research communications
E)-1-[(4-ethoxyphenyl)iminiumyl]ethyl}-6-methyl-2-oxo-2H-pyran-4-olate
and DFT study of the zwitterionic form of 3-{(aLaboratoire de Physicochimie Analytique et Cristallochimie de Matériaux Organométalliques et Biomoléculaires, Université de Constantine 1, 25000 Constantine, Algeria, bEcole Normale Supérieure de Constantine Assia Djebbar, Ville Universitaire Ali Mendjeli, Constantine 25000, Algeria, cLaboratoire de Chimie des Matériaux, Université de Constantine 1, 25000 Constantine, Algeria, dUniversité Bachire El Ibrahimi de Bordj Bou Arraridj, Algeria, and eInstitut Jean Lamour UMR 7198, Parc de Saurupt, CS 14234 F 54042 Nancy, France
*Correspondence e-mail: djedouani_amel@yahoo.fr
The title Schiff base compound, C16H17NO4, crystallizes as a zwitterion, with the phenolic H atom having been transferred to the imino group. The resulting iminium and hydroxy groups are linked by an intramolecular N—H⋯O hydrogen bond, enclosing an S(6) ring motif. The conformation about the C=N bond is E and the dihedral angle between the benzene and pyran rings is 70.49 (6)°. In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming a three-dimensional supramolecular structure. There are also C—H⋯π interactions and offset π–π interactions, involving the pyran rings [intercentroid distance = 3.4156 (8) Å], which consolidate the three-dimensional structure. Quantum chemical calculations of the molecule are in good agreement with the solid state keto–amine (NH) form of the title compound.
Keywords: crystal structure; Schiff base; zwitterion; hydrogen bonding; C—H⋯π interactions; π–π interactions.
CCDC reference: 1816916
1. Chemical context
Hydroxy et al., 1993; Hadjoudis et al., 2004). They can be used as potential materials for optical memory and switch devices (Zhao et al., 2007). Proton transfer in these compounds forms the basis for an explanation of the mechanisms of various biological processes where proton transfer is the rate-determining step (Lussier et al., 1987). In general, O-hydroxy exhibit two possible tautomeric forms, the phenol–imine (or benzenoid) and keto–amine (or quinoid) forms. Depending on the tautomers, two types of intramolecular hydrogen bonds are possible: O—H⋯N in benzenoid and N—H⋯O in quinoid tautomers. O-hydroxy have been observed in the keto form, in the enol form or in an enol/keto mixture (Nazır et al., 2000; Antonov et al., 2000) due to the H-atom transfer. Another form of the Schiff base compounds is their zwitterionic form (Ogawa & Harada, 2003). of have an ionic intramolecular hydrogen bond (N+—H⋯O−) and their N+—H bond lengths are longer than the normal bond length observed for neutral N—H bonds (0.87 Å). The molecular structure of the title compound is similar to that of (E)-4-hydroxy-3-[N-(4-hydroxyphenyl)ethanimidoyl]-6-methyl-2H-pyran-2-one (Djedouani et al., 2015), which also crystallizes as a zwitterion.
have been studied extensively for their biological, photochromic and thermochromic properties (Garnovskii2. Structural commentary
The molecular structure of title compound is shown in Fig. 1. It crystallizes in the zwitterionic form, with the phenolic H atom having been transferred to the imino group. The H atom, H1N, was located in a difference-Fourier map and freely refined (N—H = 0.90 (2) Å). The resulting iminium and hydroxy groups are linked by an intramolecular N—H⋯O hydrogen bond forming an S(6) loop (Fig. 1 and Table 1). The dihedral angle between the benzene (C9–C14) and pyran (O3/C2–C6) rings is 70.49 (6)°. The carbon–nitrogen bond N1=C7 is 1.318 (2) Å, which agrees with values observed in related compounds (Girija & Begum, 2004; Girija et al., 2004). It is slightly longer than a typical C=N bond [1.283 (4) Å; Bai & Jing, 2007], but much shorter than a C—N bond. The N1—C9 bond length is 1.436 (2) Å because of resonance. The carbon–carbon bond connecting the enol and imine groups exhibits intermediate distances between those of single and double bond, but being closer to the latter; C5—C7 = 1.427 (2) and C5—C6 = 1.443 (2) Å, reflecting the zwitterionic character of the title compound (Wojciechowski et al., 2003). The C4—O1 bond length [1.259 (2) Å] is intermediate between single and double carbon-to-oxygen bond lengths (1.362 and 1.222 Å, respectively), whereas C6—O2 is 1.215 (2) Å.
The aromatic ring and dehydroacetic acid ring are in a trans position with respect to the C7=N1 bond, the dihedral angle between the two rings is 70.46 (9)° and the molecular conformation is determined by the presence of the intramolecular N+—H⋯O− hydrogen bond (Fig. 1 and Table 1), which generates an S(6) ring motif. Similar intramolecular hydrogen bonds have been reported in other zwitterionic (Huang et al., 2006; Temel et al., 2006).
3. Supramolecular features
In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming a three-dimensional supramolecular structure (Fig. 2 and Table 1), which is consolidated by C—H⋯π interactions (Table 1) and offset π–π interactions. The latter involve symmetry-related pyran rings with a Cg⋯Cgi distance of 3.416 (1) Å [Cg is the centroid of ring O3/C2–C6, interplanar distance = 3.319 (1) Å, offset = 0.81 Å, symmetry code (i): −x + 1, y, −z + ].
4. Database survey
A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016) for similar structures revealed the presence of three of interest, namely (E)-6- methyl-2-oxo-3-[1-(p-tolyliminio)ethyl]-2H-pyran-4-olate (REZMAL; Djedouani et al., 2007) and 6-methyl-2-oxo-3-[1-(ureidoiminio)ethyl]-2H-pyran-4-olate monohydrate (HOFPOI; Djedouani et al., 2008) and (E)-4-hydroxy-3-[N-(4-hydroxyphenyl)ethanimidoyl]-6-methyl-2H-pyran-2-one (CUGPAX; Djedouani et al., 2015). The molecular conformations of all three compounds are also determined by the presence of an intramolecular charge-assisted N+—H⋯O− hydrogen bond (see Fig. 1 and Table 1 for the title compound), which generates an S(6) ring motif. Two of these compounds, REZMAL and CUGPAX, have a benzene ring inclined to the pyran ring by 42.25 (10) and 53.31 (11)°, respectively. This is significantly different from the equivalent dihedral angle of 70.46 (9)° in the title compound, which has five hydrogen bonds, two from the ethoxy group in the para position of the benzene and another from the benzene ring, which has increased the dihedral angle between the two rings. On the other hand, CUGPAX has three hydrogen bonds and only one single bond of the hydroxy group in the para position of benzene ring, and the dihedral angle between the two rings is 53.31 (11)°. REZMAL shows only two hydrogen bonds, neither of which involve benzene ring, and the dihedral angle is 42.25 (10)°.
5. Density functional study – geometry optimization and molecular orbital calculations
Geometry optimization and molecular orbital calculations were carried out with the Guassian09 software package (Frisch et al., 2009) and the Gaussview visualization program (Dennington et al., 2007; Rassolov et al., 1998), using the three-parameter hybrid function of Becke based on the correlation function (B3LYP) of Lee et al. (1998) and Miehlich et al. (1989), with the 6-311G, 6-311G(+) and 6-311G(++) basis sets. The bond lengths, bond angles corresponding to the optimized geometry obtained using the DFT/B3LY P method are given in Table 2. The calculated C4—C5 bond distance is 1.447 Å correlates nicely with experimental value. The calculated bond lengths with B3LYP/6-311G(++) level are slightly shorter than the experimental values within 0.004–0.035 Å. The calculated bond angles C5—C4—O4 and C4—C5—C7 are close to 120° since atoms C4 and C5 have sp2 In general, the calculated values are in good agreement with the experimental data.
|
The highest occupied molecular orbitals (HOMO) and lowest unoccupied orbitals (LUMO) are named , and the nature of the frontier molecular orbitals for the two possible tautomeric forms, the keto–amine (NH) and the phenol–imine (OH) forms of zwitterionic forms of are plotted in Fig. 3. The band-gap energy values calculated for keto–amine (NH) forms were found to be 4.297 eV, which is a large HOMO–LUMO energy gap, implying a higher molecular stability than for the phenol–imine (OH) form, which has a smaller energy gap with the difference between the HOMO and LUMO being 3.791 eV. The HOMO–LUMO energy gap is very important for the chemical activity and explains the eventual charge-transfer interaction within the molecule. Clearly, the larger HOMO–LUMO gap calculated for the keto–amine (NH) form is in agreement with the stability of the molecule in the solid state.
(FMOs). The calculated values at the B3LYP/6-311G(++) level are presented in Table 3
|
6. Synthesis and crystallization
The title compound was prepared according to a literature method (Djedouani et al., 2007). Colourless plate-like crystals were obtained by slow evaporation of a solution in ethanol.
7. Refinement
Crystal data, data collection and structure . The NH H atom was located in a difference-Fourier map and freely refined. The C-bound H atoms were included in calculated positions and treated as riding: C—H = 0.95–0.99 Å, with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.
details are summarized in Table 4
|
Supporting information
CCDC reference: 1816916
https://doi.org/10.1107/S2056989018000919/ex2003sup1.cif
contains datablocks I, _Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018000919/ex2003Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018000919/ex2003Isup3.cml
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS2016/6 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016/6 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C16H17NO4 | F(000) = 1216 |
Mr = 287.30 | Dx = 1.364 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 21.0983 (13) Å | Cell parameters from 18962 reflections |
b = 7.7792 (5) Å | θ = 2.0–27.5° |
c = 17.7036 (11) Å | µ = 0.10 mm−1 |
β = 105.564 (2)° | T = 100 K |
V = 2799.1 (3) Å3 | Plate, colorless |
Z = 8 | 0.18 × 0.08 × 0.03 mm |
Bruker APEXII QUAZAR CCD diffractometer | 2750 independent reflections |
Radiation source: ImuS | 2315 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
f\ and ω scans | θmax = 26.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −16→26 |
Tmin = 0.596, Tmax = 0.746 | k = −9→9 |
17108 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: mixed |
wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0419P)2 + 2.3424P] where P = (Fo2 + 2Fc2)/3 |
2750 reflections | (Δ/σ)max < 0.001 |
197 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.37595 (5) | −0.09851 (12) | 0.25430 (5) | 0.0178 (2) | |
O2 | 0.46409 (5) | 0.36094 (13) | 0.13692 (6) | 0.0223 (2) | |
O3 | 0.48126 (5) | 0.09177 (13) | 0.11188 (5) | 0.0203 (2) | |
O4 | 0.28470 (5) | 0.53164 (13) | 0.53959 (6) | 0.0195 (2) | |
N1 | 0.35473 (6) | 0.20560 (15) | 0.29392 (7) | 0.0167 (3) | |
H1N | 0.3533 (9) | 0.090 (2) | 0.2929 (10) | 0.033 (5)* | |
C1 | 0.51239 (8) | −0.1830 (2) | 0.07643 (9) | 0.0261 (4) | |
H1A | 0.558974 | −0.151115 | 0.094154 | 0.039* | |
H1B | 0.495675 | −0.158824 | 0.020257 | 0.039* | |
H1C | 0.507565 | −0.305845 | 0.085797 | 0.039* | |
C2 | 0.47443 (7) | −0.08168 (19) | 0.12051 (8) | 0.0186 (3) | |
C3 | 0.43857 (7) | −0.14438 (18) | 0.16567 (8) | 0.0179 (3) | |
H3 | 0.433601 | −0.265332 | 0.168807 | 0.021* | |
C4 | 0.40712 (6) | −0.03355 (17) | 0.20989 (8) | 0.0154 (3) | |
C5 | 0.41363 (6) | 0.14995 (17) | 0.20071 (7) | 0.0153 (3) | |
C6 | 0.45203 (6) | 0.21302 (18) | 0.15026 (8) | 0.0169 (3) | |
C7 | 0.38639 (6) | 0.26807 (18) | 0.24515 (8) | 0.0162 (3) | |
C8 | 0.39081 (7) | 0.45891 (18) | 0.23821 (8) | 0.0203 (3) | |
H8C | 0.374124 | 0.492541 | 0.183088 | 0.031* | |
H8B | 0.436806 | 0.495022 | 0.257827 | 0.031* | |
H8A | 0.364402 | 0.514294 | 0.269172 | 0.031* | |
C9 | 0.33460 (7) | 0.29881 (17) | 0.35356 (8) | 0.0164 (3) | |
C10 | 0.26863 (7) | 0.30913 (17) | 0.35148 (8) | 0.0171 (3) | |
H10 | 0.236228 | 0.263353 | 0.308090 | 0.020* | |
C11 | 0.24977 (7) | 0.38655 (17) | 0.41296 (8) | 0.0173 (3) | |
H11 | 0.204561 | 0.393367 | 0.411788 | 0.021* | |
C12 | 0.29738 (7) | 0.45369 (17) | 0.47593 (8) | 0.0166 (3) | |
C13 | 0.36385 (7) | 0.44554 (18) | 0.47719 (8) | 0.0193 (3) | |
H13 | 0.396300 | 0.493437 | 0.519946 | 0.023* | |
C14 | 0.38224 (7) | 0.36797 (18) | 0.41637 (8) | 0.0186 (3) | |
H14 | 0.427417 | 0.361699 | 0.417316 | 0.022* | |
C15 | 0.21698 (7) | 0.56107 (18) | 0.53868 (8) | 0.0193 (3) | |
H15A | 0.192613 | 0.451001 | 0.533117 | 0.023* | |
H15B | 0.195276 | 0.637069 | 0.494438 | 0.023* | |
C16 | 0.21851 (7) | 0.64530 (19) | 0.61584 (9) | 0.0224 (3) | |
H16A | 0.245376 | 0.749760 | 0.622067 | 0.034* | |
H16B | 0.237520 | 0.565599 | 0.658818 | 0.034* | |
H16C | 0.173613 | 0.675273 | 0.616796 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0187 (5) | 0.0183 (5) | 0.0179 (5) | −0.0034 (4) | 0.0075 (4) | 0.0023 (4) |
O2 | 0.0232 (5) | 0.0233 (5) | 0.0203 (5) | −0.0055 (4) | 0.0056 (4) | 0.0058 (4) |
O3 | 0.0226 (5) | 0.0243 (5) | 0.0155 (5) | −0.0066 (4) | 0.0077 (4) | −0.0002 (4) |
O4 | 0.0167 (5) | 0.0222 (5) | 0.0200 (5) | 0.0015 (4) | 0.0058 (4) | −0.0013 (4) |
N1 | 0.0170 (6) | 0.0156 (6) | 0.0179 (6) | −0.0009 (5) | 0.0052 (5) | 0.0022 (5) |
C1 | 0.0239 (8) | 0.0343 (9) | 0.0214 (8) | −0.0039 (7) | 0.0083 (6) | −0.0058 (6) |
C2 | 0.0168 (7) | 0.0232 (7) | 0.0133 (7) | −0.0027 (6) | −0.0003 (6) | −0.0006 (6) |
C3 | 0.0180 (7) | 0.0186 (7) | 0.0155 (7) | −0.0022 (6) | 0.0017 (6) | 0.0012 (5) |
C4 | 0.0116 (6) | 0.0202 (7) | 0.0121 (6) | −0.0029 (5) | −0.0008 (5) | 0.0018 (5) |
C5 | 0.0125 (6) | 0.0188 (7) | 0.0122 (6) | −0.0023 (5) | −0.0008 (5) | 0.0024 (5) |
C6 | 0.0139 (7) | 0.0232 (7) | 0.0108 (6) | −0.0028 (6) | −0.0016 (5) | 0.0022 (5) |
C7 | 0.0118 (6) | 0.0199 (7) | 0.0135 (7) | −0.0020 (5) | −0.0022 (5) | 0.0035 (5) |
C8 | 0.0221 (7) | 0.0183 (7) | 0.0197 (7) | −0.0007 (6) | 0.0040 (6) | 0.0036 (5) |
C9 | 0.0183 (7) | 0.0137 (6) | 0.0175 (7) | 0.0006 (5) | 0.0056 (6) | 0.0039 (5) |
C10 | 0.0170 (7) | 0.0148 (6) | 0.0175 (7) | −0.0012 (5) | 0.0012 (6) | 0.0031 (5) |
C11 | 0.0146 (7) | 0.0164 (7) | 0.0209 (7) | 0.0020 (5) | 0.0045 (6) | 0.0038 (5) |
C12 | 0.0199 (7) | 0.0141 (6) | 0.0166 (7) | 0.0022 (5) | 0.0063 (6) | 0.0026 (5) |
C13 | 0.0170 (7) | 0.0197 (7) | 0.0198 (7) | −0.0002 (6) | 0.0024 (6) | −0.0001 (6) |
C14 | 0.0137 (7) | 0.0213 (7) | 0.0210 (7) | 0.0010 (6) | 0.0048 (6) | 0.0030 (6) |
C15 | 0.0165 (7) | 0.0189 (7) | 0.0238 (8) | 0.0021 (5) | 0.0079 (6) | 0.0037 (6) |
C16 | 0.0221 (7) | 0.0211 (7) | 0.0266 (8) | 0.0021 (6) | 0.0112 (6) | 0.0024 (6) |
O1—C4 | 1.2585 (16) | C8—H8C | 0.9800 |
O2—C6 | 1.2154 (17) | C8—H8B | 0.9800 |
O3—C2 | 1.3698 (17) | C8—H8A | 0.9800 |
O3—C6 | 1.3988 (18) | C9—C10 | 1.385 (2) |
O4—C12 | 1.3680 (16) | C9—C14 | 1.392 (2) |
O4—C15 | 1.4427 (16) | C10—C11 | 1.392 (2) |
N1—C7 | 1.3182 (18) | C10—H10 | 0.9500 |
N1—C9 | 1.4358 (18) | C11—C12 | 1.387 (2) |
N1—H1N | 0.902 (19) | C11—H11 | 0.9500 |
C1—C2 | 1.486 (2) | C12—C13 | 1.398 (2) |
C1—H1A | 0.9800 | C13—C14 | 1.378 (2) |
C1—H1B | 0.9800 | C13—H13 | 0.9500 |
C1—H1C | 0.9800 | C14—H14 | 0.9500 |
C2—C3 | 1.332 (2) | C15—C16 | 1.508 (2) |
C3—C4 | 1.440 (2) | C15—H15A | 0.9900 |
C3—H3 | 0.9500 | C15—H15B | 0.9900 |
C4—C5 | 1.4474 (19) | C16—H16A | 0.9800 |
C5—C7 | 1.427 (2) | C16—H16B | 0.9800 |
C5—C6 | 1.4431 (19) | C16—H16C | 0.9800 |
C7—C8 | 1.4946 (19) | ||
C2—O3—C6 | 122.46 (11) | H8C—C8—H8A | 109.5 |
C12—O4—C15 | 118.24 (11) | H8B—C8—H8A | 109.5 |
C7—N1—C9 | 126.68 (12) | C10—C9—C14 | 120.28 (13) |
C7—N1—H1N | 112.0 (11) | C10—C9—N1 | 120.22 (12) |
C9—N1—H1N | 120.3 (11) | C14—C9—N1 | 119.34 (12) |
C2—C1—H1A | 109.5 | C9—C10—C11 | 120.03 (13) |
C2—C1—H1B | 109.5 | C9—C10—H10 | 120.0 |
H1A—C1—H1B | 109.5 | C11—C10—H10 | 120.0 |
C2—C1—H1C | 109.5 | C12—C11—C10 | 119.60 (13) |
H1A—C1—H1C | 109.5 | C12—C11—H11 | 120.2 |
H1B—C1—H1C | 109.5 | C10—C11—H11 | 120.2 |
C3—C2—O3 | 121.42 (13) | O4—C12—C11 | 124.71 (13) |
C3—C2—C1 | 126.45 (14) | O4—C12—C13 | 115.09 (12) |
O3—C2—C1 | 112.10 (12) | C11—C12—C13 | 120.19 (13) |
C2—C3—C4 | 121.71 (13) | C14—C13—C12 | 119.94 (13) |
C2—C3—H3 | 119.1 | C14—C13—H13 | 120.0 |
C4—C3—H3 | 119.1 | C12—C13—H13 | 120.0 |
O1—C4—C3 | 119.56 (12) | C13—C14—C9 | 119.95 (13) |
O1—C4—C5 | 123.19 (13) | C13—C14—H14 | 120.0 |
C3—C4—C5 | 117.25 (12) | C9—C14—H14 | 120.0 |
C7—C5—C6 | 119.89 (12) | O4—C15—C16 | 106.17 (11) |
C7—C5—C4 | 120.58 (12) | O4—C15—H15A | 110.5 |
C6—C5—C4 | 119.38 (13) | C16—C15—H15A | 110.5 |
O2—C6—O3 | 113.66 (12) | O4—C15—H15B | 110.5 |
O2—C6—C5 | 128.60 (14) | C16—C15—H15B | 110.5 |
O3—C6—C5 | 117.73 (12) | H15A—C15—H15B | 108.7 |
N1—C7—C5 | 118.27 (13) | C15—C16—H16A | 109.5 |
N1—C7—C8 | 118.28 (13) | C15—C16—H16B | 109.5 |
C5—C7—C8 | 123.44 (12) | H16A—C16—H16B | 109.5 |
C7—C8—H8C | 109.5 | C15—C16—H16C | 109.5 |
C7—C8—H8B | 109.5 | H16A—C16—H16C | 109.5 |
H8C—C8—H8B | 109.5 | H16B—C16—H16C | 109.5 |
C7—C8—H8A | 109.5 | ||
C6—O3—C2—C3 | 0.80 (19) | C4—C5—C7—N1 | −0.68 (18) |
C6—O3—C2—C1 | −177.59 (11) | C6—C5—C7—C8 | 4.91 (19) |
O3—C2—C3—C4 | −2.3 (2) | C4—C5—C7—C8 | −179.52 (12) |
C1—C2—C3—C4 | 175.89 (13) | C7—N1—C9—C10 | 119.67 (15) |
C2—C3—C4—O1 | −177.10 (12) | C7—N1—C9—C14 | −64.93 (18) |
C2—C3—C4—C5 | 2.62 (19) | C14—C9—C10—C11 | −1.0 (2) |
O1—C4—C5—C7 | 2.5 (2) | N1—C9—C10—C11 | 174.36 (12) |
C3—C4—C5—C7 | −177.19 (12) | C9—C10—C11—C12 | 0.3 (2) |
O1—C4—C5—C6 | 178.11 (12) | C15—O4—C12—C11 | −5.99 (19) |
C3—C4—C5—C6 | −1.60 (18) | C15—O4—C12—C13 | 173.59 (12) |
C2—O3—C6—O2 | 178.87 (11) | C10—C11—C12—O4 | −179.66 (12) |
C2—O3—C6—C5 | 0.19 (18) | C10—C11—C12—C13 | 0.8 (2) |
C7—C5—C6—O2 | −2.5 (2) | O4—C12—C13—C14 | 179.28 (12) |
C4—C5—C6—O2 | −178.17 (13) | C11—C12—C13—C14 | −1.1 (2) |
C7—C5—C6—O3 | 175.91 (11) | C12—C13—C14—C9 | 0.4 (2) |
C4—C5—C6—O3 | 0.28 (18) | C10—C9—C14—C13 | 0.7 (2) |
C9—N1—C7—C5 | 167.68 (12) | N1—C9—C14—C13 | −174.74 (12) |
C9—N1—C7—C8 | −13.4 (2) | C12—O4—C15—C16 | 179.27 (11) |
C6—C5—C7—N1 | −176.26 (12) |
Cg1 is the centroid of the C9–C14 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1 | 0.90 (2) | 1.74 (2) | 2.5411 (15) | 147 (2) |
C1—H1B···O3i | 0.98 | 2.57 | 3.4461 (18) | 149 |
C8—H8B···O2ii | 0.98 | 2.62 | 3.3478 (17) | 132 |
C10—H10···O1iii | 0.95 | 2.56 | 3.2035 (16) | 125 |
C13—H13···O2iv | 0.95 | 2.46 | 3.3950 (17) | 170 |
C15—H15A···Cg1v | 0.99 | 2.74 | 3.618 (2) | 149 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, y, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2; (iv) x, −y+1, z+1/2; (v) −x+1/2, −y+1/2, −z+1. |
B3LYP/6-311g(++) | X-ray data | |
N1—C7 | 1.334 | 1.318 (2) |
C5—C7 | 1.423 | 1.427 (2) |
C5—C4 | 1.447 | 1.447 (2) |
C4—O1 | 1.253 | 1.259 (2) |
C7—C8 | 1.460 | 1.495 (2) |
H1N—N1—C7 | 112.29 | 112.0 (11) |
N1—C7—C5 | 118.07 | 118.27 (13) |
C4—C5—C7 | 120.75 | 120.58 (12) |
C5—C4—O4 | 123.27 | 123.19 (13) |
Energy | keto–amine (NH) form | phenol–imine (OH) form |
EHOMO | 6.167 | 5.491 |
ELUMO | 1.870 | 1.700 |
Egap | 4.297 | 3.791 |
Acknowledgements
The authors acknowledge the Algerian Ministry of Higher Education and Scientific Research, and the Algerian Directorate General for Scientific Research and Technological Development for support of this work.
Funding information
We are grateful to the Algerien Ministère de l'Enseignement Supérieur de la Recherche Scientifique and the Algerian Direction Générale de la Recherche Scientifique et du Développement Technologique, for financial support.
References
Antonov, L., Fabian, W. M. F., Nedeltcheva, D. & Kamounah, F. S. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 1173–1179. CrossRef Google Scholar
Bai, Z.-C. & Jing, Z.-L. (2007). Acta Cryst. E63, o3822. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dennington, R., Keith, T. & Millam, J. (2007). Gaussview4.1. Semichem Inc., Shawnee Mission, KS, USA. Google Scholar
Djedouani, A., Bendaas, A., Boufas, S., Allain, M., Bouet, G. & Khan, M. (2007). Acta Cryst. E63, o1271–o1273. Web of Science CSD CrossRef IUCr Journals Google Scholar
Djedouani, A., Boufas, S., Allain, M., Bouet, G. & Khan, M. (2008). Acta Cryst. E64, o1785. Web of Science CSD CrossRef IUCr Journals Google Scholar
Djedouani, A., Boufas, S., Cleymand, F., François, M. & Fleutot, S. (2015). Acta Cryst. E71, o564–o565. Web of Science CSD CrossRef IUCr Journals Google Scholar
Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Garnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69. CrossRef CAS Web of Science Google Scholar
Girija, C. R. & Begum, N. S. (2004). Acta Cryst. E60, o535–o536. Web of Science CSD CrossRef IUCr Journals Google Scholar
Girija, C. R., Begum, N. S., Sridhar, M. A., Lokanath, N. K. & Prasad, J. S. (2004). Acta Cryst. E60, o586–o588. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hadjoudis, E., Rontoyianni, A., Ambroziak, K., Dziembowska, T. & Mavridis, I. M. (2004). J. Photochem. Photobiol. Chem. 162, 521–530. Web of Science CSD CrossRef CAS Google Scholar
Huang, L., Chen, D.-B., Qiu, D. & Zhao, B. (2006). Acta Cryst. E62, o5239–o5240. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lee, C., Yang, W. & Parr, R. G. (1998). Phys. Rev. 37, 785–789. CrossRef Web of Science Google Scholar
Lussier, L. S., Sandorfy, C., Le Thanh Hoa & Vocelle, D. (1987). J. Phys. Chem. 91, 2282–2287. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Miehlich, B., Savin, A., Stoll, H. & Preuss, H. (1989). Chem. Phys. Lett. 157, 200–206. CrossRef CAS Web of Science Google Scholar
Nazır, H., Yıldız, M., Yılmaz, H., Tahir, M. N. & Ülkü, D. (2000). J. Mol. Struct. 524, 241–250. Web of Science CSD CrossRef CAS Google Scholar
Ogawa, K. & Harada, J. (2003). J. Mol. Struct. 647, 211–216. Web of Science CrossRef CAS Google Scholar
Rassolov, V. A., Pople, J. A., Ratner, M. A. & Windus, T. L. (1998). J. Chem. Phys. 109, 1223–1229. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Temel, E., Albayrak, Ç., Büyükgüngör, O. & Odabaşoğlu, M. (2006). Acta Cryst. E62, o4484–o4486. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wojciechowski, G., Ratajczak-Sitarz, M., Katrusiak, A., Schilf, W., Przybylski, P. & Brzezinski, B. (2003). J. Mol. Struct. 650, 191–199. Web of Science CSD CrossRef CAS Google Scholar
Zhao, L., Hou, Q., Sui, D., Wang, Y. & Jiang, S. (2007). Spectrochim. Acta A, 67, 1120–1125. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.