research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and DFT study of the zwitterionic form of 3-{(E)-1-[(4-ethoxyphenyl)iminiumyl]ethyl}-6-methyl-2-oxo-2H-pyran-4-olate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Physicochimie Analytique et Cristallochimie de Matériaux Organométalliques et Biomoléculaires, Université de Constantine 1, 25000 Constantine, Algeria, bEcole Normale Supérieure de Constantine Assia Djebbar, Ville Universitaire Ali Mendjeli, Constantine 25000, Algeria, cLaboratoire de Chimie des Matériaux, Université de Constantine 1, 25000 Constantine, Algeria, dUniversité Bachire El Ibrahimi de Bordj Bou Arraridj, Algeria, and eInstitut Jean Lamour UMR 7198, Parc de Saurupt, CS 14234 F 54042 Nancy, France
*Correspondence e-mail: djedouani_amel@yahoo.fr

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 18 December 2017; accepted 15 January 2018; online 16 January 2018)

The title Schiff base compound, C16H17NO4, crystallizes as a zwitterion, with the phenolic H atom having been transferred to the imino group. The resulting iminium and hy­droxy groups are linked by an intra­molecular N—H⋯O hydrogen bond, enclosing an S(6) ring motif. The conformation about the C=N bond is E and the dihedral angle between the benzene and pyran rings is 70.49 (6)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular structure. There are also C—H⋯π inter­actions and offset ππ inter­actions, involving the pyran rings [inter­centroid distance = 3.4156 (8) Å], which consolidate the three-dimensional structure. Quantum chemical calculations of the mol­ecule are in good agreement with the solid state keto–amine (NH) form of the title compound.

1. Chemical context

Hy­droxy Schiff bases have been studied extensively for their biological, photochromic and thermochromic properties (Garnovskii et al., 1993[Garnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]; Hadjoudis et al., 2004[Hadjoudis, E., Rontoyianni, A., Ambroziak, K., Dziembowska, T. & Mavridis, I. M. (2004). J. Photochem. Photobiol. Chem. 162, 521-530.]). They can be used as potential materials for optical memory and switch devices (Zhao et al., 2007[Zhao, L., Hou, Q., Sui, D., Wang, Y. & Jiang, S. (2007). Spectrochim. Acta A, 67, 1120-1125.]). Proton transfer in these compounds forms the basis for an explanation of the mechanisms of various biological processes where proton transfer is the rate-determining step (Lussier et al., 1987[Lussier, L. S., Sandorfy, C., Le Thanh Hoa & Vocelle, D. (1987). J. Phys. Chem. 91, 2282-2287.]). In general, O-hy­droxy Schiff bases exhibit two possible tautomeric forms, the phenol–imine (or benzenoid) and keto–amine (or quinoid) forms. Depending on the tautomers, two types of intra­molecular hydrogen bonds are possible: O—H⋯N in benzenoid and N—H⋯O in quinoid tautomers. O-hy­droxy Schiff bases have been observed in the keto form, in the enol form or in an enol/keto mixture (Nazır et al., 2000[Nazır, H., Yıldız, M., Yılmaz, H., Tahir, M. N. & Ülkü, D. (2000). J. Mol. Struct. 524, 241-250.]; Antonov et al., 2000[Antonov, L., Fabian, W. M. F., Nedeltcheva, D. & Kamounah, F. S. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 1173-1179.]) due to the H-atom transfer. Another form of the Schiff base compounds is their zwitterionic form (Ogawa & Harada, 2003[Ogawa, K. & Harada, J. (2003). J. Mol. Struct. 647, 211-216.]). Zwitterions of Schiff bases have an ionic intra­molecular hydrogen bond (N+—H⋯O) and their N+—H bond lengths are longer than the normal bond length observed for neutral N—H bonds (0.87 Å). The mol­ecular structure of the title compound is similar to that of (E)-4-hy­droxy-3-[N-(4-hy­droxy­phen­yl)ethanimido­yl]-6-methyl-2H-pyran-2-one (Djedouani et al., 2015[Djedouani, A., Boufas, S., Cleymand, F., François, M. & Fleutot, S. (2015). Acta Cryst. E71, o564-o565.]), which also crystallizes as a zwitterion.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of title compound is shown in Fig. 1[link]. It crystallizes in the zwitterionic form, with the phenolic H atom having been transferred to the imino group. The H atom, H1N, was located in a difference-Fourier map and freely refined (N—H = 0.90 (2) Å). The resulting iminium and hy­droxy groups are linked by an intra­molecular N—H⋯O hydrogen bond forming an S(6) loop (Fig. 1[link] and Table 1[link]). The dihedral angle between the benzene (C9–C14) and pyran (O3/C2–C6) rings is 70.49 (6)°. The carbon–nitro­gen bond N1=C7 is 1.318 (2) Å, which agrees with values observed in related compounds (Girija & Begum, 2004[Girija, C. R. & Begum, N. S. (2004). Acta Cryst. E60, o535-o536.]; Girija et al., 2004[Girija, C. R., Begum, N. S., Sridhar, M. A., Lokanath, N. K. & Prasad, J. S. (2004). Acta Cryst. E60, o586-o588.]). It is slightly longer than a typical C=N bond [1.283 (4) Å; Bai & Jing, 2007[Bai, Z.-C. & Jing, Z.-L. (2007). Acta Cryst. E63, o3822.]], but much shorter than a C—N bond. The N1—C9 bond length is 1.436 (2) Å because of resonance. The carbon–carbon bond connecting the enol and imine groups exhibits inter­mediate distances between those of single and double bond, but being closer to the latter; C5—C7 = 1.427 (2) and C5—C6 = 1.443 (2) Å, reflecting the zwitterionic character of the title compound (Wojciechowski et al., 2003[Wojciechowski, G., Ratajczak-Sitarz, M., Katrusiak, A., Schilf, W., Przybylski, P. & Brzezinski, B. (2003). J. Mol. Struct. 650, 191-199.]). The C4—O1 bond length [1.259 (2) Å] is inter­mediate between single and double carbon-to-oxygen bond lengths (1.362 and 1.222 Å, respectively), whereas C6—O2 is 1.215 (2) Å.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C9–C14 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.90 (2) 1.74 (2) 2.5411 (15) 147 (2)
C1—H1B⋯O3i 0.98 2.57 3.4461 (18) 149
C8—H8B⋯O2ii 0.98 2.62 3.3478 (17) 132
C10—H10⋯O1iii 0.95 2.56 3.2035 (16) 125
C13—H13⋯O2iv 0.95 2.46 3.3950 (17) 170
C15—H15ACg1v 0.99 2.74 3.618 (2) 149
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+1, z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level, and the intra­molecular N—H⋯O hydrogen bond (see Table 1[link]) is shown as a dashed line.

The aromatic ring and de­hydro­acetic acid ring are in a trans position with respect to the C7=N1 bond, the dihedral angle between the two rings is 70.46 (9)° and the mol­ecular conformation is determined by the presence of the intra­molecular N+—H⋯O hydrogen bond (Fig. 1[link] and Table 1[link]), which generates an S(6) ring motif. Similar intra­molecular hydrogen bonds have been reported in other zwitterionic phenolates (Huang et al., 2006[Huang, L., Chen, D.-B., Qiu, D. & Zhao, B. (2006). Acta Cryst. E62, o5239-o5240.]; Temel et al., 2006[Temel, E., Albayrak, Ç., Büyükgüngör, O. & Odabaşoğlu, M. (2006). Acta Cryst. E62, o4484-o4486.]).

3. Supra­molecular features

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular structure (Fig. 2[link] and Table 1[link]), which is consolidated by C—H⋯π inter­actions (Table 1[link]) and offset ππ inter­actions. The latter involve symmetry-related pyran rings with a CgCgi distance of 3.416 (1) Å [Cg is the centroid of ring O3/C2–C6, inter­planar distance = 3.319 (1) Å, offset = 0.81 Å, symmetry code (i): −x + 1, y, −z + [{1\over 2}]].

[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]), and only the H atoms involved in hydrogen bonding have been included.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar structures revealed the presence of three zwitterionic compounds of inter­est, namely (E)-6- methyl-2-oxo-3-[1-(p-tolyl­iminio)eth­yl]-2H-pyran-4-olate (REZMAL; Djedouani et al., 2007[Djedouani, A., Bendaas, A., Boufas, S., Allain, M., Bouet, G. & Khan, M. (2007). Acta Cryst. E63, o1271-o1273.]) and 6-methyl-2-oxo-3-[1-(ureidoiminio)eth­yl]-2H-pyran-4-olate monohydrate (HOFPOI; Djedouani et al., 2008[Djedouani, A., Boufas, S., Allain, M., Bouet, G. & Khan, M. (2008). Acta Cryst. E64, o1785.]) and (E)-4-hy­droxy-3-[N-(4-hy­droxy­phen­yl)ethanimido­yl]-6-methyl-2H-pyran-2-one (CUGPAX; Djedouani et al., 2015[Djedouani, A., Boufas, S., Cleymand, F., François, M. & Fleutot, S. (2015). Acta Cryst. E71, o564-o565.]). The mol­ecular conformations of all three compounds are also determined by the presence of an intra­molecular charge-assisted N+—H⋯O hydrogen bond (see Fig. 1[link] and Table 1[link] for the title compound), which generates an S(6) ring motif. Two of these compounds, REZMAL and CUGPAX, have a benzene ring inclined to the pyran ring by 42.25 (10) and 53.31 (11)°, respectively. This is significantly different from the equivalent dihedral angle of 70.46 (9)° in the title compound, which has five hydrogen bonds, two from the eth­oxy group in the para position of the benzene and another from the benzene ring, which has increased the dihedral angle between the two rings. On the other hand, CUGPAX has three hydrogen bonds and only one single bond of the hy­droxy group in the para position of benzene ring, and the dihedral angle between the two rings is 53.31 (11)°. REZMAL shows only two hydrogen bonds, neither of which involve benzene ring, and the dihedral angle is 42.25 (10)°.

5. Density functional study – geometry optimization and mol­ecular orbital calculations

Geometry optimization and mol­ecular orbital calculations were carried out with the Guassian09 software package (Frisch et al., 2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]) and the Gaussview visualization program (Dennington et al., 2007[Dennington, R., Keith, T. & Millam, J. (2007). Gaussview4.1. Semichem Inc., Shawnee Mission, KS, USA.]; Rassolov et al., 1998[Rassolov, V. A., Pople, J. A., Ratner, M. A. & Windus, T. L. (1998). J. Chem. Phys. 109, 1223-1229.]), using the three-parameter hybrid function of Becke based on the correlation function (B3LYP) of Lee et al. (1998[Lee, C., Yang, W. & Parr, R. G. (1998). Phys. Rev. 37, 785-789.]) and Miehlich et al. (1989[Miehlich, B., Savin, A., Stoll, H. & Preuss, H. (1989). Chem. Phys. Lett. 157, 200-206.]), with the 6-311G, 6-311G(+) and 6-311G(++) basis sets. The bond lengths, bond angles corresponding to the optimized geometry obtained using the DFT/B3LY P method are given in Table 2[link]. The calculated C4—C5 bond distance is 1.447 Å correlates nicely with experimental value. The calculated bond lengths with B3LYP/6-311G(++) level are slightly shorter than the experimental values within 0.004–0.035 Å. The calculated bond angles C5—C4—O4 and C4—C5—C7 are close to 120° since atoms C4 and C5 have sp2 hybridization. In general, the calculated values are in good agreement with the experimental data.

Table 2
DFT and X-ray geometric parameters (Å, °) for the title compound

  B3LYP/6–311g(++) X-ray data
N1—C7 1.334 1.318 (2)
C5—C7 1.423 1.427 (2)
C5—C4 1.447 1.447 (2)
C4—O1 1.253 1.259 (2)
C7—C8 1.460 1.495 (2)
     
H1N—N1—C7 112.29 112.0 (11)
N1—C7—C5 118.07 118.27 (13)
C4—C5—C7 120.75 120.58 (12)
C5—C4—O4 123.27 123.19 (13)

The highest occupied mol­ecular orbitals (HOMO) and lowest unoccupied orbitals (LUMO) are named frontier orbitals (FMOs). The calculated values at the B3LYP/6-311G(++) level are presented in Table 3[link], and the nature of the frontier mol­ecular orbitals for the two possible tautomeric forms, the keto–amine (NH) and the phenol–imine (OH) forms of zwitterionic forms of Schiff bases, are plotted in Fig. 3[link]. The band-gap energy values calculated for keto–amine (NH) forms were found to be 4.297 eV, which is a large HOMO–LUMO energy gap, implying a higher mol­ecular stability than for the phenol–imine (OH) form, which has a smaller energy gap with the difference between the HOMO and LUMO being 3.791 eV. The HOMO–LUMO energy gap is very important for the chemical activity and explains the eventual charge-transfer inter­action within the mol­ecule. Clearly, the larger HOMO–LUMO gap calculated for the keto–amine (NH) form is in agreement with the stability of the mol­ecule in the solid state.

Table 3
Frontier mol­ecular orbital energies (eV): HOMO–LUMO gap of the keto–amine (NH) and phenol–imine (OH) forms of the title compound

Energy keto–amine (NH) form phenol–imine (OH) form
EHOMO 6.167 5.491
ELUMO 1.870 1.700
Egap 4.297 3.791
[Figure 3]
Figure 3
The frontier mol­ecular orbitals for the two possible tautomeric forms, the keto–amine (NH) and the phenol–imine (OH) forms, of the title Schiff base compound.

6. Synthesis and crystallization

The title compound was prepared according to a literature method (Djedouani et al., 2007[Djedouani, A., Bendaas, A., Boufas, S., Allain, M., Bouet, G. & Khan, M. (2007). Acta Cryst. E63, o1271-o1273.]). Colourless plate-like crystals were obtained by slow evaporation of a solution in ethanol.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The NH H atom was located in a difference-Fourier map and freely refined. The C-bound H atoms were included in calculated positions and treated as riding: C—H = 0.95–0.99 Å, with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 4
Experimental details

Crystal data
Chemical formula C16H17NO4
Mr 287.30
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 21.0983 (13), 7.7792 (5), 17.7036 (11)
β (°) 105.564 (2)
V3) 2799.1 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.18 × 0.08 × 0.03
 
Data collection
Diffractometer Bruker APEXII QUAZAR CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.596, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 17108, 2750, 2315
Rint 0.037
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.07
No. of reflections 2750
No. of parameters 197
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.21
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2016/6 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS2016/6 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016/6 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

3-{(E)-1-[(4-Ethoxyphenyl)iminiumyl]ethyl}-6-methyl-2-oxo-2H-pyran-4-olate top
Crystal data top
C16H17NO4F(000) = 1216
Mr = 287.30Dx = 1.364 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.0983 (13) ÅCell parameters from 18962 reflections
b = 7.7792 (5) Åθ = 2.0–27.5°
c = 17.7036 (11) ŵ = 0.10 mm1
β = 105.564 (2)°T = 100 K
V = 2799.1 (3) Å3Plate, colorless
Z = 80.18 × 0.08 × 0.03 mm
Data collection top
Bruker APEXII QUAZAR CCD
diffractometer
2750 independent reflections
Radiation source: ImuS2315 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
f\ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1626
Tmin = 0.596, Tmax = 0.746k = 99
17108 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: mixed
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0419P)2 + 2.3424P]
where P = (Fo2 + 2Fc2)/3
2750 reflections(Δ/σ)max < 0.001
197 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37595 (5)0.09851 (12)0.25430 (5)0.0178 (2)
O20.46409 (5)0.36094 (13)0.13692 (6)0.0223 (2)
O30.48126 (5)0.09177 (13)0.11188 (5)0.0203 (2)
O40.28470 (5)0.53164 (13)0.53959 (6)0.0195 (2)
N10.35473 (6)0.20560 (15)0.29392 (7)0.0167 (3)
H1N0.3533 (9)0.090 (2)0.2929 (10)0.033 (5)*
C10.51239 (8)0.1830 (2)0.07643 (9)0.0261 (4)
H1A0.5589740.1511150.0941540.039*
H1B0.4956750.1588240.0202570.039*
H1C0.5075650.3058450.0857970.039*
C20.47443 (7)0.08168 (19)0.12051 (8)0.0186 (3)
C30.43857 (7)0.14438 (18)0.16567 (8)0.0179 (3)
H30.4336010.2653320.1688070.021*
C40.40712 (6)0.03355 (17)0.20989 (8)0.0154 (3)
C50.41363 (6)0.14995 (17)0.20071 (7)0.0153 (3)
C60.45203 (6)0.21302 (18)0.15026 (8)0.0169 (3)
C70.38639 (6)0.26807 (18)0.24515 (8)0.0162 (3)
C80.39081 (7)0.45891 (18)0.23821 (8)0.0203 (3)
H8C0.3741240.4925410.1830880.031*
H8B0.4368060.4950220.2578270.031*
H8A0.3644020.5142940.2691720.031*
C90.33460 (7)0.29881 (17)0.35356 (8)0.0164 (3)
C100.26863 (7)0.30913 (17)0.35148 (8)0.0171 (3)
H100.2362280.2633530.3080900.020*
C110.24977 (7)0.38655 (17)0.41296 (8)0.0173 (3)
H110.2045610.3933670.4117880.021*
C120.29738 (7)0.45369 (17)0.47593 (8)0.0166 (3)
C130.36385 (7)0.44554 (18)0.47719 (8)0.0193 (3)
H130.3963000.4934370.5199460.023*
C140.38224 (7)0.36797 (18)0.41637 (8)0.0186 (3)
H140.4274170.3616990.4173160.022*
C150.21698 (7)0.56107 (18)0.53868 (8)0.0193 (3)
H15A0.1926130.4510010.5331170.023*
H15B0.1952760.6370690.4944380.023*
C160.21851 (7)0.64530 (19)0.61584 (9)0.0224 (3)
H16A0.2453760.7497600.6220670.034*
H16B0.2375200.5655990.6588180.034*
H16C0.1736130.6752730.6167960.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0187 (5)0.0183 (5)0.0179 (5)0.0034 (4)0.0075 (4)0.0023 (4)
O20.0232 (5)0.0233 (5)0.0203 (5)0.0055 (4)0.0056 (4)0.0058 (4)
O30.0226 (5)0.0243 (5)0.0155 (5)0.0066 (4)0.0077 (4)0.0002 (4)
O40.0167 (5)0.0222 (5)0.0200 (5)0.0015 (4)0.0058 (4)0.0013 (4)
N10.0170 (6)0.0156 (6)0.0179 (6)0.0009 (5)0.0052 (5)0.0022 (5)
C10.0239 (8)0.0343 (9)0.0214 (8)0.0039 (7)0.0083 (6)0.0058 (6)
C20.0168 (7)0.0232 (7)0.0133 (7)0.0027 (6)0.0003 (6)0.0006 (6)
C30.0180 (7)0.0186 (7)0.0155 (7)0.0022 (6)0.0017 (6)0.0012 (5)
C40.0116 (6)0.0202 (7)0.0121 (6)0.0029 (5)0.0008 (5)0.0018 (5)
C50.0125 (6)0.0188 (7)0.0122 (6)0.0023 (5)0.0008 (5)0.0024 (5)
C60.0139 (7)0.0232 (7)0.0108 (6)0.0028 (6)0.0016 (5)0.0022 (5)
C70.0118 (6)0.0199 (7)0.0135 (7)0.0020 (5)0.0022 (5)0.0035 (5)
C80.0221 (7)0.0183 (7)0.0197 (7)0.0007 (6)0.0040 (6)0.0036 (5)
C90.0183 (7)0.0137 (6)0.0175 (7)0.0006 (5)0.0056 (6)0.0039 (5)
C100.0170 (7)0.0148 (6)0.0175 (7)0.0012 (5)0.0012 (6)0.0031 (5)
C110.0146 (7)0.0164 (7)0.0209 (7)0.0020 (5)0.0045 (6)0.0038 (5)
C120.0199 (7)0.0141 (6)0.0166 (7)0.0022 (5)0.0063 (6)0.0026 (5)
C130.0170 (7)0.0197 (7)0.0198 (7)0.0002 (6)0.0024 (6)0.0001 (6)
C140.0137 (7)0.0213 (7)0.0210 (7)0.0010 (6)0.0048 (6)0.0030 (6)
C150.0165 (7)0.0189 (7)0.0238 (8)0.0021 (5)0.0079 (6)0.0037 (6)
C160.0221 (7)0.0211 (7)0.0266 (8)0.0021 (6)0.0112 (6)0.0024 (6)
Geometric parameters (Å, º) top
O1—C41.2585 (16)C8—H8C0.9800
O2—C61.2154 (17)C8—H8B0.9800
O3—C21.3698 (17)C8—H8A0.9800
O3—C61.3988 (18)C9—C101.385 (2)
O4—C121.3680 (16)C9—C141.392 (2)
O4—C151.4427 (16)C10—C111.392 (2)
N1—C71.3182 (18)C10—H100.9500
N1—C91.4358 (18)C11—C121.387 (2)
N1—H1N0.902 (19)C11—H110.9500
C1—C21.486 (2)C12—C131.398 (2)
C1—H1A0.9800C13—C141.378 (2)
C1—H1B0.9800C13—H130.9500
C1—H1C0.9800C14—H140.9500
C2—C31.332 (2)C15—C161.508 (2)
C3—C41.440 (2)C15—H15A0.9900
C3—H30.9500C15—H15B0.9900
C4—C51.4474 (19)C16—H16A0.9800
C5—C71.427 (2)C16—H16B0.9800
C5—C61.4431 (19)C16—H16C0.9800
C7—C81.4946 (19)
C2—O3—C6122.46 (11)H8C—C8—H8A109.5
C12—O4—C15118.24 (11)H8B—C8—H8A109.5
C7—N1—C9126.68 (12)C10—C9—C14120.28 (13)
C7—N1—H1N112.0 (11)C10—C9—N1120.22 (12)
C9—N1—H1N120.3 (11)C14—C9—N1119.34 (12)
C2—C1—H1A109.5C9—C10—C11120.03 (13)
C2—C1—H1B109.5C9—C10—H10120.0
H1A—C1—H1B109.5C11—C10—H10120.0
C2—C1—H1C109.5C12—C11—C10119.60 (13)
H1A—C1—H1C109.5C12—C11—H11120.2
H1B—C1—H1C109.5C10—C11—H11120.2
C3—C2—O3121.42 (13)O4—C12—C11124.71 (13)
C3—C2—C1126.45 (14)O4—C12—C13115.09 (12)
O3—C2—C1112.10 (12)C11—C12—C13120.19 (13)
C2—C3—C4121.71 (13)C14—C13—C12119.94 (13)
C2—C3—H3119.1C14—C13—H13120.0
C4—C3—H3119.1C12—C13—H13120.0
O1—C4—C3119.56 (12)C13—C14—C9119.95 (13)
O1—C4—C5123.19 (13)C13—C14—H14120.0
C3—C4—C5117.25 (12)C9—C14—H14120.0
C7—C5—C6119.89 (12)O4—C15—C16106.17 (11)
C7—C5—C4120.58 (12)O4—C15—H15A110.5
C6—C5—C4119.38 (13)C16—C15—H15A110.5
O2—C6—O3113.66 (12)O4—C15—H15B110.5
O2—C6—C5128.60 (14)C16—C15—H15B110.5
O3—C6—C5117.73 (12)H15A—C15—H15B108.7
N1—C7—C5118.27 (13)C15—C16—H16A109.5
N1—C7—C8118.28 (13)C15—C16—H16B109.5
C5—C7—C8123.44 (12)H16A—C16—H16B109.5
C7—C8—H8C109.5C15—C16—H16C109.5
C7—C8—H8B109.5H16A—C16—H16C109.5
H8C—C8—H8B109.5H16B—C16—H16C109.5
C7—C8—H8A109.5
C6—O3—C2—C30.80 (19)C4—C5—C7—N10.68 (18)
C6—O3—C2—C1177.59 (11)C6—C5—C7—C84.91 (19)
O3—C2—C3—C42.3 (2)C4—C5—C7—C8179.52 (12)
C1—C2—C3—C4175.89 (13)C7—N1—C9—C10119.67 (15)
C2—C3—C4—O1177.10 (12)C7—N1—C9—C1464.93 (18)
C2—C3—C4—C52.62 (19)C14—C9—C10—C111.0 (2)
O1—C4—C5—C72.5 (2)N1—C9—C10—C11174.36 (12)
C3—C4—C5—C7177.19 (12)C9—C10—C11—C120.3 (2)
O1—C4—C5—C6178.11 (12)C15—O4—C12—C115.99 (19)
C3—C4—C5—C61.60 (18)C15—O4—C12—C13173.59 (12)
C2—O3—C6—O2178.87 (11)C10—C11—C12—O4179.66 (12)
C2—O3—C6—C50.19 (18)C10—C11—C12—C130.8 (2)
C7—C5—C6—O22.5 (2)O4—C12—C13—C14179.28 (12)
C4—C5—C6—O2178.17 (13)C11—C12—C13—C141.1 (2)
C7—C5—C6—O3175.91 (11)C12—C13—C14—C90.4 (2)
C4—C5—C6—O30.28 (18)C10—C9—C14—C130.7 (2)
C9—N1—C7—C5167.68 (12)N1—C9—C14—C13174.74 (12)
C9—N1—C7—C813.4 (2)C12—O4—C15—C16179.27 (11)
C6—C5—C7—N1176.26 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.90 (2)1.74 (2)2.5411 (15)147 (2)
C1—H1B···O3i0.982.573.4461 (18)149
C8—H8B···O2ii0.982.623.3478 (17)132
C10—H10···O1iii0.952.563.2035 (16)125
C13—H13···O2iv0.952.463.3950 (17)170
C15—H15A···Cg1v0.992.743.618 (2)149
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z+1/2; (v) x+1/2, y+1/2, z+1.
DFT and X-ray geometric parameters (Å, °) for the title compound top
B3LYP/6-311g(++)X-ray data
N1—C71.3341.318 (2)
C5—C71.4231.427 (2)
C5—C41.4471.447 (2)
C4—O11.2531.259 (2)
C7—C81.4601.495 (2)
H1N—N1—C7112.29112.0 (11)
N1—C7—C5118.07118.27 (13)
C4—C5—C7120.75120.58 (12)
C5—C4—O4123.27123.19 (13)
Frontier molecular orbital energies (eV): HOMO–LUMO gap of the keto–amine (NH) and phenol–imine (OH) forms of the title compound top
Energyketo–amine (NH) formphenol–imine (OH) form
EHOMO6.1675.491
ELUMO1.8701.700
Egap4.2973.791
 

Acknowledgements

The authors acknowledge the Algerian Ministry of Higher Education and Scientific Research, and the Algerian Directorate General for Scientific Research and Technological Development for support of this work.

Funding information

We are grateful to the Algerien Ministère de l'Enseignement Supérieur de la Recherche Scientifique and the Algerian Direction Générale de la Recherche Scientifique et du Développement Technologique, for financial support.

References

First citationAntonov, L., Fabian, W. M. F., Nedeltcheva, D. & Kamounah, F. S. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 1173–1179.  CrossRef Google Scholar
First citationBai, Z.-C. & Jing, Z.-L. (2007). Acta Cryst. E63, o3822.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDennington, R., Keith, T. & Millam, J. (2007). Gaussview4.1. Semichem Inc., Shawnee Mission, KS, USA.  Google Scholar
First citationDjedouani, A., Bendaas, A., Boufas, S., Allain, M., Bouet, G. & Khan, M. (2007). Acta Cryst. E63, o1271–o1273.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDjedouani, A., Boufas, S., Allain, M., Bouet, G. & Khan, M. (2008). Acta Cryst. E64, o1785.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDjedouani, A., Boufas, S., Cleymand, F., François, M. & Fleutot, S. (2015). Acta Cryst. E71, o564–o565.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGarnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef CAS Web of Science Google Scholar
First citationGirija, C. R. & Begum, N. S. (2004). Acta Cryst. E60, o535–o536.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGirija, C. R., Begum, N. S., Sridhar, M. A., Lokanath, N. K. & Prasad, J. S. (2004). Acta Cryst. E60, o586–o588.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHadjoudis, E., Rontoyianni, A., Ambroziak, K., Dziembowska, T. & Mavridis, I. M. (2004). J. Photochem. Photobiol. Chem. 162, 521–530.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, L., Chen, D.-B., Qiu, D. & Zhao, B. (2006). Acta Cryst. E62, o5239–o5240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, C., Yang, W. & Parr, R. G. (1998). Phys. Rev. 37, 785–789.  CrossRef Web of Science Google Scholar
First citationLussier, L. S., Sandorfy, C., Le Thanh Hoa & Vocelle, D. (1987). J. Phys. Chem. 91, 2282–2287.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMiehlich, B., Savin, A., Stoll, H. & Preuss, H. (1989). Chem. Phys. Lett. 157, 200–206.  CrossRef CAS Web of Science Google Scholar
First citationNazır, H., Yıldız, M., Yılmaz, H., Tahir, M. N. & Ülkü, D. (2000). J. Mol. Struct. 524, 241–250.  Web of Science CSD CrossRef CAS Google Scholar
First citationOgawa, K. & Harada, J. (2003). J. Mol. Struct. 647, 211–216.  Web of Science CrossRef CAS Google Scholar
First citationRassolov, V. A., Pople, J. A., Ratner, M. A. & Windus, T. L. (1998). J. Chem. Phys. 109, 1223–1229.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTemel, E., Albayrak, Ç., Büyükgüngör, O. & Odabaşoğlu, M. (2006). Acta Cryst. E62, o4484–o4486.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWojciechowski, G., Ratajczak-Sitarz, M., Katrusiak, A., Schilf, W., Przybylski, P. & Brzezinski, B. (2003). J. Mol. Struct. 650, 191–199.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, L., Hou, Q., Sui, D., Wang, Y. & Jiang, S. (2007). Spectrochim. Acta A, 67, 1120–1125.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds