as illustrated in Fig. 3[link]. The chains of the 5-CP anions are linked via the N—H⋯O, O—H⋯O and N—H⋯N hydrogen bonds, forming a three-dimensional supra­molecular framework (Table 1[link] and Fig. 4[link]).

[Figure 2]
Figure 2
A view along the c axis of the O—H⋯O hydrogen-bonded chain of 5-CP anions (see Table 1[link]). The H atoms (H2O; shown as grey balls) are shared between O2 atoms of inversion-related anions. The C-bound H atoms and the cations have been omitted.
[Figure 3]
Figure 3
A partial view, normal to the ab plane, of the crystal packing of the title mol­ecular salt (I)[link]. Hydrogen bonds are shown as dashed lines (see Table 1[link]), and C-bound H atoms have been omitted for clarity.
[Figure 4]
Figure 4
A view along the b axis of the crystal packing of the title mol­ecular salt (I)[link], showing the three-dimensional supra­molecular framework. Hydrogen bonds are shown as dashed lines (see Table 1[link]), and C-bound H atoms have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.38, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 4-amino­anilinium and 1,4-phenyl­enedi­ammonium salts gave 70 hits. The crystal structure of p-phenyl­enedi­amine (PPDA) itself was first reported by Povetéva & Zvonkova (1975[Povetéva, Z. P. & Zvonkova, Z. V. (1975). Kristallografiya, 20, 69.]). Perhaps the most relevant hit is for the structure of bis­(4-amino­anilinium) deca­nedioate (CSD refcode IPAPAS; Delori et al., 2016[Delori, A., Urquhart, A. J. & Oswald, I. D. H. (2016). CrystEngComm, 18, 5360-5364.]), one of the few salts formed with an aliphatic diacid. There are a number of structures reported of PPDA with mineral acids (Chandrasekaran, 1969[Chandrasekaran, R. (1969). Acta Cryst. B25, 369-374.]; Marsh, 2009[Marsh, R. E. (2009). Acta Cryst. B65, 782-783.]; Anderson et al., 2006[Anderson, K. M., Goeta, A. E., Hancock, K. S. B. & Steed, J. W. (2006). Chem. Commun. pp. 2138-2140.]), and co-crystals and salts of PPDA with organic acids (Thakuria et al., 2007[Thakuria, H., Borah, B. M., Pramanik, A. & Das, G. (2007). J. Chem. Crystallogr. 37, 807-816.]; Delori et al., 2016[Delori, A., Urquhart, A. J. & Oswald, I. D. H. (2016). CrystEngComm, 18, 5360-5364.]). Some 1:1 co-crystals of PPDA and various diols (viz. 1,8-octane diol, 1,10-decane diol and 1,12-dodecane diol) have also been reported (Loehlin & Okasako, 2007[Loehlin, J. H. & Okasako, E. L. N. (2007). Acta Cryst. B63, 132-141.]).

A search of the CSD for salts of adipic acid (AA) with different amines yielded 67 hits. One such structure of partic­ular inter­est, viz. 2-methyl­imidazolium hydrogen adipate monohydrate, has been reported twice, once at room temperature (BOTTOU: Meng et al., 2009[Meng, X.-G., Cheng, C.-X. & Yan, G. (2009). Acta Cryst. C65, o217-o221.]), where the same type of partial disorder is observed with the carb­oxy­lic acid H atom statistically distributed between the two carb­oxy groups and a hydrogen-bonded chain is formed. However, the low-temperature analysis at 120 K using synchrotron radiation (BOTTOU01: Callear et al., 2010[Callear, S. K., Hursthouse, M. B. & Threlfall, T. L. (2010). CrystEngComm, 12, 898-908.]), describes the structure as bis­(2-methyl­imidazolium) adipate adipic acid dihydrate. In the crystal, the adipate and adipic acid mol­ecules also form a hydrogen-bonded chain. A second structure, tetra­kis­(cyto­sin­ium) di­hydrogen bis­(adipate), also exhibits the same type of disorder of the carb­oxy­lic acid H atom (OYEREQ; Das & Baruah, 2011[Das, B. & Baruah, J. B. (2011). J. Mol. Struct. 1001, 134-138.]), and in the crystal it forms a hydrogen-bonded chain.

5. Synthesis and crystallization

The title mol­ecular salt (I)[link], was synthesized by mixing a 5 ml methano­lic solution of adipic acid (AA: 0.5 mmol, 73 mg) and 3 ml of an aceto­nitrile solution of p-phenyl­enedi­amine (PPDA: 0.5 mmol, 54 mg). The reaction mixture was heated to 323 K with magnetic stirring for ca 30 min, and then filtered and allowed to evaporate slowly at room temperature. Purple block-like crystals of (I)[link] were obtained after 5 d (m.p. 438 K). FTIR (KBr pellet, cm-1): ν 3337, 3180, 2946, 2383, 1706, 1515, 1255, 821, 743, 501, 475.

The title compound was also synthesized by liquid-assisted grinding (LAG). For this mechanochemical synthesis, equimolar amounts of AA (1 mmol, 146 mg) and PPDA (1 mmol, 108 mg) were ground for 20 min. in a mortar and pestle using 3 to 4 drops of aceto­nitrile. The powdered sample was collected for PXRD and the resultant pattern was scrutinized for new peaks, as evidence for the formation of the title mol­ecular salt (I)[link], by comparing this pattern with the simulated pattern obtained from the CIF file of salt (I)[link]. The PXRD pattern of the compound obtained from the LAG experiment matches the simulated pattern obtained for (I)[link], formed by co-crystallization (Fig. 5[link]).

[Figure 5]
Figure 5
The PXRD pattern obtained from the product of the LAG experiment, and the simulated PXRD pattern of the crystal structure of the title mol­ecular salt. The PXRD patterns of the reactants used for the co-crystallization and LAG syntheses are also shown.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were placed in calculated positions and refined using a riding-model approximation: 0.95–09.99 Å with Uiso(H) = 1.2Ueq(C). The ammonium and carboxyl H atoms were located in difference-Fourier maps and were freely refined. The H atom (H1NC) bound to N1 of the 4-ABA cation, with an occupancy factor of 0.5, is positioned at two sites of the cation due to inversion symmetry, giving rise to a monoprotonated species. The carb­oxy­lic acid H atom (H2O) is positioned symmetrically between the two O2 atoms of inversion-related 5-CP ions (H—O = 1.22 Å). This H atom (H2O) is located on an inversion center ([1\over2], [1\over2], [1\over2]) with an occupancy factor of 0.5, and hence gives rise to a mono-deprotonated species.

Table 2
Experimental details

Crystal data
Chemical formula C6H9N2+·C6H9O4
Mr 254.28
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 5.2918 (3), 7.1666 (4), 8.4205 (7)
α, β, γ (°) 92.069 (6), 104.165 (6), 97.172 (5)
V3) 306.47 (4)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.42 × 0.38 × 0.32
 
Data collection
Diffractometer Rigaku Oxford Diffraction XtaLAB Pro: Kappa dual offset/far
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.924, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3776, 1416, 1341
Rint 0.015
(sin θ/λ)max−1) 0.685
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.08
No. of reflections 1416
No. of parameters 96
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.22
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip (2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016/6 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and publCIF (Westrip (2010).

4-Aminoanilinium 5-carboxypentanoate top
Crystal data top
C6H9N2+·C6H9O4Z = 1
Mr = 254.28F(000) = 136
Triclinic, P1Dx = 1.378 Mg m3
a = 5.2918 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.1666 (4) ÅCell parameters from 5347 reflections
c = 8.4205 (7) Åθ = 5.2–29.2°
α = 92.069 (6)°µ = 0.10 mm1
β = 104.165 (6)°T = 100 K
γ = 97.172 (5)°Block, purple
V = 306.47 (4) Å30.42 × 0.38 × 0.32 mm
Data collection top
Rigaku Oxford Diffraction XtaLAB Pro: Kappa dual offset/far
diffractometer
1416 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1341 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 29.1°, θmin = 5.0°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 57
Tmin = 0.924, Tmax = 1.000k = 98
3776 measured reflectionsl = 1110
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.0998P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1416 reflectionsΔρmax = 0.39 e Å3
96 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: (SHELXL-2016/6; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.15 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.88613 (16)0.51078 (11)0.73311 (10)0.0284 (2)
O20.62365 (13)0.36690 (9)0.50333 (8)0.0159 (2)
H2O0.5000000.5000000.5000000.079 (10)*
C40.90322 (17)0.07097 (12)0.49487 (11)0.0140 (2)
H4A0.8671690.1198480.3842440.017*
H4B0.7351610.0073570.5110870.017*
C51.01023 (17)0.23441 (12)0.62353 (11)0.0127 (2)
H5A1.0481770.1834380.7333100.015*
H5B1.1789730.2958830.6066440.015*
C60.82994 (17)0.38253 (12)0.62270 (11)0.0122 (2)
N10.43897 (17)0.62290 (12)0.87167 (10)0.0177 (2)
H1NA0.268 (3)0.582 (2)0.8186 (19)0.033 (4)*
H1NB0.538 (3)0.608 (2)0.800 (2)0.036 (4)*
H1NC0.470 (5)0.534 (3)0.953 (3)0.013 (6)*0.5
C10.47080 (18)0.81542 (13)0.93517 (11)0.0147 (2)
C20.65701 (19)0.95024 (15)0.89941 (12)0.0180 (2)
H20.7642550.9162720.8305900.022*
C30.68658 (19)1.13477 (14)0.96421 (12)0.0179 (2)
H30.8142801.2271140.9398830.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0309 (4)0.0199 (4)0.0270 (4)0.0138 (3)0.0099 (3)0.0120 (3)
O20.0149 (4)0.0149 (3)0.0169 (4)0.0069 (3)0.0000 (3)0.0023 (3)
C40.0124 (4)0.0124 (4)0.0173 (5)0.0051 (3)0.0023 (3)0.0011 (3)
C50.0108 (4)0.0119 (4)0.0154 (4)0.0034 (3)0.0027 (3)0.0006 (3)
C60.0131 (4)0.0101 (4)0.0144 (4)0.0023 (3)0.0049 (3)0.0015 (3)
N10.0164 (4)0.0225 (4)0.0144 (4)0.0030 (3)0.0040 (3)0.0012 (3)
C10.0137 (4)0.0187 (5)0.0107 (4)0.0033 (3)0.0009 (3)0.0006 (3)
C20.0160 (4)0.0246 (5)0.0154 (4)0.0041 (4)0.0070 (3)0.0008 (4)
C30.0149 (4)0.0223 (5)0.0172 (5)0.0003 (4)0.0064 (4)0.0023 (4)
Geometric parameters (Å, º) top
O1—C61.2379 (12)N1—C11.4361 (13)
O2—C61.2802 (11)N1—H1NA0.914 (17)
O2—H2O1.2197 (6)N1—H1NB0.906 (17)
C4—C51.5195 (12)N1—H1NC0.95 (2)
C4—C4i1.5213 (16)C1—C21.3870 (14)
C4—H4A0.9900C1—C3ii1.3916 (13)
C4—H4B0.9900C2—C31.3876 (14)
C5—C61.5123 (12)C2—H20.9500
C5—H5A0.9900C3—H30.9500
C5—H5B0.9900
C6—O2—H2O113.50 (6)C1—N1—H1NA111.1 (9)
C5—C4—C4i111.39 (9)C1—N1—H1NB111.9 (10)
C5—C4—H4A109.3H1NA—N1—H1NB107.8 (14)
C4i—C4—H4A109.3C1—N1—H1NC114.7 (15)
C5—C4—H4B109.3H1NA—N1—H1NC101.0 (18)
C4i—C4—H4B109.3H1NB—N1—H1NC109.6 (18)
H4A—C4—H4B108.0C2—C1—C3ii120.02 (9)
C6—C5—C4115.04 (8)C2—C1—N1121.06 (8)
C6—C5—H5A108.5C3ii—C1—N1118.91 (9)
C4—C5—H5A108.5C1—C2—C3119.97 (9)
C6—C5—H5B108.5C1—C2—H2120.0
C4—C5—H5B108.5C3—C2—H2120.0
H5A—C5—H5B107.5C2—C3—C1ii120.01 (9)
O1—C6—O2123.47 (8)C2—C3—H3120.0
O1—C6—C5120.06 (8)C1ii—C3—H3120.0
O2—C6—C5116.47 (8)
C4i—C4—C5—C6179.82 (9)C3ii—C1—C2—C30.09 (16)
C4—C5—C6—O1172.41 (9)N1—C1—C2—C3179.06 (9)
C4—C5—C6—O28.04 (12)C1—C2—C3—C1ii0.10 (16)
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O2iii1.221.222.439 (1)180
O2—H2O···O1iii1.222.453.178 (1)116
N1—H1NA···O1iv0.91 (2)1.97 (2)2.871 (1)171 (1)
N1—H1NB···O10.90 (2)2.24 (2)3.060 (1)152 (1)
N1—H1NB···O2iii0.90 (2)2.51 (2)3.098 (1)123 (1)
N1—H1NC···N1v0.95 (2)1.89 (2)2.840 (1)174 (2)
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x+1, y+1, z+2.
 

Acknowledgements

The authors thank Professor B. R. Srinivasan, Goa University and Dr N. Jagadeesh Babu, IICT, Hyderabad for useful discussions.

Funding information

The authors thank the DST PURSE for financial assistance in procuring instrumental facilities through the SIC. Dr. Harisingh Gour University, the UGC, New Delhi (UGC Start-up grant to RP) and the DST, New Delhi (SERB grant SB/EMEQ-287/2014 to RP) are gratefully acknowledged for financial support.

References

First citationAdams, C. J., Haddow, M. F., Lusi, M. & Orpen, A. G. (2011). CrystEngComm, 13, 4324–4331.  CrossRef CAS Google Scholar
First citationAnderson, K. M., Goeta, A. E., Hancock, K. S. B. & Steed, J. W. (2006). Chem. Commun. pp. 2138–2140.  Web of Science CSD CrossRef Google Scholar
First citationBourne, S. A. & Mangombo, Z. (2004). CrystEngComm, 6, 437–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationCallear, S. K., Hursthouse, M. B. & Threlfall, T. L. (2010). CrystEngComm, 12, 898–908.  Web of Science CSD CrossRef CAS Google Scholar
First citationChandrasekaran, R. (1969). Acta Cryst. B25, 369–374.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationCzapik, A., Konowalska, H. & Gdaniec, M. (2010). Acta Cryst. C66, o128–o132.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDas, B. & Baruah, J. B. (2011). J. Mol. Struct. 1001, 134–138.  Web of Science CSD CrossRef CAS Google Scholar
First citationDelori, A., Urquhart, A. J. & Oswald, I. D. H. (2016). CrystEngComm, 18, 5360–5364.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLemmerer, A., Bernstein, J. & Kahlenberg, V. (2010). CrystEngComm, 12, 2856–2864.  Web of Science CSD CrossRef CAS Google Scholar
First citationLemmerer, A., Bernstein, J. & Kahlenberg, V. (2012). Acta Cryst. E68, o190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, S., Jia, R., Gao, F. & Zhou, X. (2012). Acta Cryst. E68, o3457.  CSD CrossRef IUCr Journals Google Scholar
First citationLoehlin, J. H. & Okasako, E. L. N. (2007). Acta Cryst. B63, 132–141.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarsh, R. E. (2009). Acta Cryst. B65, 782–783.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatulková, I., Císařová, I., Němec, I. & Fábry, J. (2014). Acta Cryst. C70, 927–933.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeng, X.-G., Cheng, C.-X. & Yan, G. (2009). Acta Cryst. C65, o217–o221.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMishra, R. & Pallepogu, R. (2018). Acta Cryst. B74, 32–41.  CrossRef Google Scholar
First citationPovetéva, Z. P. & Zvonkova, Z. V. (1975). Kristallografiya, 20, 69.  Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRowe, R. C., Sheskey, P. J. & Quinn, M. E. (2009). Adipic Acid. In Handbook of Pharmaceutical Excipients, 6th ed., pp. 11–12. London: Pharmaceutical Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2016). Acta Cryst. E72, 805–808.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThakuria, H., Borah, B. M., Pramanik, A. & Das, G. (2007). J. Chem. Crystallogr. 37, 807–816.  Web of Science CSD CrossRef CAS Google Scholar
First citationThanigaimani, K., Razak, I. A., Arshad, S., Jagatheesan, R. & Santhanaraj, K. J. (2012). Acta Cryst. E68, o2938–o2939.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds