research communications
N,N′-bis(2,4-difluorobenzoyloxy)benzene-1,2:4,5-tetracarboximide
ofaDipartimento di Scienze Chimiche, Università degli Studi di Napoli 'Federico II', Complesso di Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy
*Correspondence e-mail: roberto.centore@unina.it
Molecules of the title compound, C24H8F4N2O8, have Ci point-group symmetry in the crystal, as they lie on crystallographic inversion centres (Z′ = 1/2). The difluorophenyl ring is disordered over two orientations; the final refined occupancy factors of the two components of disorder are 0.947 (4) and 0.053 (4). In the crystal, some Car—H⋯F interactions are present, which involve the most acidic H atom of the molecule.
Keywords: crystal structure; imide; weak hydrogen bond; fluorine.
CCDC reference: 1818213
1. Chemical context
Heterocycles are key compounds in synthetic chemistry. In addition to their applications in drugs, bioactive and tautomeric compounds (D'Errico et al., 2012; Piccialli et al., 2007; Centore et al., 2013), aromatic heterocycles play an important role in modern materials chemistry, because they are used as building blocks of active molecules in many emerging fields of advanced materials, for example, conducting polymers (Heeger, 2010), organic field-effect transistors (Miao, 2014), organic solar cells (Nielsen et al., 2015), liquid crystals (Centore et al., 1996) and nonlinear optically active compounds (Carella et al., 2007; Centore et al., 1999).
Aromatic diimides, in particular, are a class of n-type organic semiconductors. Very high electron mobilities have been measured for perylenediimides (Schmidt et al., 2007) and naphthalenediimides (Yan et al., 2009). The research on n-type organic semiconductors has also shown that electron mobilities and device performances can be improved by extensive replacement of H atoms by fluorine (Facchetti et al., 2003).
well known for their outstanding properties asFollowing these issues, we report here the structural investigation of the title compound, N,N′-bis(2,4-difluorobenzoyloxy)benzene-1,2:4,5-tetracarboximide, which is a fluorinated derivative of the simplest aromatic bis(imide).
2. Structural commentary
Molecules of the title compound in the crystal lie on crystallographic inversion centres and have Ci point-group symmetry. Thus, the is formed by half a molecule, as shown in Fig. 1. The difluorophenyl ring is disordered over two orientations that differ by a rotation of 180° around the C6—C7 bond. The atomic positions for the two orientations of the difluorophenyl ring are completely superimposed for all atoms, except for the ortho-F atom, for which split positions were observed. The final refined occupancy factors of the two components of disorder are 0.947 (4) and 0.053 (4). Molecules adopt a nonplanar conformation, mainly because of a torsion around the O3—N1 bond. In particular, the pentaatomic ring (atoms C2/C3/C4/N1/C5) is planar within 0.0164 (14) Å, while the phenyl ring (C7/C8a/C9/C10/C11/C12a) is planar within 0.002 (2) Å. The dihedral angle between the mean planes of the two rings is 86.14 (8)°.
The C6—O3 bond length [1.402 (3) Å] is significantly longer than the mean value for et al., 1987). This suggests a reduced contribution of the minor resonance form of the ester group, in which one of the lone pairs of the alkoxy oxygen forms a double bond with the carbonyl C atom that breaks its double bond with the other O atom, thereby giving it a negative charge. This, in turn, can be due to the presence of the electronegative N atom bonded to O3.
of aromatic acids (1.337 Å; Allen3. Supramolecular features
There are weak hydrogen-bond donors (Car—H) and strong hydrogen-bond acceptors (carbonyl O atoms) in the title compound. Moreover, F atoms are present as well, whose low hydrogen-bonding-acceptor capability, if any, has been the subject of a long debate in the literature (Dunitz & Taylor, 1997; Dunitz, 2004). Actually, it is now established that the C—H⋯F interaction is generally weak and does not play a significant structural role in crystal packing when stronger and more polarizable acceptors than the C—F group are present. On the other hand, when the carbon acidity is suitably enhanced, and in the absence of competing acceptors, the (weak) hydrogen-bonding nature of the C—H⋯F interaction is revealed (Thalladi et al., 1998).
The most acidic Car—H group in the title compound is C9—H, because it has two ortho C—F-group neighbours. It is involved in weak hydrogen-bonding interactions with fluorine, as shown in Fig. 2 and Table 1. In particular, C9—H acts as bifurcated donor to the F1A and F2 atoms. In the first case, R22(8) ring motifs are formed across inversion centres. In the second case, chain patterns running parallel to a − b + c/2 are formed. These patterns are quite similar to the supramolecular synthons II and IV reported in the Scheme 2 of Thalladi et al. (1998). It is quite remarkable that significant C—H⋯F interactions are only given by C9—H, which is the most acidic H atom of the molecule.
Other acidic H atoms are C11—H, because it has one ortho C—F group, and C1—H. They are involved in weak hydrogen-bonding interactions with the O1 and O2 carbonyl acceptors, respectively, see Table 1 and Fig. 2.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.38, last update May 2017; Groom et al., 2016) gave no match for the title compound. We have searched for N-oxycarbonylimides using two filters (three-dimensional coordinates determined and not disordered). 47 hits were found. Within this set, 40 hits are N-oxycarbonyl derivatives of succinimide and 6 hits are derivatives of phthalimide. Here follows the full list of refcodes for the CSD search: ADEFUL, AFUXEE, ALOPAU, AWUXOF, BANTOA, CILBUV, COZFOM, DOFTEZ, EABXIO, EABXIO01, FUPPEM, GULRAI, GUVCAB, ICEWIY, LOZFAH, MAMDOU, MILFOE, MIPHUP, MIZJEM, MOZYOQ, NANWUU, OQUPOG, PIGKIZ, SEZWIE, SOSDEK, SUDJIM, SUDWUL, SUDXAS, SUDXAS01, TEQDEY, TUJRIB, UJAFER, UJUBOS, UJUBUY, VALSUZ, WALPEH, WIDKEB, YAFMEY, YAFPOL, YAGBEP, YUJZIN, YUJZOT, ZEPSES, ZEPSIW, ZOQQOL, ZOQQUR, ZALKUV.
The hits found are crystal structures determined at temperatures in the range 90–298 K. In the 47 hits, the N1—O3 distance (DIST1) ranges between 1.375 and 1.408 Å, with an average value of 1.388 (6) Å. On the other hand, the distance O3—C6 (DIST2) is between 1.350 and 1.423 Å, with an average value of 1.393 (15) Å. The histogram of the distribution of DIST1 over the 47 hits found is shown in Fig. 3. The values of DIST1 and DIST2 found in the title compound [N1—O3 = 1.381 (2) Å and O3—C6 = 1.402 (3) Å] are fully consistent with the average values determined from the 47 hits.
5. Synthesis and crystallization
N,N′-Dihydroxybenzene-1,2:4,5-tetracarboximide (Centore & Carella, 2013) (1.000 g, 4.030 mmol) was suspended in 20 ml of dry pyridine and the system was kept under stirring at room temperature. 2,4-Difluorobenzoylchloride (1.991 g, 11.28 mmol) was added dropwise and the previous suspension turned into a dark solution. The solution was warmed and boiled gently for 45 min. Absolute ethanol (2 ml) and, after 2 min, distilled water (0.2 ml) were then added and the system cooled slowly to room temperature and filtered. The white crystals were washed on the filter with absolute ethanol. From the recovered material it was possible to isolate several single crystals suitable for X-ray analysis. The yield was 55% (m.p. 604 K).
6. Refinement
Crystal data, data collection and structure . The H atoms were generated stereochemically and were refined by the riding model. For all H atoms, Uiso(H) = 1.2Ueq(carrier). The difluorophenyl ring is disordered over two orientations, which differ by a rotation of 180° around the phenyl to carbonyl bond. Split positions were only observed for the ortho-F atom. The two split positions were refined by applying SADI restraints on bond lengths. The final refined occupancy factors of the two components of disorder are 0.947 (4) and 0.053 (4).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1818213
https://doi.org/10.1107/S2056989018001226/fy2124sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018001226/fy2124Isup2.hkl
Data collection: COLLECT (Nonius, 1999); cell
DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).C24H8F4N2O8 | F(000) = 532 |
Mr = 528.32 | Dx = 1.654 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 17.100 (6) Å | Cell parameters from 85 reflections |
b = 4.744 (2) Å | θ = 5.1–21.4° |
c = 13.662 (4) Å | µ = 0.15 mm−1 |
β = 106.83 (2)° | T = 173 K |
V = 1060.8 (7) Å3 | Plate, colourless |
Z = 2 | 0.40 × 0.15 × 0.01 mm |
Bruker–Nonius KappaCCD diffractometer | 2396 independent reflections |
Radiation source: normal-focus sealed tube | 1440 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 3.4° |
CCD rotation images, thick slices scans | h = −22→21 |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | k = −6→6 |
Tmin = 0.931, Tmax = 0.986 | l = −15→17 |
7948 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.120 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.045P)2 + 0.4397P] where P = (Fo2 + 2Fc2)/3 |
2396 reflections | (Δ/σ)max < 0.001 |
176 parameters | Δρmax = 0.26 e Å−3 |
1 restraint | Δρmin = −0.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The difluorophenyl ring is disordered over two orientations. The two split positions were refined by applying SADI restraints on bond lengths. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.53428 (13) | −0.2108 (5) | 0.44840 (16) | 0.0196 (5) | |
H1 | 0.557147 | −0.349497 | 0.414668 | 0.024* | |
C2 | 0.47095 (12) | −0.0358 (5) | 0.39704 (15) | 0.0177 (5) | |
C3 | 0.43844 (12) | 0.1672 (5) | 0.44705 (16) | 0.0191 (5) | |
C4 | 0.37402 (13) | 0.3243 (5) | 0.36996 (17) | 0.0226 (5) | |
C5 | 0.42706 (13) | −0.0236 (5) | 0.28530 (16) | 0.0208 (5) | |
C6 | 0.24590 (14) | 0.1960 (6) | 0.15987 (18) | 0.0306 (6) | |
C7 | 0.19802 (14) | 0.3233 (6) | 0.06271 (17) | 0.0260 (5) | |
C9 | 0.07036 (16) | 0.3516 (7) | −0.0723 (2) | 0.0406 (7) | |
H9 | 0.015390 | 0.292807 | −0.101232 | 0.049* | |
C10 | 0.10527 (16) | 0.5453 (7) | −0.11934 (18) | 0.0354 (7) | |
C11 | 0.18428 (15) | 0.6341 (6) | −0.08085 (19) | 0.0333 (6) | |
H11 | 0.206836 | 0.769181 | −0.116313 | 0.040* | |
C8A | 0.11781 (16) | 0.2431 (6) | 0.0194 (2) | 0.0369 (7) | 0.947 (4) |
F1A | 0.08458 (11) | 0.0511 (5) | 0.06620 (15) | 0.0714 (8) | 0.947 (4) |
C12A | 0.23029 (14) | 0.5223 (6) | 0.01072 (18) | 0.0289 (6) | 0.947 (4) |
H12A | 0.285205 | 0.582553 | 0.038893 | 0.035* | 0.947 (4) |
C8B | 0.11781 (16) | 0.2431 (6) | 0.0194 (2) | 0.0369 (7) | 0.053 (4) |
H8B | 0.094436 | 0.108079 | 0.053933 | 0.044* | 0.053 (4) |
C12B | 0.23029 (14) | 0.5223 (6) | 0.01072 (18) | 0.0289 (6) | 0.053 (4) |
F1B | 0.3060 (9) | 0.615 (6) | 0.037 (2) | 0.043* | 0.053 (4) |
F2 | 0.05967 (10) | 0.6562 (4) | −0.20823 (12) | 0.0554 (6) | |
N1 | 0.37352 (12) | 0.1997 (5) | 0.27779 (14) | 0.0256 (5) | |
O1 | 0.33327 (10) | 0.5199 (4) | 0.38057 (13) | 0.0315 (4) | |
O2 | 0.43410 (10) | −0.1664 (4) | 0.21582 (12) | 0.0258 (4) | |
O3 | 0.32607 (9) | 0.2995 (4) | 0.18452 (11) | 0.0268 (4) | |
O4 | 0.22619 (12) | 0.0326 (6) | 0.21309 (16) | 0.0623 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0185 (10) | 0.0213 (12) | 0.0195 (10) | 0.0013 (10) | 0.0062 (8) | 0.0007 (10) |
C2 | 0.0187 (10) | 0.0186 (12) | 0.0162 (9) | −0.0022 (9) | 0.0056 (8) | 0.0006 (9) |
C3 | 0.0162 (10) | 0.0209 (12) | 0.0195 (10) | −0.0013 (9) | 0.0040 (8) | 0.0037 (10) |
C4 | 0.0197 (10) | 0.0247 (13) | 0.0220 (11) | 0.0006 (10) | 0.0038 (8) | 0.0030 (11) |
C5 | 0.0214 (10) | 0.0206 (12) | 0.0189 (10) | −0.0006 (10) | 0.0037 (8) | 0.0034 (10) |
C6 | 0.0236 (12) | 0.0388 (16) | 0.0262 (12) | −0.0060 (12) | 0.0023 (10) | 0.0058 (12) |
C7 | 0.0241 (11) | 0.0309 (14) | 0.0197 (11) | −0.0020 (11) | 0.0012 (9) | 0.0036 (11) |
C9 | 0.0254 (12) | 0.055 (2) | 0.0326 (14) | −0.0102 (13) | −0.0051 (10) | 0.0056 (14) |
C10 | 0.0307 (13) | 0.0479 (18) | 0.0209 (11) | 0.0052 (13) | −0.0034 (10) | 0.0070 (13) |
C11 | 0.0286 (12) | 0.0401 (17) | 0.0294 (13) | −0.0004 (12) | 0.0055 (10) | 0.0120 (12) |
C8A | 0.0308 (13) | 0.0423 (17) | 0.0331 (14) | −0.0113 (13) | 0.0021 (11) | 0.0098 (13) |
F1A | 0.0388 (10) | 0.0959 (19) | 0.0636 (13) | −0.0361 (11) | −0.0101 (9) | 0.0451 (13) |
C12A | 0.0209 (11) | 0.0368 (16) | 0.0262 (11) | −0.0034 (11) | 0.0021 (9) | 0.0042 (12) |
C8B | 0.0308 (13) | 0.0423 (17) | 0.0331 (14) | −0.0113 (13) | 0.0021 (11) | 0.0098 (13) |
C12B | 0.0209 (11) | 0.0368 (16) | 0.0262 (11) | −0.0034 (11) | 0.0021 (9) | 0.0042 (12) |
F2 | 0.0409 (9) | 0.0744 (14) | 0.0363 (9) | −0.0026 (9) | −0.0119 (7) | 0.0227 (9) |
N1 | 0.0271 (10) | 0.0289 (12) | 0.0162 (9) | 0.0073 (9) | −0.0010 (7) | 0.0046 (9) |
O1 | 0.0284 (9) | 0.0306 (10) | 0.0324 (9) | 0.0103 (8) | 0.0037 (7) | 0.0007 (8) |
O2 | 0.0313 (9) | 0.0267 (10) | 0.0194 (8) | 0.0009 (7) | 0.0074 (7) | −0.0017 (8) |
O3 | 0.0214 (8) | 0.0352 (10) | 0.0180 (7) | 0.0013 (8) | −0.0035 (6) | 0.0083 (8) |
O4 | 0.0424 (12) | 0.0860 (19) | 0.0466 (12) | −0.0228 (12) | −0.0057 (9) | 0.0414 (13) |
C1—C2 | 1.384 (3) | C7—C12A | 1.388 (4) |
C1—C3i | 1.384 (3) | C9—C10 | 1.355 (4) |
C1—H1 | 0.9500 | C9—C8B | 1.379 (4) |
C2—C3 | 1.387 (3) | C9—C8A | 1.379 (4) |
C2—C5 | 1.494 (3) | C9—H9 | 0.9500 |
C3—C4 | 1.485 (3) | C10—F2 | 1.346 (3) |
C4—O1 | 1.194 (3) | C10—C11 | 1.367 (4) |
C4—N1 | 1.389 (3) | C11—C12B | 1.377 (3) |
C5—O2 | 1.200 (3) | C11—C12A | 1.377 (3) |
C5—N1 | 1.384 (3) | C11—H11 | 0.9500 |
C6—O4 | 1.177 (3) | C8A—F1A | 1.331 (3) |
C6—O3 | 1.402 (3) | C12A—H12A | 0.9500 |
C6—C7 | 1.472 (3) | C8B—H8B | 0.9500 |
C7—C8B | 1.381 (3) | C12B—F1B | 1.315 (10) |
C7—C8A | 1.381 (3) | N1—O3 | 1.381 (2) |
C7—C12B | 1.388 (4) | ||
C2—C1—C3i | 114.5 (2) | C10—C9—H9 | 121.3 |
C2—C1—H1 | 122.8 | C8A—C9—H9 | 121.3 |
C3i—C1—H1 | 122.8 | F2—C10—C9 | 118.3 (2) |
C1—C2—C3 | 122.23 (19) | F2—C10—C11 | 118.5 (3) |
C1—C2—C5 | 129.0 (2) | C9—C10—C11 | 123.3 (2) |
C3—C2—C5 | 108.78 (19) | C10—C11—C12B | 118.2 (2) |
C1i—C3—C2 | 123.3 (2) | C10—C11—C12A | 118.2 (2) |
C1i—C3—C4 | 128.0 (2) | C10—C11—H11 | 120.9 |
C2—C3—C4 | 108.65 (19) | C12A—C11—H11 | 120.9 |
O1—C4—N1 | 126.2 (2) | F1A—C8A—C9 | 118.1 (2) |
O1—C4—C3 | 130.0 (2) | F1A—C8A—C7 | 119.4 (2) |
N1—C4—C3 | 103.76 (19) | C9—C8A—C7 | 122.5 (2) |
O2—C5—N1 | 126.1 (2) | C11—C12A—C7 | 121.3 (2) |
O2—C5—C2 | 130.6 (2) | C11—C12A—H12A | 119.3 |
N1—C5—C2 | 103.36 (19) | C7—C12A—H12A | 119.3 |
O4—C6—O3 | 121.1 (2) | C9—C8B—C7 | 122.5 (2) |
O4—C6—C7 | 130.0 (2) | C9—C8B—H8B | 118.8 |
O3—C6—C7 | 108.8 (2) | C7—C8B—H8B | 118.8 |
C8B—C7—C12B | 117.4 (2) | F1B—C12B—C11 | 112.2 (13) |
C8A—C7—C12A | 117.4 (2) | F1B—C12B—C7 | 126.4 (13) |
C8B—C7—C6 | 119.9 (2) | C11—C12B—C7 | 121.3 (2) |
C8A—C7—C6 | 119.9 (2) | O3—N1—C5 | 122.00 (19) |
C12B—C7—C6 | 122.7 (2) | O3—N1—C4 | 122.6 (2) |
C12A—C7—C6 | 122.7 (2) | C5—N1—C4 | 115.35 (19) |
C10—C9—C8B | 117.4 (2) | N1—O3—C6 | 111.96 (18) |
C10—C9—C8A | 117.4 (2) | ||
C3i—C1—C2—C3 | 0.5 (4) | C10—C9—C8A—F1A | −179.5 (3) |
C3i—C1—C2—C5 | 179.9 (2) | C10—C9—C8A—C7 | −0.5 (5) |
C1—C2—C3—C1i | −0.5 (4) | C12A—C7—C8A—F1A | 179.5 (3) |
C5—C2—C3—C1i | 180.0 (2) | C6—C7—C8A—F1A | 0.1 (4) |
C1—C2—C3—C4 | 178.0 (2) | C12A—C7—C8A—C9 | 0.4 (4) |
C5—C2—C3—C4 | −1.6 (3) | C6—C7—C8A—C9 | −179.0 (3) |
C1i—C3—C4—O1 | 1.0 (4) | C10—C11—C12A—C7 | 0.5 (4) |
C2—C3—C4—O1 | −177.4 (3) | C8A—C7—C12A—C11 | −0.4 (4) |
C1i—C3—C4—N1 | 178.1 (2) | C6—C7—C12A—C11 | 179.0 (3) |
C2—C3—C4—N1 | −0.2 (2) | C10—C9—C8B—C7 | −0.5 (5) |
C1—C2—C5—O2 | 3.1 (4) | C12B—C7—C8B—C9 | 0.4 (4) |
C3—C2—C5—O2 | −177.4 (2) | C6—C7—C8B—C9 | −179.0 (3) |
C1—C2—C5—N1 | −176.8 (2) | C10—C11—C12B—F1B | 177.2 (15) |
C3—C2—C5—N1 | 2.7 (2) | C10—C11—C12B—C7 | 0.5 (4) |
O4—C6—C7—C8B | −2.9 (5) | C8B—C7—C12B—F1B | −176.7 (17) |
O3—C6—C7—C8B | 176.6 (3) | C6—C7—C12B—F1B | 2.7 (18) |
O4—C6—C7—C8A | −2.9 (5) | C8B—C7—C12B—C11 | −0.4 (4) |
O3—C6—C7—C8A | 176.6 (3) | C6—C7—C12B—C11 | 179.0 (3) |
O4—C6—C7—C12B | 177.8 (3) | O2—C5—N1—O3 | −6.0 (4) |
O3—C6—C7—C12B | −2.7 (4) | C2—C5—N1—O3 | 173.86 (19) |
O4—C6—C7—C12A | 177.8 (3) | O2—C5—N1—C4 | 177.1 (2) |
O3—C6—C7—C12A | −2.7 (4) | C2—C5—N1—C4 | −3.0 (3) |
C8B—C9—C10—F2 | −179.2 (3) | O1—C4—N1—O3 | 2.6 (4) |
C8A—C9—C10—F2 | −179.2 (3) | C3—C4—N1—O3 | −174.73 (19) |
C8B—C9—C10—C11 | 0.6 (5) | O1—C4—N1—C5 | 179.4 (2) |
C8A—C9—C10—C11 | 0.6 (5) | C3—C4—N1—C5 | 2.1 (3) |
F2—C10—C11—C12B | 179.2 (3) | C5—N1—O3—C6 | 99.6 (3) |
C9—C10—C11—C12B | −0.5 (5) | C4—N1—O3—C6 | −83.7 (3) |
F2—C10—C11—C12A | 179.2 (3) | O4—C6—O3—N1 | −3.5 (4) |
C9—C10—C11—C12A | −0.5 (5) | C7—C6—O3—N1 | 176.9 (2) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O2ii | 0.95 | 2.37 | 3.271 (3) | 158 |
C9—H9···F1Aiii | 0.95 | 2.51 | 3.287 (3) | 139 |
C9—H9···F2iv | 0.95 | 2.63 | 3.307 (3) | 129 |
C11—H11···O1v | 0.95 | 2.39 | 3.200 (3) | 143 |
Symmetry codes: (ii) −x+1, y−1/2, −z+1/2; (iii) −x, −y, −z; (iv) −x, y−1/2, −z−1/2; (v) x, −y+3/2, z−1/2. |
Acknowledgements
The authors thank the Centro Regionale di Competenza NTAP of Regione Campania (Italy) for the X-ray facility.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CSD CrossRef Web of Science Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carella, A., Centore, R., Mager, L., Barsella, A. & Fort, A. (2007). Org. Electron. 8, 57–62. Web of Science CrossRef CAS Google Scholar
Centore, R. & Carella, A. (2013). Acta Cryst. E69, o1152–o1153. CSD CrossRef IUCr Journals Google Scholar
Centore, R., Concilio, S., Panunzi, B., Sirigu, A. & Tirelli, N. (1999). J. Polym. Sci. Part A Polym. Chem. 37, 603–608. CrossRef CAS Google Scholar
Centore, R., Fusco, S., Capobianco, A., Piccialli, V., Zaccaria, S. & Peluso, A. (2013). Eur. J. Org. Chem. pp. 3721–3728. Web of Science CSD CrossRef Google Scholar
Centore, R., Panunzi, B., Roviello, A., Sirigu, A. & Villano, P. (1996). J. Polym. Sci. Part A Polym. Chem. 34, 3203–3211. CrossRef CAS Google Scholar
D'Errico, S., Oliviero, G., Borbone, N., Amato, J., D'Alonzo, D., Piccialli, V., Mayol, L. & Piccialli, G. (2012). Molecules, 17, 13036–13044. CAS PubMed Google Scholar
Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dunitz, J. D. (2004). ChemBioChem, 5, 614–621. Web of Science CrossRef PubMed CAS Google Scholar
Dunitz, J. D. & Taylor, R. (1997). Chem. Eur. J. 3, 89–98. CSD CrossRef CAS Web of Science Google Scholar
Facchetti, A., Mushrush, M., Katz, H. E. & Marks, T. J. (2003). Adv. Mater. 15, 33–38. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Heeger, A. J. (2010). Chem. Soc. Rev. 39, 2354–2371. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Miao, Q. (2014). Adv. Mater. 26, 5541–5549. CrossRef CAS PubMed Google Scholar
Nielsen, C. B., Holliday, S., Chen, H.-Y., Cryer, S. J. & McCulloch, I. (2015). Acc. Chem. Res. 48, 2803–2812. CrossRef CAS PubMed Google Scholar
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Piccialli, V., Borbone, N. & Oliviero, G. (2007). Tetrahedron Lett. 48, 5131–5135. Web of Science CSD CrossRef CAS Google Scholar
Schmidt, R., Ling, M. M., Oh, J. H., Winkler, M., Könemann, M., Bao, Z. & Würthner, F. (2007). Adv. Mater. 19, 3692–3695. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Thalladi, V. R., Weiss, H.-C., Bläser, D., Boese, R., Nangia, A. & Desiraju, G. R. (1998). J. Am. Chem. Soc. 120, 8702–8710. Web of Science CSD CrossRef CAS Google Scholar
Yan, H., Chen, Z., Zheng, Y., Newman, C., Quinn, J. R., Dötz, F., Kastler, M. & Facchetti, A. (2009). Nature, 457, 679–686. CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.