research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Binary and ternary charge-transfer complexes using 1,3,5-tri­nitro­benzene

CROSSMARK_Color_square_no_text.svg

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag, PO WITS, 2050, Johannesburg, South Africa
*Correspondence e-mail: andreas.lemmerer@wits.ac.za

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia (Received 29 November 2017; accepted 4 January 2018; online 9 January 2018)

Three binary and one ternary charge-transfer complexes have been made using 1,3,5-tri­nitro­benzene, viz. 1,3,5-tri­nitro­benzene–2-acetylnaphthalene (1/1), C6H3N3O6·C12H10O, (I), 1,3,5-tri­nitro­benzene–9-bromo­anthracene (1/1), C14H9Br·C6H3N3O6, (II), 1,3,5-tri­nitro­benzene–methyl red (1/1), C15H15N3O2·C6H3N3O6, (III) (systematic name for methyl red: 2-{(E)-[4-(di­methyl­amino)­phen­yl]diazen­yl}benzoic acid), and 1,3,5-tri­nitro­benzene–1-naphthoic acid–2-amino-5-nitro­pyridine (1/1/1), C6H3N3O6·C11H8O2·C5H5N3O2, (IV). All charge-transfer complexes show alternating donor and acceptor stacks, which have weak C—H⋯O hydrogen bonds perpendicular to the stacking axis. In addition, complex (IV) is a crystal engineering attempt to modify the packing of the stacks by inserting a third mol­ecule into the structure. This third mol­ecule is stabilized by strong hydrogen bonds between the carb­oxy­lic acid group of the donor mol­ecule and the pyridine acceptor mol­ecule.

1. Chemical context

The crystal structure of 1,3,5-tri­nitro­benzene (TNB), an energetic or high-explosive material, was first reported as far back as 1930 (Hertel & Romer, 1930[Hertel, E. & Romer, G. H. (1930). Z. Phys. Chem. B, 11, 87.]). A number of structures of pure TNB have appeared since then, including a neutron diffraction study in 1972 (Choi & Abel, 1972[Choi, C. S. & Abel, J. E. (1972). Acta Cryst. B28, 193-201.]). More recently, polymorphs (Thallapally et al., 2004[Thallapally, P. K., Jetti, R. K., Katz, A. K., Carrell, H. L., Singh, K., Lahiri, K., Kotha, S., Boese, R. & Desiraju, G. R. (2004). Angew. Chem. Int. Ed. 43, 1149-1155.]) and pseudo-polymorphs of TNB (Jetti et al., 2003[Jetti, R. K., Boese, R., Thallapally, P. K. & Desiraju, G. R. (2003). Cryst. Growth Des. 3, 1033-1040.]) have been reported.

Crystal engineering, the conception and synthesis of mol­ecular solid-state structures, is fundamentally based upon the discernment and subsequent exploitation of inter­molecular inter­actions. Thus, primarily non-covalent bonding is used to achieve the organization of mol­ecules and ions in the solid state in order to produce materials with desired properties. The stability of an energetic material is one of the decisive factors in determining the viability of the final product, be it for fuels, propellants, pyrotechnics or explosives. If the energetic cannot be safely synthesized, handled and stored before its ultimate use, it is regarded as a failure, discarded and forgotten. Although not a forgotten but rather an old energetic material, 1,3,5-tri­nitro­benzene (TNB) falls into the class of energetics that are shock and heat sensitive, especially when in powdered dry form. Co-crystallization presents an opportunity to re-look at these problems for example, Guo et al. (2013a[Guo, C., Zhang, H., Wang, X., Xu, J., Liu, Y., Liu, X., Huang, H. & Sun, J. (2013a). J. Mol. Struct. 1048, 267-273.]) have shown that taking 2,4,6,8,10,12-hexa­nitro­hexa­aza­isowurtzitane (CL-20) and co-crystallizing it with caprolactam (CPL) has lead to new and inter­esting effects on the relevant properties. The importance of crystal engineering in the stabilization of explosive materials, such as tri­nitro­toluene (TNT) and ethyl­enedinitramine, was described recently (Landenberger et al., 2010[Landenberger, K. B. & Matzger, A. J. (2010). Cryst. Growth Des. 10, 5341-5347.]; Aakeröy et al., 2015[Aakeröy, C. B., Wijethunga, T. K. & Desper, J. (2015). Chem. Eur. J. 21, 11029-11037.]). Recently, Chen et al. (2017[Chen, P. Y., Zhang, L., Zhu, S. G., Cheng, G. B. & Li, N. R. (2017). J. Mol. Struct. 1128, 629-635.]) isolated a novel co-crystal of 1,3,5-tri­nitro­benzene (TNB) and 1-nitro­naphthalene (NNAP), synthesized by using both solution and mechanochemical methods. The TNB/NNAP co-crystal has the largest proportion of ππ stacking inter­action (12.7%). A charge-transfer complex of TNT and TNB has also been reported (Guo et al., 2013b[Guo, C., Zhang, H., Wang, X., Liu, X. & Sun, J. (2013b). J. Mater. Sci. 48, 1351-1357.]). The results indicate that the electronic effect has an influence on the inter­molecular inter­actions in the co-crystal. Our study comprises of an investigation of TNB as a model energetic with various polycyclic aromatic hydro­carbons in order to observe their effect on the structural aspects of the solid state. The structure and properties of many charge-transfer (CT) complexes of TNB with a variety of aromatic mol­ecules have been investigated (Brown et al., 1964[Brown, D. S., Wallwork, S. C. & Wilson, A. (1964). Acta Cryst. 17, 168-176.]; Herbstein & Kaftory, 1975[Herbstein, F. H. & Kaftory, M. (1975). Acta Cryst. B31, 60-67.]), and reviewed by Herbstein in different sections of his book (Herbstein, 2005[Herbstein, F. H. (2005). Crystalline molecular complexes and compounds: structures and principles. Oxford University Press.]). To this end, we have synthesized four new charge-transfer co-crystals, three binary (I)–(III), and one ternary (IV)[link]: tri­nitro­benzene–2-acetylnaphthalene, (I)[link], tri­nitro­benzene–9-bromo­anthracene, (II)[link], tri­nitro­benzene–methyl red, (III)[link], and tri­nitro­benzene–1-naphthoic acid–2-amino-5-nitro­pyridine, (IV)[link].

[Scheme 1]

2. Structural commentary

The asymmetric units and atom-labelling schemes for the title charge-transfer complexes are shown in Fig. 1[link]. All compounds have Z′ = 1 with all mol­ecules in general positions. As a result of the strong polarizing effect of the nitro groups, TNB has an electron-poor π-system. On the other hand, the donor mol­ecules (polycyclic aromatic hydro­carbons) have an electron-rich π-system. The packing of the unit cell of the complexes follows a donor (D) acceptor (A) ππ inter­action, which is the major driving force in the formation of these complexes, as seen in Fig. 2[link] (donor mol­ecules shown in blue and acceptors in green), resulting in a general face-to-face π-stacking, with Table 1[link] summarizing the closest centroid–centroid distances between the TNB acceptor and aromatic donor systems. The inter­molecular inter­actions of the DA stacks can be qu­anti­fied using Hirschfeld surface analysis as well as the resulting fingerprint plots using the programme CrystalExplorer17.5 (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). In the paper by Chen et al. (2017[Chen, P. Y., Zhang, L., Zhu, S. G., Cheng, G. B. & Li, N. R. (2017). J. Mol. Struct. 1128, 629-635.]), the authors describe the regions of blue and red triangles on the Hirshfeld surface using the shape index as evidence of ππ inter­actions. Fig. 3[link] shows such surfaces plotted for the TNB mol­ecules in (I)–(IV). The red triangles show concave regions indicative of ring carbons of the π-stacked mol­ecule above it. (I)[link] and (II)[link] show the most triangles, indicative that they have the greatest proportion of ππ stacking of the four structures. This can be qu­anti­fied by looking at the contribution that C⋯C contacts make up in the fingerprint plots. (I)[link] and (II)[link] have values of 12.0 and 12.6%, respectively, much greater than the 4.4 and 7.5% for (III)[link] and (IV)[link], respectively. Table 2[link] summarizes the percentages of C⋯C, H⋯H and C⋯H contacts and the relevant fingerprint plots are given in the supporting information. In terms of the mol­ecular geometry, the TNB mol­ecules show some changes from the geometries encountered in the pure compound. The pure compound has torsion angles of the nitro group to the benzene ring in the range from 0 to 28.17°, whereas in the CT complexes described here they range from −20.0 (4) to +20.0 (5)°. The packing and hydrogen-bonding inter­actions are further described below individually for each compound.

Table 1
Centroid distances (Å) between the tri­nitro­benzene and the ring centroids (Cg) of the aromatic polycyclics

Structure Donor Acceptor CgCg Symmetry operator
(I) C1–C6 C11–C20 3.3745 (2) x, y, z
(II) C1–C6 C11–C24 3.5173 (11) x, y, z
(III) C1–C6 C11–C16 3.6587 (14) 1 − x, 1 − y, 1 − z
(III) C1–C6 C19–C24 4.6432 (18) x, y, z
(IV) C1–C6 C11–C20 4.0417 (8) x, y + 1, z

Table 2
Proportion (%) of inter­molecular contacts between donor and acceptor mol­ecules in the Hirshfeld fingerprint plots

Structure C⋯C H⋯H C⋯H
(I) 12.0 10.7 1.5
(II) 12.6 6.6 0.9
(III) 4.4 11.0 5.4
(IV) 7.5 8.8 4.6
[Figure 1]
Figure 1
Perspective views of compounds (I)–(IV), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed lines indicate the symmetry-independent N—H⋯O and O—H⋯N hydrogen bonds.
[Figure 2]
Figure 2
The packing diagrams for all four compounds (I)–(IV). The acceptor mol­ecules are shown in green and the donor mol­ecules in blue. The third mol­ecule of 2-amino-5-nitro­pyridine is shown in red in (IV)[link].
[Figure 3]
Figure 3
The mol­ecular Hirshfeld surfaces mapped with shape index for the TNB acceptor mol­ecule in (I)–(IV).

3. Supra­molecular features

Structure (I)[link] crystallizes in the P21/c space group with both the TNB and 2-acetylnaphthalene mol­ecules in the asymmetric unit. The donor and acceptor mol­ecules pack in a checker-board fashion parallel to the ab plane (Fig. 2[link]a). In the plane perpendicular to the stacking, the ac plane, there are C—H⋯O inter­actions between TNB and 2-acetylnaphthalene mol­ecules (Table 3[link], Fig. 4[link]a), forming an R33(17) ring described using graph set notation (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.4 3.189 (3) 143
C11—H11⋯O3ii 0.93 2.48 3.323 (4) 150
C22—H22A⋯O4iii 0.96 2.64 3.554 (4) 159
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
The hydrogen-bonding diagrams for all four compounds. Atoms with superscripts (i)–(v) are at the symmetry positions (−x + 1, −y + 1, −z + 1), (−x + 1, y − [{1\over 2}], −z + [{1\over 2}]), (x, y − 1, z), (x − 1, y + 1, z) and (1 − x, −y, −z + 1) respectively.

Structure (II)[link] crystallizes in the P21/c space group with both the TNB and 9-bromo­anthracene in the asymmetric unit. The packing of the structure displays a clear separation of the donor (blue) and acceptor (green) layers (Fig. 2[link]b). The alternating DA stacks show that the bromine atom of the 9-bromo­anthracene packs in a head-to-head stacked fashion; however, the distance between the nearest Br atoms is very long [4.981 (1) Å], much longer than the sum of their van der Waals radii, and as a result Br⋯Br inter­actions are not involved in the mol­ecular aggregation. In the plane perpendicular to the stacking, there are C—H⋯O inter­actions (Table 4[link]) between TNB mol­ecules forming an R22(10) ring, and a discrete hydrogen bond between the TNB and 9-bromo­anthracene mol­ecules (Fig. 4[link]b).

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O6i 0.95 2.5 3.287 (3) 140
C6—H6⋯O5ii 0.95 2.68 3.593 (3) 162
C14—H14⋯O4iii 0.95 2.57 3.255 (3) 129
C21—H21⋯O1iv 0.95 2.65 3.364 (3) 132
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) x+1, y-1, z.

Structure (III)[link] crystallizes in the P[\overline{1}] space group with both the TNB and the methyl red in the asymmetric unit. The packing of the structure illustrates that for each phenyl ring on the methyl red mol­ecule, there is an associated TNB mol­ecule. The two TNB mol­ecules are at different distances from the ring centroids, with a variation of ca 0.98 Å (Table 2[link]). Along the bc plane, the TNB mol­ecules display similar hydrogen-bonded rings as those observed for (II)[link] (Fig. 2[link]c), and an additional six-membered intra­molecular S(6) hydrogen bond is found (Fig. 1[link]c). The TNB and methyl red mol­ecules are again joined by C—H⋯O hydrogen bonds (Table 5[link]) to the nitro oxygen atoms, forming an R22(11) ring (Fig. 4[link]c).

Table 5
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O4i 0.95 2.35 3.285 (4) 169
C15—H15⋯O11ii 0.95 2.34 3.254 (4) 161
C18—H18A⋯O11ii 0.98 2.55 3.519 (4) 170
C20—H20⋯O3iii 0.95 2.64 3.574 (4) 167
O12—H12⋯N12 0.95 (6) 1.70 (6) 2.577 (3) 153 (5)
C21—H21⋯O2iii 0.95 2.56 3.469 (4) 161
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+1, -y, -z+1.

Structure (IV)[link] crystallizes in the P[\overline{1}] space group with the TNB, 1-naphthoic and 2-amino-5-nitro­pyridine mol­ecules in the asymmetric unit. The addition of a third mol­ecule into this charge-transfer complex results in groups of alternating DA stacks separated by the added pyridine component (Fig. 2[link]d). The TNB mol­ecules are joined by R21(6) rings, whereas a strong hydrogen-bonding inter­action between the DA stacks and the 2-amino-5-nitro­pyridine mol­ecule was found, forming an R22(8) ring, as well as a weaker bifurcated C—H⋯O R12(4) ring (Table 6[link], Fig. 4[link]d); inter­estingly there is no additional DA stacking with the 1-naphthoic and the pyridine components.

Table 6
Hydrogen-bond geometry (Å, °) for (IV)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O8 0.90 (5) 2.03 (5) 2.919 (5) 168 (5)
N5—H5B⋯O9i 0.86 (4) 2.24 (4) 3.069 (5) 161 (4)
O7—H7⋯N4 0.95 (5) 1.71 (5) 2.650 (4) 171 (5)
C23—H23⋯O9i 0.95 2.5 3.272 (5) 139
C26—H26⋯O1 0.95 2.69 3.530 (5) 147
C26—H26⋯O2 0.95 2.72 3.477 (5) 138
Symmetry code: (i) x, y-1, z.

In summary, we have contributed to the field of CT complexes using TNB, presenting further evidence that TNB is an ideal acceptor and, when paired with a donor that has hydrogen-bonding functionality, can be used to make ternary complexes.

4. Database survey

A database survey in the Cambridge Structural Database (CSD, Version 5.38; April 2017 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) was undertaken for any structures containing the 1,3,5-tri­nitro­benzene moiety. A total of 135 hits where found, which was then reduced to 95 by evaluating if there is evidence of ππ inter­actions as indicative for a CT complex.

5. Synthesis and crystallization

All chemicals were purchased from commercial sources (Sigma Aldrich) and used as received without further purification. The 1,3,5-tri­nitro­benzene charge-transfer complexes were prepared in a 10 mL ethano­lic solution with a 1:1 or 1:1:1 stoichiometric ratio of the donor to the acceptor mol­ecule (based on 0.469 mmol of TNB), which was then heated until total dissolution took place (approx. 4 h). The solution was then cooled very slowly to obtain crystals suitable for X-ray diffraction. Detailed masses are as follows: (I)[link]: 0.100 g of 1,3,5-tri­nitro­benzene and 0.080 g of 2-acetyl­naphthalene; (II)[link]: 0.100 g of 1,3,5-tri­nitro­benzene and 0.121 g of 9-bromo­anthracene; (III)[link]: 0.100 g of 1,3,5-tri­nitro­benzene and 0.127 g of methyl red; and (IV)[link]: 0.100 g of 1,3,5-tri­nitro­benzene, 0.081 of 1-naphthoic acid and 0.065 g of 2-amino-5-nitro­pyridine.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. For all compounds, the C-bound H atoms were placed geometrically [C—H bond lengths of 0.96 (methyl CH3), and 0.95 Å (Ar—H)] and refined as riding with Uiso(H) = 1.2Ueq(Ar-C) or Uiso(H) = 1.5Ueq(methyl-C). The O and N–bound H atoms were located in the difference map and their coordinates and isotropic displacement parameters allowed to refine freely.

Table 7
Experimental details

  (I) (II) (III) (IV)
Crystal data
Chemical formula C6H3N3O6·C12H10O C14H9Br·C6H3N3O6 C15H15N3O2·C6H3N3O6 C6H3N3O6·C11H8O2·C5H5N3O2
Mr 383.31 470.24 482.41 524.41
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 293 173 173 173
a, b, c (Å) 16.6728 (10), 6.8197 (3), 15.4419 (7) 7.0928 (2), 9.7701 (3), 27.0563 (7) 8.550 (3), 10.437 (3), 13.072 (5) 7.5365 (15), 7.9003 (16), 19.153 (4)
α, β, γ (°) 90, 102.217 (3), 90 90, 100.674 (1), 90 110.689 (10), 103.510 (12), 90.730 (12) 97.580 (7), 94.667 (6), 99.547 (7)
V3) 1716.03 (15) 1842.49 (9) 1055.2 (7) 1108.5 (4)
Z 4 4 2 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.12 2.28 0.12 0.13
Crystal size (mm) 0.15 × 0.12 × 0.07 0.33 × 0.12 × 0.11 0.29 × 0.13 × 0.12 0.63 × 0.33 × 0.06
 
Data collection
Diffractometer Bruker D8 Venture Photon CCD area detector Bruker D8 Venture Photon CCD area detector Bruker D8 Venture Photon CCD area detector Bruker D8 Venture Photon CCD area detector
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.9, 0.95 0.56, 0.77 0.9, 0.95 0.9, 0.95
No. of measured, independent and observed [I > 2σ(I)] reflections 15612, 3195, 1874 28424, 4450, 3758 39527, 5072, 3262 12982, 3988, 3368
Rint 0.063 0.048 0.072 0.034
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.152, 1.01 0.040, 0.096, 1.08 0.078, 0.249, 1.07 0.072, 0.168, 1.22
No. of reflections 3195 4450 5072 3988
No. of parameters 254 271 322 355
H-atom treatment H-atom parameters constrained H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.29 1.42, −0.94 0.49, −0.43 0.32, −0.37
Computer programs: APEX3, SAINT-Plus and XPREP (Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT-Plus (Bruker, 2016); data reduction: SAINT-Plus and XPREP (Bruker, 2016). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I); SHELXS97 (Sheldrick, 2015) for (II), (III), (IV). For all structures, program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015). Molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) for (I); ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006) for (II), (III), (IV). For all structures, software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

1,3,5-Trinitrobenzene–1-(naphthalen-2-yl)ethan-1-one (1/1) (I) top
Crystal data top
C6H3N3O6·C12H10OF(000) = 792
Mr = 383.31Dx = 1.484 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1787 reflections
a = 16.6728 (10) Åθ = 2.5–19.9°
b = 6.8197 (3) ŵ = 0.12 mm1
c = 15.4419 (7) ÅT = 293 K
β = 102.217 (3)°Plate, yellow
V = 1716.03 (15) Å30.15 × 0.12 × 0.07 mm
Z = 4
Data collection top
Bruker D8 Venture Photon CCD area detector
diffractometer
1874 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1820
Tmin = 0.9, Tmax = 0.95k = 88
15612 measured reflectionsl = 1818
3195 independent reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.4622P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3195 reflectionsΔρmax = 0.40 e Å3
254 parametersΔρmin = 0.28 e Å3
0 restraints
Special details top

Experimental. (SADABS; Sheldrick, 1996)

Geometry. All standard uncertainties (s.u.) (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u. are taken into account individually in the estimation of s.u. in distances, angles and torsion angles; correlations between s.u. in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u. is used for estimating s.u. involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.21511 (18)0.3392 (4)0.53179 (17)0.0389 (7)
C20.29340 (17)0.3382 (4)0.51644 (18)0.0405 (7)
H20.3389390.3136650.5614950.049*
C30.30078 (16)0.3753 (4)0.43143 (18)0.0375 (6)
C40.23515 (17)0.4104 (3)0.36307 (17)0.0380 (7)
H40.2421620.4356360.3059490.046*
C50.15851 (17)0.4066 (3)0.38276 (17)0.0373 (6)
C60.14629 (17)0.3724 (3)0.46663 (17)0.0393 (7)
H60.0939960.3717350.4788050.047*
N10.2053 (2)0.3015 (4)0.62306 (17)0.0552 (7)
N20.38409 (17)0.3748 (3)0.4122 (2)0.0530 (7)
N30.08572 (17)0.4407 (4)0.31102 (18)0.0552 (7)
O10.14078 (18)0.3516 (4)0.64216 (16)0.0780 (8)
O20.26172 (18)0.2195 (3)0.67273 (14)0.0753 (8)
O30.44113 (14)0.3279 (3)0.47247 (19)0.0778 (8)
O40.39003 (15)0.4197 (4)0.33769 (17)0.0748 (7)
O50.09752 (15)0.5061 (3)0.24181 (15)0.0707 (7)
O60.01788 (16)0.4066 (4)0.32863 (18)0.0871 (8)
C110.37425 (18)0.8616 (4)0.44847 (17)0.0416 (7)
H110.4311990.8555880.464460.05*
C120.33560 (17)0.8871 (4)0.35789 (17)0.0386 (6)
C130.25164 (17)0.9004 (4)0.33542 (18)0.0399 (7)
H130.2258730.9186820.2764120.048*
C140.20357 (16)0.8866 (3)0.40060 (17)0.0355 (6)
C150.11648 (17)0.8960 (4)0.37776 (19)0.0447 (7)
H150.0900080.9177910.3192320.054*
C160.07171 (19)0.8732 (4)0.4412 (2)0.0491 (8)
H160.0147330.8782110.4255280.059*
C170.11022 (19)0.8425 (4)0.5296 (2)0.0490 (8)
H170.0786940.8272250.5721770.059*
C180.19420 (19)0.8348 (4)0.55427 (19)0.0437 (7)
H180.21920.8154730.613450.052*
C190.24309 (17)0.8560 (3)0.49009 (17)0.0363 (6)
C200.32950 (17)0.8457 (4)0.51201 (18)0.0402 (7)
H200.3561460.8278980.570770.048*
C210.3838 (2)0.8968 (4)0.2863 (2)0.0473 (7)
C220.4755 (2)0.9057 (5)0.3127 (2)0.0672 (10)
H22A0.4980450.9171320.2606320.101*
H22B0.4957320.7883750.3441690.101*
H22C0.4914391.0174720.3501960.101*
O70.34871 (15)0.8966 (3)0.20881 (14)0.0650 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0476 (19)0.0333 (14)0.0369 (15)0.0045 (12)0.0118 (14)0.0014 (11)
C20.0381 (18)0.0357 (14)0.0434 (16)0.0008 (12)0.0011 (14)0.0009 (12)
C30.0303 (16)0.0325 (13)0.0510 (17)0.0010 (11)0.0114 (14)0.0037 (12)
C40.0447 (19)0.0346 (14)0.0363 (14)0.0034 (12)0.0121 (14)0.0028 (11)
C50.0352 (17)0.0306 (13)0.0421 (15)0.0039 (11)0.0007 (13)0.0036 (11)
C60.0346 (17)0.0345 (14)0.0502 (17)0.0023 (12)0.0121 (14)0.0070 (12)
N10.073 (2)0.0471 (15)0.0475 (16)0.0166 (14)0.0164 (16)0.0030 (12)
N20.0416 (17)0.0424 (14)0.078 (2)0.0023 (12)0.0204 (16)0.0066 (13)
N30.0462 (19)0.0524 (15)0.0570 (17)0.0066 (13)0.0114 (14)0.0043 (13)
O10.095 (2)0.0840 (17)0.0698 (16)0.0071 (15)0.0500 (16)0.0035 (13)
O20.097 (2)0.0782 (16)0.0457 (13)0.0164 (15)0.0035 (14)0.0144 (12)
O30.0317 (14)0.0797 (16)0.118 (2)0.0058 (12)0.0062 (15)0.0163 (15)
O40.0642 (18)0.0922 (18)0.0813 (17)0.0031 (13)0.0449 (15)0.0105 (14)
O50.0794 (19)0.0802 (16)0.0436 (12)0.0271 (13)0.0073 (13)0.0002 (12)
O60.0373 (16)0.101 (2)0.112 (2)0.0084 (14)0.0087 (15)0.0112 (16)
C110.0329 (16)0.0417 (15)0.0488 (17)0.0003 (12)0.0056 (14)0.0014 (12)
C120.0349 (17)0.0365 (14)0.0451 (16)0.0017 (12)0.0102 (13)0.0027 (12)
C130.0406 (18)0.0362 (14)0.0407 (15)0.0010 (12)0.0038 (13)0.0014 (12)
C140.0290 (16)0.0292 (12)0.0461 (16)0.0018 (11)0.0032 (13)0.0040 (11)
C150.0361 (18)0.0404 (15)0.0538 (17)0.0053 (12)0.0010 (15)0.0034 (13)
C160.0349 (18)0.0454 (16)0.068 (2)0.0061 (13)0.0131 (16)0.0054 (15)
C170.044 (2)0.0430 (16)0.066 (2)0.0039 (13)0.0249 (17)0.0054 (14)
C180.049 (2)0.0382 (15)0.0456 (16)0.0023 (13)0.0137 (15)0.0019 (12)
C190.0359 (17)0.0307 (14)0.0413 (15)0.0020 (11)0.0063 (13)0.0026 (11)
C200.0381 (18)0.0401 (14)0.0396 (15)0.0016 (12)0.0016 (13)0.0004 (12)
C210.052 (2)0.0463 (16)0.0466 (18)0.0000 (14)0.0180 (16)0.0048 (14)
C220.046 (2)0.095 (3)0.067 (2)0.0053 (19)0.0274 (18)0.0026 (19)
O70.0648 (16)0.0863 (16)0.0466 (13)0.0020 (13)0.0180 (12)0.0060 (11)
Geometric parameters (Å, º) top
C1—C21.375 (4)C12—C131.372 (4)
C1—C61.375 (4)C12—C211.500 (4)
C1—N11.475 (4)C13—C141.416 (4)
C2—C31.368 (4)C13—H130.93
C2—H20.93C14—C191.415 (4)
C3—C41.371 (4)C14—C151.421 (4)
C3—N21.481 (4)C15—C161.361 (4)
C4—C51.375 (4)C15—H150.93
C4—H40.93C16—C171.396 (4)
C5—C61.373 (4)C16—H160.93
C5—N31.478 (4)C17—C181.372 (4)
C6—H60.93C17—H170.93
N1—O21.217 (4)C18—C191.418 (4)
N1—O11.222 (3)C18—H180.93
N2—O41.214 (3)C19—C201.410 (4)
N2—O31.224 (3)C20—H200.93
N3—O51.212 (3)C21—O71.215 (3)
N3—O61.240 (3)C21—C221.497 (4)
C11—C201.357 (4)C22—H22A0.96
C11—C121.422 (4)C22—H22B0.96
C11—H110.93C22—H22C0.96
C2—C1—C6123.4 (2)C12—C13—C14121.1 (3)
C2—C1—N1117.7 (3)C12—C13—H13119.5
C6—C1—N1118.9 (3)C14—C13—H13119.5
C3—C2—C1116.5 (3)C19—C14—C13119.2 (2)
C3—C2—H2121.8C19—C14—C15119.3 (2)
C1—C2—H2121.8C13—C14—C15121.5 (2)
C2—C3—C4123.5 (2)C16—C15—C14120.2 (3)
C2—C3—N2118.1 (3)C16—C15—H15119.9
C4—C3—N2118.4 (2)C14—C15—H15119.9
C3—C4—C5117.0 (2)C15—C16—C17120.8 (3)
C3—C4—H4121.5C15—C16—H16119.6
C5—C4—H4121.5C17—C16—H16119.6
C6—C5—C4122.8 (3)C18—C17—C16120.5 (3)
C6—C5—N3118.1 (3)C18—C17—H17119.7
C4—C5—N3119.0 (2)C16—C17—H17119.7
C5—C6—C1116.8 (3)C17—C18—C19120.4 (3)
C5—C6—H6121.6C17—C18—H18119.8
C1—C6—H6121.6C19—C18—H18119.8
O2—N1—O1125.4 (3)C20—C19—C14118.9 (2)
O2—N1—C1117.0 (3)C20—C19—C18122.4 (2)
O1—N1—C1117.6 (3)C14—C19—C18118.7 (3)
O4—N2—O3125.5 (3)C11—C20—C19120.8 (3)
O4—N2—C3117.2 (3)C11—C20—H20119.6
O3—N2—C3117.3 (3)C19—C20—H20119.6
O5—N3—O6126.0 (3)O7—C21—C22121.3 (3)
O5—N3—C5117.3 (3)O7—C21—C12120.2 (3)
O6—N3—C5116.6 (3)C22—C21—C12118.4 (3)
C20—C11—C12121.1 (3)C21—C22—H22A109.5
C20—C11—H11119.4C21—C22—H22B109.5
C12—C11—H11119.4H22A—C22—H22B109.5
C13—C12—C11118.9 (2)C21—C22—H22C109.5
C13—C12—C21119.2 (3)H22A—C22—H22C109.5
C11—C12—C21121.9 (3)H22B—C22—H22C109.5
C6—C1—C2—C30.9 (4)C20—C11—C12—C131.5 (4)
N1—C1—C2—C3179.4 (2)C20—C11—C12—C21177.5 (2)
C1—C2—C3—C40.6 (4)C11—C12—C13—C140.8 (4)
C1—C2—C3—N2179.8 (2)C21—C12—C13—C14178.3 (2)
C2—C3—C4—C50.3 (4)C12—C13—C14—C190.9 (3)
N2—C3—C4—C5178.9 (2)C12—C13—C14—C15178.7 (2)
C3—C4—C5—C60.9 (4)C19—C14—C15—C160.9 (4)
C3—C4—C5—N3179.1 (2)C13—C14—C15—C16176.9 (2)
C4—C5—C6—C10.7 (4)C14—C15—C16—C170.7 (4)
N3—C5—C6—C1179.4 (2)C15—C16—C17—C180.0 (4)
C2—C1—C6—C50.2 (4)C16—C17—C18—C190.6 (4)
N1—C1—C6—C5179.9 (2)C13—C14—C19—C201.8 (3)
C2—C1—N1—O220.0 (4)C15—C14—C19—C20179.6 (2)
C6—C1—N1—O2159.7 (3)C13—C14—C19—C18177.6 (2)
C2—C1—N1—O1161.3 (3)C15—C14—C19—C180.3 (3)
C6—C1—N1—O119.0 (4)C17—C18—C19—C20178.9 (2)
C2—C3—N2—O4175.6 (2)C17—C18—C19—C140.4 (4)
C4—C3—N2—O45.2 (4)C12—C11—C20—C190.6 (4)
C2—C3—N2—O34.9 (4)C14—C19—C20—C111.1 (3)
C4—C3—N2—O3174.4 (2)C18—C19—C20—C11178.2 (2)
C6—C5—N3—O5166.6 (2)C13—C12—C21—O77.3 (4)
C4—C5—N3—O513.4 (3)C11—C12—C21—O7171.7 (3)
C6—C5—N3—O610.7 (4)C13—C12—C21—C22173.0 (3)
C4—C5—N3—O6169.3 (3)C11—C12—C21—C228.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.43.189 (3)143
C11—H11···O3ii0.932.483.323 (4)150
C22—H22A···O4iii0.962.643.554 (4)159
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+1/2.
1,3,5-Trinitrobenzene–9-bromoanthracene (1/1) (II) top
Crystal data top
C14H9Br·C6H3N3O6F(000) = 944
Mr = 470.24Dx = 1.695 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8164 reflections
a = 7.0928 (2) Åθ = 2.2–27.9°
b = 9.7701 (3) ŵ = 2.28 mm1
c = 27.0563 (7) ÅT = 173 K
β = 100.674 (1)°Needle, yellow
V = 1842.49 (9) Å30.33 × 0.12 × 0.11 mm
Z = 4
Data collection top
Bruker D8 Venture Photon CCD area detector
diffractometer
3758 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 28.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.56, Tmax = 0.77k = 1212
28424 measured reflectionsl = 3535
4450 independent reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0343P)2 + 2.1935P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
4450 reflectionsΔρmax = 1.42 e Å3
271 parametersΔρmin = 0.94 e Å3
0 restraints
Special details top

Experimental. (SADABS; Sheldrick, 1996)

Geometry. All standard uncertainties (s.u.) (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u. are taken into account individually in the estimation of s.u. in distances, angles and torsion angles; correlations between s.u. in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u. is used for estimating s.u. involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3620 (3)0.7554 (2)0.10545 (9)0.0275 (5)
C20.3965 (3)0.6350 (2)0.08161 (9)0.0256 (5)
H20.3691130.626740.0460110.031*
C30.4723 (3)0.5280 (2)0.11194 (9)0.0236 (4)
C40.5164 (3)0.5366 (2)0.16372 (9)0.0267 (5)
H40.5680610.4608840.1837710.032*
C50.4822 (4)0.6599 (3)0.18498 (9)0.0293 (5)
C60.4047 (4)0.7724 (2)0.15702 (10)0.0303 (5)
H60.3822480.8565850.1725170.036*
N10.2782 (3)0.8716 (2)0.07398 (10)0.0370 (5)
N20.5097 (3)0.3967 (2)0.08822 (8)0.0290 (4)
N30.5319 (4)0.6732 (2)0.24030 (8)0.0401 (6)
O10.2533 (3)0.9777 (2)0.09572 (9)0.0543 (6)
O20.2376 (3)0.8538 (2)0.02904 (9)0.0519 (6)
O30.4729 (3)0.3904 (2)0.04231 (7)0.0396 (4)
O40.5756 (3)0.30406 (19)0.11577 (8)0.0434 (5)
O50.5774 (5)0.5714 (2)0.26496 (8)0.0654 (7)
O60.5271 (4)0.7868 (3)0.25776 (9)0.0634 (7)
C110.9660 (3)0.6511 (2)0.16436 (8)0.0235 (4)
C120.8864 (3)0.7691 (2)0.13900 (8)0.0231 (4)
C130.8514 (4)0.8940 (2)0.16310 (9)0.0305 (5)
H130.8839230.9009380.1986810.037*
C140.7719 (4)1.0031 (2)0.13575 (10)0.0338 (6)
H140.7486851.0849590.152610.041*
C150.7233 (4)0.9972 (3)0.08274 (10)0.0319 (5)
H150.6689811.0748760.0642720.038*
C160.7543 (3)0.8804 (2)0.05821 (9)0.0285 (5)
H160.7219390.8774210.022550.034*
C170.8346 (3)0.7622 (2)0.08509 (8)0.0223 (4)
C180.8607 (3)0.6406 (2)0.06047 (8)0.0239 (5)
H180.8243850.6367030.0248880.029*
C190.9385 (3)0.5241 (2)0.08641 (8)0.0226 (4)
C200.9636 (3)0.4002 (2)0.06075 (9)0.0274 (5)
H200.9243360.3960030.025250.033*
C211.0428 (4)0.2876 (3)0.08608 (10)0.0322 (5)
H211.0581740.2056580.0683140.039*
C221.1019 (4)0.2928 (3)0.13873 (10)0.0319 (5)
H221.1590530.2142830.1560670.038*
C231.0789 (3)0.4077 (2)0.16519 (9)0.0282 (5)
H231.1186680.4080270.2007020.034*
C240.9956 (3)0.5283 (2)0.14027 (8)0.0224 (4)
Br11.03399 (4)0.65915 (3)0.23592 (2)0.03853 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0215 (11)0.0233 (11)0.0390 (13)0.0012 (9)0.0088 (10)0.0050 (10)
C20.0224 (11)0.0255 (12)0.0296 (11)0.0013 (9)0.0067 (9)0.0014 (9)
C30.0203 (10)0.0211 (11)0.0306 (11)0.0022 (8)0.0075 (9)0.0027 (9)
C40.0268 (12)0.0232 (11)0.0307 (12)0.0006 (9)0.0068 (9)0.0009 (9)
C50.0297 (12)0.0287 (12)0.0301 (12)0.0045 (10)0.0071 (10)0.0041 (10)
C60.0309 (13)0.0228 (12)0.0393 (13)0.0013 (10)0.0121 (10)0.0064 (10)
N10.0296 (11)0.0304 (12)0.0515 (14)0.0040 (9)0.0094 (10)0.0117 (10)
N20.0264 (10)0.0259 (10)0.0353 (11)0.0005 (8)0.0076 (8)0.0060 (9)
N30.0492 (14)0.0377 (13)0.0331 (12)0.0039 (11)0.0068 (10)0.0095 (10)
O10.0568 (14)0.0288 (11)0.0759 (16)0.0161 (10)0.0087 (12)0.0048 (10)
O20.0588 (14)0.0489 (13)0.0476 (13)0.0129 (11)0.0091 (10)0.0208 (10)
O30.0412 (11)0.0416 (11)0.0347 (10)0.0031 (9)0.0040 (8)0.0129 (8)
O40.0580 (13)0.0250 (9)0.0485 (12)0.0132 (9)0.0136 (10)0.0009 (8)
O50.116 (2)0.0441 (13)0.0327 (11)0.0039 (13)0.0041 (12)0.0036 (10)
O60.0894 (19)0.0487 (13)0.0455 (13)0.0123 (13)0.0048 (12)0.0221 (11)
C110.0252 (11)0.0260 (11)0.0195 (10)0.0006 (9)0.0044 (8)0.0025 (8)
C120.0239 (11)0.0214 (11)0.0242 (11)0.0001 (9)0.0047 (9)0.0014 (8)
C130.0406 (14)0.0230 (11)0.0279 (12)0.0002 (10)0.0061 (10)0.0032 (9)
C140.0423 (15)0.0183 (11)0.0409 (14)0.0006 (10)0.0077 (11)0.0026 (10)
C150.0334 (13)0.0232 (12)0.0388 (13)0.0023 (10)0.0062 (10)0.0078 (10)
C160.0297 (12)0.0277 (12)0.0275 (11)0.0021 (10)0.0042 (9)0.0061 (9)
C170.0199 (10)0.0233 (11)0.0245 (10)0.0006 (8)0.0060 (8)0.0031 (8)
C180.0225 (11)0.0290 (12)0.0207 (10)0.0019 (9)0.0053 (8)0.0003 (8)
C190.0188 (10)0.0242 (11)0.0260 (11)0.0005 (8)0.0071 (8)0.0003 (9)
C200.0249 (11)0.0286 (12)0.0300 (12)0.0002 (9)0.0086 (9)0.0047 (10)
C210.0301 (13)0.0227 (11)0.0465 (15)0.0021 (10)0.0146 (11)0.0055 (10)
C220.0309 (13)0.0219 (11)0.0443 (14)0.0046 (10)0.0103 (11)0.0073 (10)
C230.0274 (12)0.0252 (12)0.0319 (12)0.0020 (9)0.0056 (10)0.0057 (9)
C240.0197 (10)0.0216 (11)0.0267 (11)0.0000 (8)0.0061 (8)0.0019 (8)
Br10.05475 (19)0.03823 (16)0.02111 (13)0.01206 (12)0.00313 (10)0.00126 (10)
Geometric parameters (Å, º) top
C1—C61.382 (4)C12—C171.438 (3)
C1—C21.385 (3)C13—C141.359 (3)
C1—N11.477 (3)C13—H130.95
C2—C31.376 (3)C14—C151.413 (4)
C2—H20.95C14—H140.95
C3—C41.381 (3)C15—C161.358 (4)
C3—N21.480 (3)C15—H150.95
C4—C51.376 (3)C16—C171.426 (3)
C4—H40.95C16—H160.95
C5—C61.388 (3)C17—C181.391 (3)
C5—N31.479 (3)C18—C191.396 (3)
C6—H60.95C18—H180.95
N1—O21.209 (3)C19—C201.423 (3)
N1—O11.221 (3)C19—C241.439 (3)
N2—O41.210 (3)C20—C211.362 (4)
N2—O31.222 (3)C20—H200.95
N3—O51.208 (3)C21—C221.409 (4)
N3—O61.209 (3)C21—H210.95
C11—C241.400 (3)C22—C231.358 (4)
C11—C121.405 (3)C22—H220.95
C11—Br11.908 (2)C23—C241.430 (3)
C12—C131.426 (3)C23—H230.95
C6—C1—C2123.2 (2)C12—C13—H13119.6
C6—C1—N1118.6 (2)C13—C14—C15121.3 (2)
C2—C1—N1118.1 (2)C13—C14—H14119.4
C3—C2—C1116.8 (2)C15—C14—H14119.4
C3—C2—H2121.6C16—C15—C14119.9 (2)
C1—C2—H2121.6C16—C15—H15120
C2—C3—C4123.3 (2)C14—C15—H15120
C2—C3—N2118.8 (2)C15—C16—C17121.1 (2)
C4—C3—N2117.9 (2)C15—C16—H16119.4
C5—C4—C3117.0 (2)C17—C16—H16119.4
C5—C4—H4121.5C18—C17—C16121.6 (2)
C3—C4—H4121.5C18—C17—C12119.6 (2)
C4—C5—C6123.2 (2)C16—C17—C12118.8 (2)
C4—C5—N3118.2 (2)C17—C18—C19122.1 (2)
C6—C5—N3118.6 (2)C17—C18—H18119
C1—C6—C5116.4 (2)C19—C18—H18119
C1—C6—H6121.8C18—C19—C20121.5 (2)
C5—C6—H6121.8C18—C19—C24119.8 (2)
O2—N1—O1125.3 (2)C20—C19—C24118.8 (2)
O2—N1—C1117.7 (2)C21—C20—C19121.3 (2)
O1—N1—C1117.0 (2)C21—C20—H20119.4
O4—N2—O3125.0 (2)C19—C20—H20119.4
O4—N2—C3117.4 (2)C20—C21—C22119.8 (2)
O3—N2—C3117.6 (2)C20—C21—H21120.1
O5—N3—O6124.3 (2)C22—C21—H21120.1
O5—N3—C5118.4 (2)C23—C22—C21121.4 (2)
O6—N3—C5117.2 (2)C23—C22—H22119.3
C24—C11—C12123.9 (2)C21—C22—H22119.3
C24—C11—Br1118.43 (16)C22—C23—C24120.8 (2)
C12—C11—Br1117.69 (17)C22—C23—H23119.6
C11—C12—C13124.5 (2)C24—C23—H23119.6
C11—C12—C17117.4 (2)C11—C24—C23124.9 (2)
C13—C12—C17118.0 (2)C11—C24—C19117.23 (19)
C14—C13—C12120.8 (2)C23—C24—C19117.9 (2)
C14—C13—H13119.6
C6—C1—C2—C31.8 (4)C17—C12—C13—C140.2 (4)
N1—C1—C2—C3179.2 (2)C12—C13—C14—C150.6 (4)
C1—C2—C3—C40.9 (3)C13—C14—C15—C160.6 (4)
C1—C2—C3—N2179.4 (2)C14—C15—C16—C170.4 (4)
C2—C3—C4—C50.3 (4)C15—C16—C17—C18177.7 (2)
N2—C3—C4—C5179.4 (2)C15—C16—C17—C121.2 (4)
C3—C4—C5—C60.8 (4)C11—C12—C17—C181.3 (3)
C3—C4—C5—N3178.7 (2)C13—C12—C17—C18177.8 (2)
C2—C1—C6—C51.3 (4)C11—C12—C17—C16179.7 (2)
N1—C1—C6—C5179.6 (2)C13—C12—C17—C161.2 (3)
C4—C5—C6—C10.0 (4)C16—C17—C18—C19179.8 (2)
N3—C5—C6—C1179.5 (2)C12—C17—C18—C190.8 (3)
C6—C1—N1—O2178.3 (2)C17—C18—C19—C20179.7 (2)
C2—C1—N1—O22.6 (3)C17—C18—C19—C240.4 (3)
C6—C1—N1—O10.8 (3)C18—C19—C20—C21178.8 (2)
C2—C1—N1—O1178.3 (2)C24—C19—C20—C211.0 (3)
C2—C3—N2—O4179.7 (2)C19—C20—C21—C220.1 (4)
C4—C3—N2—O40.6 (3)C20—C21—C22—C231.1 (4)
C2—C3—N2—O30.8 (3)C21—C22—C23—C240.8 (4)
C4—C3—N2—O3179.0 (2)C12—C11—C24—C23179.0 (2)
C4—C5—N3—O59.2 (4)Br1—C11—C24—C231.9 (3)
C6—C5—N3—O5171.2 (3)C12—C11—C24—C190.7 (3)
C4—C5—N3—O6169.6 (3)Br1—C11—C24—C19178.46 (16)
C6—C5—N3—O69.9 (4)C22—C23—C24—C11179.9 (2)
C24—C11—C12—C13178.5 (2)C22—C23—C24—C190.5 (3)
Br1—C11—C12—C130.6 (3)C18—C19—C24—C111.2 (3)
C24—C11—C12—C170.6 (3)C20—C19—C24—C11179.0 (2)
Br1—C11—C12—C17179.70 (16)C18—C19—C24—C23178.5 (2)
C11—C12—C13—C14179.3 (2)C20—C19—C24—C231.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O6i0.952.53.287 (3)140
C6—H6···O5ii0.952.683.593 (3)162
C14—H14···O4iii0.952.573.255 (3)129
C21—H21···O1iv0.952.653.364 (3)132
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y1, z.
1,3,5-Trinitrobenzene–2-{(E)-[4-(dimethylamino)phenyl]diazenyl}benzoic acid (1/1) (III) top
Crystal data top
C15H15N3O2·C6H3N3O6Z = 2
Mr = 482.41F(000) = 500
Triclinic, P1Dx = 1.518 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.550 (3) ÅCell parameters from 9824 reflections
b = 10.437 (3) Åθ = 3.1–28.2°
c = 13.072 (5) ŵ = 0.12 mm1
α = 110.689 (10)°T = 173 K
β = 103.510 (12)°Cuboid, red
γ = 90.730 (12)°0.29 × 0.13 × 0.12 mm
V = 1055.2 (7) Å3
Data collection top
Bruker D8 Venture Photon CCD area detector
diffractometer
3262 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ω scansθmax = 28.0°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.9, Tmax = 0.95k = 1313
39527 measured reflectionsl = 1717
5072 independent reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.078H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.249 w = 1/[σ2(Fo2) + (0.1346P)2 + 0.8758P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
5072 reflectionsΔρmax = 0.49 e Å3
322 parametersΔρmin = 0.43 e Å3
0 restraints
Special details top

Experimental. (SADABS; Sheldrick, 1996)

Geometry. All standard uncertainties (s.u.) (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u. are taken into account individually in the estimation of s.u. in distances, angles and torsion angles; correlations between s.u. in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u. is used for estimating s.u. involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3627 (3)0.4196 (3)0.8376 (2)0.0274 (6)
C20.4468 (3)0.3469 (3)0.7610 (2)0.0265 (6)
H20.496730.2679510.766490.032*
C30.4549 (3)0.3944 (3)0.6758 (2)0.0266 (6)
C40.3817 (3)0.5079 (3)0.6651 (2)0.0279 (6)
H40.3864760.5376510.6050260.033*
C50.3010 (4)0.5763 (3)0.7456 (3)0.0287 (6)
C60.2887 (3)0.5341 (3)0.8327 (2)0.0284 (6)
H60.2317230.5820360.886680.034*
N10.3560 (3)0.3737 (3)0.9312 (2)0.0324 (6)
N20.5442 (3)0.3204 (3)0.5938 (2)0.0305 (6)
N30.2291 (3)0.7015 (3)0.7399 (2)0.0367 (6)
O10.2796 (3)0.4374 (3)0.9979 (2)0.0475 (6)
O20.4303 (3)0.2766 (3)0.93921 (19)0.0437 (6)
O30.6018 (3)0.2169 (2)0.6015 (2)0.0405 (6)
O40.5548 (3)0.3668 (3)0.5212 (2)0.0435 (6)
O50.2266 (3)0.7301 (3)0.6567 (2)0.0485 (7)
O60.1772 (3)0.7707 (3)0.8201 (2)0.0507 (7)
C110.1578 (3)0.1335 (3)0.5551 (2)0.0255 (6)
C120.1935 (4)0.0433 (3)0.6139 (2)0.0272 (6)
H12A0.2581460.0288520.5885790.033*
C130.1372 (3)0.0571 (3)0.7067 (2)0.0278 (6)
H130.1637170.0048670.7451810.033*
C140.0402 (3)0.1627 (3)0.7454 (2)0.0262 (6)
C150.0005 (3)0.2516 (3)0.6840 (3)0.0293 (6)
H150.0682930.321880.7074510.035*
C160.0572 (3)0.2365 (3)0.5914 (3)0.0283 (6)
H160.0287850.2965260.5512940.034*
C170.0277 (4)0.0891 (4)0.9028 (3)0.0388 (8)
H17A0.0127450.0061560.8529590.058*
H17B0.0222330.1160760.9666140.058*
H17C0.1453830.0962730.931180.058*
C180.1074 (5)0.2903 (4)0.8855 (3)0.0444 (9)
H18A0.1168740.3516730.8428310.067*
H18B0.0536110.3425230.9650880.067*
H18C0.2154790.2513830.879650.067*
C190.2781 (3)0.1679 (3)0.3235 (2)0.0265 (6)
C200.3656 (4)0.0550 (3)0.2908 (3)0.0336 (7)
H200.3801190.0056910.3311850.04*
C210.4310 (4)0.0317 (3)0.1995 (3)0.0378 (7)
H210.4902570.0453470.1772990.045*
C220.4111 (4)0.1198 (3)0.1398 (3)0.0347 (7)
H220.4553780.102060.0765070.042*
C230.3273 (4)0.2324 (3)0.1724 (2)0.0315 (7)
H230.3141850.2924070.1313610.038*
C240.2613 (3)0.2597 (3)0.2650 (2)0.0259 (6)
C250.1757 (4)0.3865 (3)0.2948 (3)0.0338 (7)
N110.2263 (3)0.1105 (2)0.4652 (2)0.0280 (6)
N120.2057 (3)0.1977 (3)0.4154 (2)0.0282 (6)
N130.0133 (3)0.1802 (3)0.8396 (2)0.0343 (6)
O110.1681 (4)0.4628 (3)0.2426 (2)0.0520 (7)
O120.1077 (3)0.4150 (2)0.3810 (2)0.0395 (6)
H120.130 (6)0.347 (6)0.413 (5)0.096 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0319 (15)0.0312 (16)0.0233 (14)0.0012 (12)0.0082 (12)0.0144 (12)
C20.0295 (15)0.0266 (15)0.0271 (14)0.0022 (11)0.0080 (12)0.0138 (11)
C30.0283 (15)0.0286 (15)0.0275 (14)0.0014 (11)0.0117 (12)0.0130 (12)
C40.0310 (15)0.0302 (16)0.0273 (14)0.0010 (12)0.0080 (12)0.0162 (12)
C50.0340 (16)0.0247 (15)0.0322 (15)0.0045 (12)0.0108 (12)0.0147 (12)
C60.0308 (15)0.0286 (16)0.0284 (15)0.0018 (12)0.0111 (12)0.0115 (12)
N10.0394 (15)0.0364 (15)0.0263 (13)0.0010 (11)0.0120 (11)0.0150 (11)
N20.0340 (14)0.0340 (14)0.0290 (13)0.0028 (11)0.0128 (11)0.0151 (11)
N30.0400 (15)0.0311 (15)0.0463 (16)0.0088 (11)0.0155 (13)0.0197 (12)
O10.0657 (17)0.0558 (16)0.0391 (13)0.0174 (12)0.0322 (12)0.0264 (11)
O20.0643 (16)0.0442 (14)0.0379 (13)0.0172 (12)0.0205 (12)0.0283 (11)
O30.0502 (14)0.0396 (13)0.0461 (14)0.0167 (11)0.0266 (11)0.0232 (11)
O40.0583 (16)0.0514 (15)0.0398 (13)0.0125 (11)0.0292 (12)0.0285 (11)
O50.0607 (16)0.0482 (15)0.0630 (17)0.0212 (12)0.0295 (13)0.0424 (13)
O60.0681 (18)0.0384 (14)0.0545 (16)0.0222 (12)0.0277 (13)0.0194 (12)
C110.0235 (14)0.0251 (14)0.0304 (15)0.0009 (11)0.0062 (11)0.0138 (11)
C120.0304 (15)0.0251 (15)0.0286 (15)0.0056 (11)0.0074 (12)0.0129 (11)
C130.0329 (16)0.0257 (15)0.0289 (15)0.0065 (12)0.0069 (12)0.0154 (12)
C140.0245 (14)0.0278 (15)0.0284 (14)0.0001 (11)0.0056 (11)0.0134 (12)
C150.0269 (15)0.0301 (16)0.0361 (16)0.0075 (12)0.0095 (12)0.0173 (13)
C160.0280 (15)0.0289 (15)0.0332 (15)0.0029 (11)0.0062 (12)0.0185 (12)
C170.049 (2)0.0442 (19)0.0345 (17)0.0110 (15)0.0156 (15)0.0247 (15)
C180.054 (2)0.047 (2)0.048 (2)0.0202 (16)0.0299 (17)0.0257 (16)
C190.0272 (15)0.0297 (15)0.0255 (14)0.0022 (11)0.0074 (11)0.0130 (11)
C200.0400 (18)0.0306 (16)0.0373 (17)0.0089 (13)0.0128 (14)0.0188 (13)
C210.0437 (19)0.0353 (18)0.0395 (18)0.0131 (14)0.0151 (15)0.0163 (14)
C220.0404 (18)0.0392 (18)0.0294 (15)0.0066 (14)0.0161 (13)0.0135 (13)
C230.0387 (17)0.0324 (17)0.0285 (15)0.0046 (13)0.0106 (13)0.0159 (12)
C240.0310 (15)0.0255 (15)0.0236 (14)0.0031 (11)0.0086 (11)0.0110 (11)
C250.0413 (18)0.0328 (17)0.0356 (16)0.0088 (13)0.0156 (14)0.0186 (13)
N110.0310 (13)0.0289 (13)0.0284 (12)0.0023 (10)0.0077 (10)0.0155 (10)
N120.0303 (13)0.0280 (13)0.0320 (13)0.0039 (10)0.0104 (10)0.0162 (10)
N130.0427 (15)0.0367 (15)0.0351 (14)0.0125 (12)0.0185 (12)0.0214 (12)
O110.0814 (19)0.0462 (15)0.0579 (16)0.0309 (13)0.0425 (14)0.0375 (13)
O120.0535 (15)0.0356 (13)0.0446 (14)0.0169 (10)0.0292 (11)0.0218 (11)
Geometric parameters (Å, º) top
C1—C61.374 (4)C15—C161.371 (4)
C1—C21.382 (4)C15—H150.95
C1—N11.476 (4)C16—H160.95
C2—C31.384 (4)C17—N131.461 (4)
C2—H20.95C17—H17A0.98
C3—C41.382 (4)C17—H17B0.98
C3—N21.463 (4)C17—H17C0.98
C4—C51.383 (4)C18—N131.446 (4)
C4—H40.95C18—H18A0.98
C5—C61.383 (4)C18—H18B0.98
C5—N31.469 (4)C18—H18C0.98
C6—H60.95C19—C201.396 (4)
N1—O11.223 (4)C19—C241.412 (4)
N1—O21.225 (4)C19—N121.418 (4)
N2—O31.219 (3)C20—C211.380 (5)
N2—O41.227 (3)C20—H200.95
N3—O51.221 (4)C21—C221.390 (5)
N3—O61.228 (4)C21—H210.95
C11—N111.381 (4)C22—C231.374 (4)
C11—C161.406 (4)C22—H220.95
C11—C121.406 (4)C23—C241.395 (4)
C12—C131.370 (4)C23—H230.95
C12—H12A0.95C24—C251.494 (4)
C13—C141.408 (4)C25—O111.212 (4)
C13—H130.95C25—O121.331 (4)
C14—N131.366 (4)N11—N121.285 (3)
C14—C151.425 (4)O12—H120.95 (6)
C6—C1—C2123.5 (3)C15—C16—C11120.9 (3)
C6—C1—N1118.4 (3)C15—C16—H16119.6
C2—C1—N1118.1 (3)C11—C16—H16119.6
C1—C2—C3116.9 (3)N13—C17—H17A109.5
C1—C2—H2121.5N13—C17—H17B109.5
C3—C2—H2121.5H17A—C17—H17B109.5
C4—C3—C2122.6 (3)N13—C17—H17C109.5
C4—C3—N2119.1 (2)H17A—C17—H17C109.5
C2—C3—N2118.3 (3)H17B—C17—H17C109.5
C3—C4—C5117.2 (3)N13—C18—H18A109.5
C3—C4—H4121.4N13—C18—H18B109.5
C5—C4—H4121.4H18A—C18—H18B109.5
C6—C5—C4122.9 (3)N13—C18—H18C109.5
C6—C5—N3118.6 (3)H18A—C18—H18C109.5
C4—C5—N3118.5 (3)H18B—C18—H18C109.5
C1—C6—C5116.9 (3)C20—C19—C24119.7 (3)
C1—C6—H6121.6C20—C19—N12123.1 (3)
C5—C6—H6121.6C24—C19—N12117.3 (2)
O1—N1—O2124.0 (3)C21—C20—C19119.8 (3)
O1—N1—C1117.8 (3)C21—C20—H20120.1
O2—N1—C1118.2 (3)C19—C20—H20120.1
O3—N2—O4124.5 (3)C20—C21—C22120.8 (3)
O3—N2—C3118.1 (2)C20—C21—H21119.6
O4—N2—C3117.3 (3)C22—C21—H21119.6
O5—N3—O6124.7 (3)C23—C22—C21120.0 (3)
O5—N3—C5117.9 (3)C23—C22—H22120
O6—N3—C5117.3 (3)C21—C22—H22120
N11—C11—C16126.2 (3)C22—C23—C24120.7 (3)
N11—C11—C12115.5 (3)C22—C23—H23119.7
C16—C11—C12118.3 (3)C24—C23—H23119.7
C13—C12—C11121.6 (3)C23—C24—C19119.1 (3)
C13—C12—H12A119.2C23—C24—C25116.4 (3)
C11—C12—H12A119.2C19—C24—C25124.5 (3)
C12—C13—C14120.3 (3)O11—C25—O12120.1 (3)
C12—C13—H13119.9O11—C25—C24121.4 (3)
C14—C13—H13119.9O12—C25—C24118.4 (3)
N13—C14—C13121.1 (3)N12—N11—C11116.7 (2)
N13—C14—C15120.6 (3)N11—N12—C19114.0 (2)
C13—C14—C15118.3 (3)C14—N13—C18123.2 (3)
C16—C15—C14120.6 (3)C14—N13—C17120.9 (3)
C16—C15—H15119.7C18—N13—C17115.9 (3)
C14—C15—H15119.7C25—O12—H12108 (3)
C6—C1—C2—C30.0 (4)N13—C14—C15—C16178.1 (3)
N1—C1—C2—C3178.3 (3)C13—C14—C15—C161.7 (4)
C1—C2—C3—C40.8 (4)C14—C15—C16—C110.1 (4)
C1—C2—C3—N2179.5 (2)N11—C11—C16—C15178.3 (3)
C2—C3—C4—C51.5 (4)C12—C11—C16—C152.1 (4)
N2—C3—C4—C5178.9 (3)C24—C19—C20—C211.8 (5)
C3—C4—C5—C61.4 (4)N12—C19—C20—C21179.2 (3)
C3—C4—C5—N3176.9 (3)C19—C20—C21—C220.1 (5)
C2—C1—C6—C50.0 (4)C20—C21—C22—C230.8 (5)
N1—C1—C6—C5178.4 (3)C21—C22—C23—C240.1 (5)
C4—C5—C6—C10.7 (4)C22—C23—C24—C191.6 (4)
N3—C5—C6—C1177.6 (3)C22—C23—C24—C25178.7 (3)
C6—C1—N1—O12.5 (4)C20—C19—C24—C232.5 (4)
C2—C1—N1—O1179.1 (3)N12—C19—C24—C23178.5 (3)
C6—C1—N1—O2175.7 (3)C20—C19—C24—C25177.7 (3)
C2—C1—N1—O22.7 (4)N12—C19—C24—C251.3 (4)
C4—C3—N2—O3176.7 (3)C23—C24—C25—O111.7 (5)
C2—C3—N2—O32.9 (4)C19—C24—C25—O11178.5 (3)
C4—C3—N2—O42.8 (4)C23—C24—C25—O12178.5 (3)
C2—C3—N2—O4177.6 (3)C19—C24—C25—O121.2 (5)
C6—C5—N3—O5172.8 (3)C16—C11—N11—N125.5 (4)
C4—C5—N3—O58.8 (4)C12—C11—N11—N12174.9 (2)
C6—C5—N3—O67.8 (4)C11—N11—N12—C19179.7 (2)
C4—C5—N3—O6170.5 (3)C20—C19—N12—N110.7 (4)
N11—C11—C12—C13178.1 (3)C24—C19—N12—N11179.7 (2)
C16—C11—C12—C132.3 (4)C13—C14—N13—C18177.4 (3)
C11—C12—C13—C140.4 (4)C15—C14—N13—C182.4 (5)
C12—C13—C14—N13178.2 (3)C13—C14—N13—C170.4 (4)
C12—C13—C14—C151.6 (4)C15—C14—N13—C17179.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O4i0.952.353.285 (4)169
C15—H15···O11ii0.952.343.254 (4)161
C18—H18A···O11ii0.982.553.519 (4)170
C20—H20···O3iii0.952.643.574 (4)167
O12—H12···N120.95 (6)1.70 (6)2.577 (3)153 (5)
C21—H21···O2iii0.952.563.469 (4)161
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y, z+1.
1,3,5-Trinitrobenzene–1-naphthoic acid–2-amino-5-nitropyridine (1/1/1) (IV) top
Crystal data top
C6H3N3O6·C11H8O2·C5H5N3O2Z = 2
Mr = 524.41F(000) = 540
Triclinic, P1Dx = 1.571 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5365 (15) ÅCell parameters from 8623 reflections
b = 7.9003 (16) Åθ = 3.1–28.3°
c = 19.153 (4) ŵ = 0.13 mm1
α = 97.580 (7)°T = 173 K
β = 94.667 (6)°Plate, brown
γ = 99.547 (7)°0.63 × 0.33 × 0.06 mm
V = 1108.5 (4) Å3
Data collection top
Bruker D8 Venture Photon CCD area detector
diffractometer
3368 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 25.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.9, Tmax = 0.95k = 98
12982 measured reflectionsl = 2323
3988 independent reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.072H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.168 w = 1/[σ2(Fo2) + 2.9593P]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max < 0.001
3988 reflectionsΔρmax = 0.32 e Å3
355 parametersΔρmin = 0.36 e Å3
0 restraints
Special details top

Experimental. (SADABS; Sheldrick, 1996)

Geometry. All standard uncertainties (s.u.) (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u. are taken into account individually in the estimation of s.u. in distances, angles and torsion angles; correlations between s.u. in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u. is used for estimating s.u. involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3489 (5)0.8531 (5)0.28180 (19)0.0286 (8)
C20.5027 (5)0.7901 (5)0.2644 (2)0.0305 (8)
H20.5923980.7748780.2996620.037*
C30.5190 (5)0.7506 (5)0.1933 (2)0.0321 (9)
C40.3924 (5)0.7760 (5)0.1413 (2)0.0337 (9)
H40.4062940.7475250.0925260.04*
C50.2448 (5)0.8441 (5)0.1624 (2)0.0309 (8)
C60.2177 (5)0.8818 (5)0.23294 (19)0.0287 (8)
H60.1137330.9254190.2468430.034*
N10.3220 (5)0.8876 (4)0.35735 (17)0.0340 (8)
N20.6777 (5)0.6813 (5)0.1725 (2)0.0445 (9)
N30.1080 (5)0.8742 (5)0.10842 (18)0.0416 (9)
O10.1697 (4)0.8928 (4)0.37245 (15)0.0441 (7)
O20.4547 (4)0.9063 (5)0.40103 (15)0.0521 (9)
O30.7923 (4)0.6648 (5)0.2201 (2)0.0562 (9)
O40.6891 (5)0.6423 (5)0.10927 (19)0.0617 (10)
O50.1245 (5)0.8221 (6)0.04677 (17)0.0680 (11)
O60.0122 (4)0.9495 (5)0.12813 (17)0.0520 (8)
C110.2801 (5)0.3592 (5)0.23195 (19)0.0283 (8)
C120.1324 (5)0.4164 (5)0.2022 (2)0.0339 (9)
H120.05570.4665510.2326610.041*
C130.0906 (6)0.4036 (6)0.1289 (2)0.0413 (10)
H130.0133420.4424950.1099790.05*
C140.2039 (6)0.3333 (6)0.0846 (2)0.0423 (11)
H140.1764840.3225850.0347870.051*
C150.3602 (5)0.2768 (5)0.11240 (19)0.0333 (9)
C160.4790 (6)0.2077 (6)0.0674 (2)0.0427 (11)
H160.4514170.1963790.0175720.051*
C170.6309 (6)0.1573 (6)0.0937 (2)0.0465 (11)
H170.7096030.1129820.062540.056*
C180.6715 (5)0.1709 (5)0.1671 (2)0.0370 (10)
H180.7786090.1360360.1853560.044*
C190.5604 (5)0.2332 (5)0.2127 (2)0.0309 (8)
H190.5903960.2400160.2622660.037*
C200.3986 (5)0.2887 (5)0.18715 (19)0.0296 (8)
C210.3071 (5)0.3680 (5)0.31063 (19)0.0293 (8)
O70.2603 (4)0.5052 (4)0.34527 (15)0.0370 (7)
O80.3642 (4)0.2557 (4)0.33988 (14)0.0385 (7)
H5A0.309 (7)0.226 (7)0.440 (3)0.058 (15)*
H5B0.256 (5)0.144 (6)0.506 (2)0.030 (11)*
H70.270 (7)0.503 (7)0.395 (3)0.063 (15)*
C220.2465 (5)0.3802 (5)0.51944 (18)0.0265 (8)
C230.1956 (5)0.3906 (5)0.58930 (19)0.0296 (8)
H230.1831910.2910920.6126650.036*
C240.1651 (5)0.5429 (5)0.62225 (19)0.0309 (9)
H240.1326390.5532610.6693350.037*
C250.1822 (5)0.6859 (5)0.58541 (19)0.0272 (8)
C260.2293 (5)0.6680 (5)0.51770 (19)0.0295 (8)
H260.2400270.7661880.4935430.035*
N40.2607 (4)0.5197 (4)0.48431 (15)0.0290 (7)
N50.2777 (5)0.2340 (4)0.48463 (19)0.0353 (8)
N60.1470 (4)0.8518 (4)0.61748 (17)0.0325 (7)
O90.1578 (4)0.9701 (4)0.58321 (17)0.0439 (7)
O100.1098 (5)0.8655 (4)0.67946 (15)0.0508 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0303 (19)0.025 (2)0.0300 (19)0.0012 (15)0.0051 (15)0.0064 (15)
C20.0284 (19)0.026 (2)0.038 (2)0.0046 (16)0.0043 (16)0.0101 (16)
C30.0267 (19)0.025 (2)0.045 (2)0.0021 (16)0.0119 (17)0.0048 (17)
C40.034 (2)0.031 (2)0.034 (2)0.0036 (17)0.0090 (16)0.0040 (17)
C50.0273 (19)0.030 (2)0.033 (2)0.0025 (16)0.0025 (15)0.0057 (16)
C60.0250 (18)0.0252 (19)0.036 (2)0.0028 (15)0.0065 (15)0.0047 (16)
N10.042 (2)0.0284 (18)0.0328 (18)0.0076 (15)0.0059 (15)0.0074 (14)
N20.035 (2)0.037 (2)0.064 (3)0.0037 (16)0.0163 (18)0.0109 (19)
N30.037 (2)0.050 (2)0.034 (2)0.0059 (17)0.0021 (15)0.0095 (17)
O10.0461 (18)0.052 (2)0.0390 (16)0.0127 (15)0.0175 (14)0.0090 (14)
O20.0512 (19)0.069 (2)0.0340 (16)0.0103 (17)0.0051 (14)0.0065 (15)
O30.0378 (18)0.056 (2)0.083 (3)0.0206 (15)0.0153 (17)0.0201 (19)
O40.052 (2)0.068 (3)0.064 (2)0.0079 (18)0.0286 (17)0.0023 (19)
O50.058 (2)0.107 (3)0.0313 (18)0.004 (2)0.0025 (15)0.0035 (18)
O60.0405 (18)0.066 (2)0.0508 (19)0.0108 (16)0.0000 (15)0.0138 (17)
C110.0286 (19)0.024 (2)0.0307 (19)0.0004 (15)0.0074 (15)0.0017 (15)
C120.030 (2)0.033 (2)0.039 (2)0.0021 (17)0.0073 (17)0.0092 (17)
C130.033 (2)0.047 (3)0.040 (2)0.0048 (19)0.0023 (18)0.0105 (19)
C140.044 (2)0.046 (3)0.030 (2)0.006 (2)0.0002 (18)0.0029 (19)
C150.035 (2)0.034 (2)0.0260 (19)0.0062 (17)0.0064 (16)0.0008 (16)
C160.055 (3)0.041 (3)0.030 (2)0.002 (2)0.0142 (19)0.0001 (18)
C170.049 (3)0.044 (3)0.044 (2)0.000 (2)0.018 (2)0.001 (2)
C180.032 (2)0.035 (2)0.041 (2)0.0008 (17)0.0113 (17)0.0005 (18)
C190.0294 (19)0.026 (2)0.035 (2)0.0004 (16)0.0047 (16)0.0007 (16)
C200.032 (2)0.025 (2)0.0282 (19)0.0052 (16)0.0064 (15)0.0018 (15)
C210.0298 (19)0.027 (2)0.031 (2)0.0026 (16)0.0085 (15)0.0050 (17)
O70.0569 (18)0.0299 (16)0.0279 (15)0.0144 (13)0.0103 (13)0.0055 (12)
O80.0495 (17)0.0396 (17)0.0307 (14)0.0163 (14)0.0107 (12)0.0064 (13)
C220.0257 (18)0.026 (2)0.0279 (18)0.0047 (15)0.0000 (14)0.0045 (15)
C230.0316 (19)0.032 (2)0.0265 (19)0.0071 (16)0.0016 (15)0.0087 (16)
C240.033 (2)0.034 (2)0.0249 (18)0.0044 (17)0.0033 (15)0.0053 (16)
C250.0253 (18)0.028 (2)0.0278 (18)0.0037 (15)0.0020 (14)0.0022 (15)
C260.033 (2)0.023 (2)0.032 (2)0.0046 (16)0.0036 (16)0.0052 (16)
N40.0364 (17)0.0246 (17)0.0265 (16)0.0041 (13)0.0071 (13)0.0043 (13)
N50.057 (2)0.0199 (18)0.0309 (18)0.0082 (16)0.0117 (16)0.0045 (15)
N60.0298 (17)0.0297 (19)0.0373 (19)0.0056 (14)0.0041 (14)0.0019 (15)
O90.0505 (18)0.0277 (16)0.0605 (19)0.0122 (13)0.0210 (15)0.0159 (14)
O100.075 (2)0.051 (2)0.0318 (16)0.0285 (17)0.0119 (15)0.0012 (14)
Geometric parameters (Å, º) top
C1—C61.373 (5)C15—C201.425 (5)
C1—C21.382 (5)C16—C171.354 (7)
C1—N11.474 (5)C16—H160.95
C2—C31.376 (5)C17—C181.400 (6)
C2—H20.95C17—H170.95
C3—C41.380 (6)C18—C191.360 (5)
C3—N21.458 (5)C18—H180.95
C4—C51.380 (6)C19—C201.434 (6)
C4—H40.95C19—H190.95
C5—C61.383 (5)C21—O81.227 (5)
C5—N31.470 (5)C21—O71.309 (5)
C6—H60.95O7—H70.95 (5)
N1—O11.212 (4)C22—N51.321 (5)
N1—O21.227 (4)C22—N41.359 (5)
N2—O41.222 (5)C22—C231.418 (5)
N2—O31.240 (5)C23—C241.347 (6)
N3—O51.221 (5)C23—H230.95
N3—O61.222 (5)C24—C251.403 (5)
C11—C121.378 (5)C24—H240.95
C11—C201.417 (5)C25—C261.368 (5)
C11—C211.495 (5)C25—N61.447 (5)
C12—C131.400 (6)C26—N41.325 (5)
C12—H120.95C26—H260.95
C13—C141.380 (6)N5—H5A0.90 (5)
C13—H130.95N5—H5B0.86 (4)
C14—C151.416 (6)N6—O91.207 (4)
C14—H140.95N6—O101.237 (4)
C15—C161.416 (6)
C6—C1—C2124.0 (3)C17—C16—C15121.7 (4)
C6—C1—N1117.9 (3)C17—C16—H16119.2
C2—C1—N1118.1 (3)C15—C16—H16119.2
C3—C2—C1116.6 (4)C16—C17—C18119.7 (4)
C3—C2—H2121.7C16—C17—H17120.2
C1—C2—H2121.7C18—C17—H17120.2
C2—C3—C4122.5 (4)C19—C18—C17121.1 (4)
C2—C3—N2118.5 (4)C19—C18—H18119.4
C4—C3—N2119.0 (4)C17—C18—H18119.4
C5—C4—C3117.8 (4)C18—C19—C20121.0 (4)
C5—C4—H4121.1C18—C19—H19119.5
C3—C4—H4121.1C20—C19—H19119.5
C4—C5—C6122.5 (4)C11—C20—C15118.9 (4)
C4—C5—N3119.3 (3)C11—C20—C19123.7 (3)
C6—C5—N3118.2 (4)C15—C20—C19117.3 (4)
C1—C6—C5116.5 (4)O8—C21—O7123.2 (3)
C1—C6—H6121.7O8—C21—C11123.2 (4)
C5—C6—H6121.7O7—C21—C11113.5 (3)
O1—N1—O2124.1 (3)C21—O7—H7112 (3)
O1—N1—C1118.0 (3)N5—C22—N4116.8 (3)
O2—N1—C1117.9 (3)N5—C22—C23121.9 (4)
O4—N2—O3124.1 (4)N4—C22—C23121.3 (3)
O4—N2—C3118.1 (4)C24—C23—C22119.4 (4)
O3—N2—C3117.8 (4)C24—C23—H23120.3
O5—N3—O6124.9 (4)C22—C23—H23120.3
O5—N3—C5116.9 (4)C23—C24—C25118.4 (3)
O6—N3—C5118.1 (3)C23—C24—H24120.8
C12—C11—C20119.2 (3)C25—C24—H24120.8
C12—C11—C21118.9 (3)C26—C25—C24119.7 (4)
C20—C11—C21121.9 (3)C26—C25—N6119.4 (3)
C11—C12—C13122.8 (4)C24—C25—N6120.9 (3)
C11—C12—H12118.6N4—C26—C25122.9 (4)
C13—C12—H12118.6N4—C26—H26118.5
C14—C13—C12118.5 (4)C25—C26—H26118.5
C14—C13—H13120.7C26—N4—C22118.2 (3)
C12—C13—H13120.7C22—N5—H5A123 (3)
C13—C14—C15121.1 (4)C22—N5—H5B116 (3)
C13—C14—H14119.5H5A—N5—H5B121 (4)
C15—C14—H14119.5O9—N6—O10123.2 (3)
C14—C15—C16121.4 (4)O9—N6—C25118.9 (3)
C14—C15—C20119.4 (4)O10—N6—C25117.9 (3)
C16—C15—C20119.1 (4)
C6—C1—C2—C31.8 (6)C15—C16—C17—C181.0 (7)
N1—C1—C2—C3176.7 (3)C16—C17—C18—C190.3 (7)
C1—C2—C3—C41.7 (6)C17—C18—C19—C200.6 (6)
C1—C2—C3—N2179.1 (3)C12—C11—C20—C150.8 (5)
C2—C3—C4—C50.2 (6)C21—C11—C20—C15177.1 (3)
N2—C3—C4—C5179.1 (3)C12—C11—C20—C19177.0 (4)
C3—C4—C5—C62.1 (6)C21—C11—C20—C195.1 (5)
C3—C4—C5—N3179.5 (3)C14—C15—C20—C110.8 (5)
C2—C1—C6—C50.1 (6)C16—C15—C20—C11179.5 (3)
N1—C1—C6—C5178.4 (3)C14—C15—C20—C19178.8 (4)
C4—C5—C6—C11.9 (5)C16—C15—C20—C191.6 (5)
N3—C5—C6—C1179.6 (3)C18—C19—C20—C11178.2 (4)
C6—C1—N1—O119.8 (5)C18—C19—C20—C150.3 (5)
C2—C1—N1—O1158.8 (4)C12—C11—C21—O8142.1 (4)
C6—C1—N1—O2161.4 (4)C20—C11—C21—O835.8 (5)
C2—C1—N1—O220.0 (5)C12—C11—C21—O736.5 (5)
C2—C3—N2—O4178.1 (4)C20—C11—C21—O7145.6 (3)
C4—C3—N2—O42.6 (5)N5—C22—C23—C24179.8 (4)
C2—C3—N2—O31.5 (5)N4—C22—C23—C241.7 (5)
C4—C3—N2—O3177.8 (4)C22—C23—C24—C251.0 (5)
C4—C5—N3—O56.4 (5)C23—C24—C25—C260.1 (5)
C6—C5—N3—O5172.1 (4)C23—C24—C25—N6178.6 (3)
C4—C5—N3—O6173.2 (4)C24—C25—C26—N40.1 (6)
C6—C5—N3—O68.3 (5)N6—C25—C26—N4178.8 (3)
C20—C11—C12—C131.8 (6)C25—C26—N4—C220.5 (5)
C21—C11—C12—C13176.1 (4)N5—C22—N4—C26179.7 (3)
C11—C12—C13—C141.0 (6)C23—C22—N4—C261.5 (5)
C12—C13—C14—C150.7 (6)C26—C25—N6—O91.0 (5)
C13—C14—C15—C16178.7 (4)C24—C25—N6—O9177.7 (3)
C13—C14—C15—C201.6 (6)C26—C25—N6—O10178.0 (3)
C14—C15—C16—C17178.4 (4)C24—C25—N6—O103.4 (5)
C20—C15—C16—C171.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O80.90 (5)2.03 (5)2.919 (5)168 (5)
N5—H5B···O9i0.86 (4)2.24 (4)3.069 (5)161 (4)
O7—H7···N40.95 (5)1.71 (5)2.650 (4)171 (5)
C23—H23···O9i0.952.53.272 (5)139
C26—H26···O10.952.693.530 (5)147
C26—H26···O20.952.723.477 (5)138
Symmetry code: (i) x, y1, z.
Centroid distances (Å) between the trinitrobenzene and the ring centroids (Cg) of the aromatic polycyclics top
StructureDonorAcceptorCg···CgSymmetry operator
(I)C1–C6C11–C203.3745 (2)x, y, z
(II)C1–C6C11–C243.5173 (11)x, y, z
(III)C1–C6C11–C163.6587 (14)1 - x, 1 - y, 1 - z
(III)C1–C6C19–C244.6432 (18)x, y, z
(IV)C1–C6C11–C204.0417 (8)x, y + 1, z
Proportion (%) of intermolecular contacts between donor and acceptor molecules in the Hirshfeld fingerprint plots top
StructureC···CH···HC···H
(I)12.010.71.5
(II)12.66.60.9
(III)4.411.05.4
(IV)7.58.84.6
 

Funding information

This material is based upon work supported financially by the University of the Witwatersrand Friedel Sellschop Grant and the Mol­ecular Sciences Institute. Tania Hill thanks the University of the Witwatersrand Research Office for a postdoctoral fellowship. The National Research Foundation National Equipment Programme (UID: 78572) is thanked for financing the purchase of the single-crystal diffractometer. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and therefore the NRF does not accept any liability in regard thereto.

References

First citationAakeröy, C. B., Wijethunga, T. K. & Desper, J. (2015). Chem. Eur. J. 21, 11029–11037.  Web of Science PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrown, D. S., Wallwork, S. C. & Wilson, A. (1964). Acta Cryst. 17, 168–176.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2016). APEX3, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, P. Y., Zhang, L., Zhu, S. G., Cheng, G. B. & Li, N. R. (2017). J. Mol. Struct. 1128, 629–635.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, C. S. & Abel, J. E. (1972). Acta Cryst. B28, 193–201.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuo, C., Zhang, H., Wang, X., Liu, X. & Sun, J. (2013b). J. Mater. Sci. 48, 1351–1357.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuo, C., Zhang, H., Wang, X., Xu, J., Liu, Y., Liu, X., Huang, H. & Sun, J. (2013a). J. Mol. Struct. 1048, 267–273.  Web of Science CSD CrossRef CAS Google Scholar
First citationHerbstein, F. H. (2005). Crystalline molecular complexes and compounds: structures and principles. Oxford University Press.  Google Scholar
First citationHerbstein, F. H. & Kaftory, M. (1975). Acta Cryst. B31, 60–67.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHertel, E. & Romer, G. H. (1930). Z. Phys. Chem. B, 11, 87.  Google Scholar
First citationJetti, R. K., Boese, R., Thallapally, P. K. & Desiraju, G. R. (2003). Cryst. Growth Des. 3, 1033–1040.  Web of Science CSD CrossRef CAS Google Scholar
First citationLandenberger, K. B. & Matzger, A. J. (2010). Cryst. Growth Des. 10, 5341–5347.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationThallapally, P. K., Jetti, R. K., Katz, A. K., Carrell, H. L., Singh, K., Lahiri, K., Kotha, S., Boese, R. & Desiraju, G. R. (2004). Angew. Chem. Int. Ed. 43, 1149–1155.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds