research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of a new polymorph of potassium europium(III) bis­(sulfate) mono­hydrate, KEu(SO4)2·H2O

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, National Institute of Technology Kurukshetra, Haryana 136119, India
*Correspondence e-mail: apaul@nitkkr.ac.in

Edited by T. N. Guru Row, Indian Institute of Science, India (Received 8 September 2017; accepted 9 January 2018; online 26 January 2018)

The mixed-metal sulfate, KEu(SO4)2·H2O, has been obtained as a new polymorph using hydro­thermal conditions. The crystal structure is isotypic with NaCe(SO4)2·H2O and shows a three-dimensional connectivity of the tetra­hedral sulfate units with EuIII and KI ions. Tricapped trigonal–prismatic EuO9 units and square-anti­prismatic KO8 units link the SO4 tetra­hedra, building the three-dimensional structure. Topological analysis reveals the existence of two nodes with 6- and 10-connected nets. The compound was previously reported [Kazmierczak & Höppe (2010[Kazmierczak, K. & Höppe, H. A. (2010). J. Solid State Chem. 183, 2087-2094.]). J. Solid State Chem. 183, 2087–2094] in the monoclinic space group P21/c with a similar structural connectivity and coordination environments to the present compound.

1. Chemical context

The design of new solids including rare earth metal ions is an emerging field because of their potential applications in catalysis, luminescence and optoelectronics (Ramya et al., 2012[Ramya, A. R., Sharma, D., Natarajan, S. & Reddy, M. L. P. (2012). Inorg. Chem. 51, 8818-8826.]; Höppe, 2009[Höppe, H. A. (2009). Angew. Chem. Int. Ed. 48, 3572-3582.]; Mahata et al., 2008[Mahata, P., Ramya, K. V. & Natarajan, S. (2008). Chem. Eur. J. 14, 5839-5850.]; Shehee et al., 2003[Shehee, T. C., Sykora, R. E., Ok, K. M., Halasyamani, P. S. & Albrecht-Schmitt, T. E. (2003). Inorg. Chem. 42, 457-462.]). In general, the discovery of new solids is a major thrust in the field of solid-state research because of their diverse topol­ogical architectures and properties. In particular for rare earth metal compounds, the connectivity within the crystal structure becomes novel and complex as the coordination numbers are higher than for transition metals. In this regard, crystal engin­eering becomes challenging with non-centrosymmetric solids as it can lead to many chiral-related applications such as enanti­oselective separation, heterogeneous chiral catalysis or non-linear optical (NLO) effects (Ramya et al., 2012[Ramya, A. R., Sharma, D., Natarajan, S. & Reddy, M. L. P. (2012). Inorg. Chem. 51, 8818-8826.]; Höppe, 2009[Höppe, H. A. (2009). Angew. Chem. Int. Ed. 48, 3572-3582.]; Mahata et al., 2008[Mahata, P., Ramya, K. V. & Natarajan, S. (2008). Chem. Eur. J. 14, 5839-5850.]; Shehee et al., 2003[Shehee, T. C., Sykora, R. E., Ok, K. M., Halasyamani, P. S. & Albrecht-Schmitt, T. E. (2003). Inorg. Chem. 42, 457-462.]; Halasyamani & Poeppelmeier, 1998[Halasyamani, P. S. & Poeppelmeier, K. R. (1998). Chem. Mater. 10, 2753-2769.]; Sweeting & Rheingold, 1987[Sweeting, L. M. & Rheingold, A. L. (1987). J. Am. Chem. Soc. 109, 2652-2658.]). Obtaining new structures with various anions such as silicates, phosphates, phosphites, carboxyl­ates, sulfates, arsenates, selenates, selenites, germanates, borates or thio­sulfates is a long-standing research area (Sweeting et al., 1992[Sweeting, L. M., Cashel, M. L. & Rosenblatt, M. M. (1992). J. Lumin. 52, 281-291.]; Paul, 2016[Paul, A. K. (2016). J. Mol. Struct. 1125, 696-704.]; Paul & Natarajan, 2010[Paul, A. K. & Natarajan, S. (2010). Cryst. Growth Des. 10, 765-774.]; Paul et al., 2009[Paul, A. K., Madras, G. & Natarajan, S. (2009). CrystEngComm, 11, 55-57.], 2010[Paul, A. K., Sachidananda, S. & Natarajan, S. (2010). Cryst. Growth Des. 10, 456-464.]; Natarajan & Mandal, 2008[Natarajan, S. & Mandal, S. (2008). Angew. Chem. Int. Ed. 47, 4798-4828.]; Natarajan et al., 2006[Natarajan, S., Manual, S., Mahata, P., Rao, V. K., Ramaswamy, P., Banerjee, A., Paul, A. K. & Ramya, K. V. (2006). J. Chem. Sci. 118, 525-536.]; Feng et al., 2005[Feng, P., Bu, X. & Zheng, N. (2005). Acc. Chem. Res. 38, 293-303.]; Hathwar et al., 2011[Hathwar, V. R., Paul, A. K., Natarajan, S. & Guru Row, T. N. (2011). J. Phys. Chem. A, 115, 12818-12825.]; Held, 2014[Held, P. (2014). Acta Cryst. E70, 403-405.]). A rare earth metal can be a better choice than a transition metal as it provides many variations arising from coordination preferences, ligand geometry and valence states. The presence of two metals in a crystal structure can introduce more structural variation along with specific properties. From earlier reports, it is obvious that the design of chiral frameworks mostly require chiral fragments or chiral ligands. The synthesis of sulfate compounds with a chiral framework is a challenging task that requires a particular strategy. Hence, the synthetic strategy was modified (piperazine was used, which is not in the product but supports the crystallization of the sulfate compound) and the resultant compound is a new polymorph of KEu(SO4)2·H2O that is isotypic with trigonal NaCe(SO4)2·H2O (Blackburn & Gerkin, 1995[Blackburn, A. C. & Gerkin, R. E. (1995). Acta Cryst. C51, 2215-2218.]).

2. Structural commentary

The asymmetric unit of trigonal KEu(SO4)2·H2O contains eight non-hydrogen atoms, of which one Eu, one K and one O site (defining the water mol­ecule) are located on a twofold rotation axis, and one complete sulfate unit. The EuIII ion is coordinated by the O atoms of six sulfate tetra­hedra (two chelating, four in a monodentate way) and one water mol­ecule in a tricapped-trigonal–prismatic environment. The Eu—O bond lengths range from 2.425 (4) to 2.518 (4) Å with an average of 2.469 Å. The resulting three-dimensional Eu/SO4 framework is displayed in Fig. 1[link]. The KI ion is eight-coordin­ated by six sulfate units, again two chelating and four in a monodentate way, leading to a square-anti­prismatic KO8 coordination polyhedron with K—O distances ranging from 2.374 (5) to 2.830 (4) Å and an average of 2.556 Å. The KI ions form a similar three-dimensional potassium sulfate framework (Fig. 2[link]). The sulfate ion is an almost regular tetra­hedron with S—O distances ranging from 1.456 (4) to 1.484 (4) Å and O—S—O angles of 105.2 (2)–112.4 (3)°. The overall three-dimensional connectivity between the two metal cations and the sulfate anions is given in Fig. 3[link]. The present framework structure crystallizes isotypically with NaCe(SO4)2·H2O (Blackburn & Gerkin, 1995[Blackburn, A. C. & Gerkin, R. E. (1995). Acta Cryst. C51, 2215-2218.]). It should be noted that the reported structure of NaEu(SO4)2·H2O (Wu & Liu, 2006[Wu, C.-D. & Liu, Z.-Y. (2006). J. Solid State Chem. 179, 3500-3504.]) shows the same space-group type, very similar lattice parameters, and unexpectedly also very similar Na—O distances in comparison with the K—O distances of the title compound. The previously reported KEu(SO4)2·H2O polymorph crystallizes in space group P21/c (Kazmierczak & Höppe, 2010[Kazmierczak, K. & Höppe, H. A. (2010). J. Solid State Chem. 183, 2087-2094.]) and in comparison shows a similar connectivity and respective coordination polyhedra.

[Figure 1]
Figure 1
Three-dimensional framework observed by connectivity between the EuIII ions and the SO42− units. Green, yellow and red spheres represent Eu, S and O sites, respectively.
[Figure 2]
Figure 2
Three-dimensional framework observed by connectivity between the KI ions and the SO42− units. Cyan, yellow and red spheres represent K, S and O sites, respectively.
[Figure 3]
Figure 3
Overall three-dimensional connectivity between the EuIII ions, the KI ions and the SO42− units. Green, cyan, yellow and red spheres represent Eu, K, S and O sites, respectively

3. Supra­molecular features

As the hydrogen-atom positions could not be located during the present study, hydrogen-bonding inter­actions are not discussed here. An inter­esting structural feature arises due to the formation of three kinds of helices along the 31 screw axes. A detailed structural analysis of the topology of the framework was performed using TOPOS (Blatov et al., 2014[Blatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576-3586.]). The EuO9, KO8 and SO4 polyhedra are considered as different nodes and represented in different colors (Fig. 4[link]). Although the potassium and europium cations have different coordination environments, both have similar coordination behaviors, with terminal water only extra for europium. In topological terms, both form similar 10-connected nets with three-, four-, five- and six-membered rings, point symbol 312.414.512.67. The sulfate unit is associated with three-, four- and five-membered rings and forms a 6-connected net with point symbol 36.46.53. The topological approach thus allows the present complex structure to be visualized in a different way by considering the node-connectivity.

[Figure 4]
Figure 4
Three-dimensional node connectivity of the title compound. Green, cyan and yellow spheres represent the Eu and K sites and the SO4 unit, respectively.

4. Synthesis and crystallization

The title compound was synthesized under hydro­thermal conditions. All chemicals were purchased from Aldrich and used without further purification. Eu(COOCH3)3·xH2O (0.329 g, 1 mmol) was dissolved in 10 ml water. Then K2SO4 (0.348 g, 2 mmol) was added to the solution, which was stirred for 30 mins. Finally, piperazine (0.043 g, 0.5 mmol) was added to the reaction mixture and the pH was observed to be 8. The entire mixture was stirred for another 30 mins and poured into a 23 ml Teflon-lined autoclave. The autoclave was kept at 426 K for 5 d. The product was then filtered off and washed with water. The product contained some block-like single crystals accompanied with a light-yellow powder. The yield was approximately 75% based on Eu metal.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The correctness of all atom types was checked by free refinement of the occupancy. Hydrogen atoms of the lattice water mol­ecule could not be located in difference-Fourier maps. If the hydrogen atoms were included in calculated positions and refined with a riding model, the structure did not refine with suitable parameters, and therefore the hydrogen atoms were omitted in the final refinement. Except for atom O2 that was refined with an isotropic displacement parameter, all other atoms were refined with anisotropic displacement parameters.

Table 1
Experimental details

Crystal data
Chemical formula KEu(SO4)2·H2O
Mr 399.18
Crystal system, space group Trigonal, P3121
Temperature (K) 293
a, c (Å) 6.9065 (2), 12.7802 (5)
V3) 527.94 (3)
Z 3
Radiation type Mo Kα
μ (mm−1) 10.12
Crystal size (mm) 0.14 × 0.12 × 0.08
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.332, 0.498
No. of measured, independent and observed [I > 2σ(I)] reflections 3856, 848, 823
Rint 0.032
(sin θ/λ)max−1) 0.674
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.058, 1.07
No. of reflections 848
No. of parameters 56
Δρmax, Δρmin (e Å−3) 1.16, −0.86
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])
Absolute structure parameter −0.02 (3)
Computer programs: SMART and SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), CAMERON (Watkin et al., 1993[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009).

Potassium europium(III) bis(sulfate) monohydrate top
Crystal data top
KEu(SO4)2·H2ODx = 3.767 Mg m3
Mr = 399.18Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3121Cell parameters from 848 reflections
Hall symbol: P 31 2"θ = 3.4–28.6°
a = 6.9065 (2) ŵ = 10.12 mm1
c = 12.7802 (5) ÅT = 293 K
V = 527.94 (3) Å3Block like, light yellow
Z = 30.14 × 0.12 × 0.08 mm
F(000) = 558
Data collection top
Bruker SMART CCD area detector
diffractometer
848 independent reflections
Radiation source: fine-focus sealed tube823 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 28.6°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.332, Tmax = 0.498k = 89
3856 measured reflectionsl = 1617
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullH-atom parameters not defined
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.026P)2 + 3.0791P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.058(Δ/σ)max < 0.001
S = 1.07Δρmax = 1.16 e Å3
848 reflectionsΔρmin = 0.86 e Å3
56 parametersAbsolute structure: Flack (1983)
0 restraintsAbsolute structure parameter: 0.02 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.56354 (7)0.56354 (7)0.50000.00972 (12)
S10.5565 (2)0.5452 (2)0.25595 (8)0.0068 (2)
K10.5398 (3)0.5398 (3)0.00000.0196 (4)
O40.3795 (8)0.5049 (8)0.1823 (3)0.0156 (11)
O30.6104 (7)0.7411 (7)0.3231 (3)0.0142 (9)
O50.4906 (8)0.3578 (8)0.3288 (3)0.0155 (10)
O10.9181 (15)0.9181 (15)0.50000.068 (4)
O20.7533 (7)0.5868 (7)0.1949 (3)0.0165 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.01111 (18)0.01111 (18)0.00863 (18)0.0068 (2)0.00007 (9)0.00007 (9)
S10.0073 (6)0.0090 (6)0.0053 (5)0.0049 (6)0.0001 (5)0.0008 (4)
K10.0254 (8)0.0254 (8)0.0167 (8)0.0191 (10)0.0004 (4)0.0004 (4)
O40.013 (2)0.025 (3)0.0128 (18)0.012 (2)0.0075 (17)0.0030 (18)
O30.020 (2)0.010 (2)0.0136 (18)0.008 (2)0.0018 (16)0.0061 (15)
O50.022 (3)0.016 (2)0.014 (2)0.013 (2)0.0000 (17)0.0023 (16)
O10.024 (4)0.024 (4)0.154 (11)0.012 (4)0.017 (3)0.017 (3)
Geometric parameters (Å, º) top
Eu1—O2i2.425 (4)S1—K1i3.6182 (15)
Eu1—O2ii2.425 (5)S1—K1iv3.6579 (19)
Eu1—O4iii2.428 (5)K1—O5vii2.374 (5)
Eu1—O4iv2.428 (5)K1—O5viii2.374 (5)
Eu1—O12.449 (10)K1—O3ix2.479 (4)
Eu1—O3v2.514 (4)K1—O3x2.479 (4)
Eu1—O32.514 (4)K1—O4xi2.538 (4)
Eu1—O52.518 (4)K1—O42.538 (4)
Eu1—O5v2.518 (4)K1—O22.830 (4)
Eu1—S1v3.1210 (11)K1—O2xi2.830 (4)
Eu1—S13.1210 (11)K1—S1xi3.2726 (11)
Eu1—K1vi4.0356 (12)K1—S1vii3.6182 (15)
S1—O41.456 (4)K1—S1viii3.6182 (15)
S1—O21.465 (4)O4—Eu1x2.428 (5)
S1—O51.470 (5)O3—K1iv2.479 (4)
S1—O31.484 (4)O5—K1i2.374 (5)
S1—K13.2726 (11)O2—Eu1vii2.425 (4)
O2i—Eu1—O2ii77.6 (2)K1—S1—K1i105.93 (4)
O2i—Eu1—O4iii73.28 (14)O4—S1—K1iv81.0 (2)
O2ii—Eu1—O4iii145.65 (16)O2—S1—K1iv121.63 (18)
O2i—Eu1—O4iv145.65 (17)O5—S1—K1iv118.38 (17)
O2ii—Eu1—O4iv73.28 (14)O3—S1—K1iv29.66 (17)
O4iii—Eu1—O4iv139.6 (2)Eu1—S1—K1iv72.58 (2)
O2i—Eu1—O1141.21 (10)K1—S1—K1iv105.03 (4)
O2ii—Eu1—O1141.21 (10)K1i—S1—K1iv143.32 (5)
O4iii—Eu1—O169.82 (12)O5vii—K1—O5viii128.8 (3)
O4iv—Eu1—O169.82 (12)O5vii—K1—O3ix76.98 (14)
O2i—Eu1—O3v85.25 (14)O5viii—K1—O3ix153.95 (18)
O2ii—Eu1—O3v124.29 (13)O5vii—K1—O3x153.95 (18)
O4iii—Eu1—O3v71.15 (14)O5viii—K1—O3x76.98 (14)
O4iv—Eu1—O3v96.34 (14)O3ix—K1—O3x77.63 (19)
O1—Eu1—O3v72.05 (9)O5vii—K1—O4xi79.99 (15)
O2i—Eu1—O3124.29 (13)O5viii—K1—O4xi113.79 (14)
O2ii—Eu1—O385.25 (14)O3ix—K1—O4xi69.93 (14)
O4iii—Eu1—O396.34 (14)O3x—K1—O4xi85.94 (15)
O4iv—Eu1—O371.15 (14)O5vii—K1—O4113.79 (14)
O1—Eu1—O372.05 (9)O5viii—K1—O479.99 (15)
O3v—Eu1—O3144.10 (18)O3ix—K1—O485.94 (15)
O2i—Eu1—O568.88 (14)O3x—K1—O469.93 (14)
O2ii—Eu1—O576.38 (15)O4xi—K1—O4149.2 (2)
O4iii—Eu1—O576.45 (15)O5vii—K1—O264.32 (13)
O4iv—Eu1—O5119.87 (14)O5viii—K1—O299.13 (14)
O1—Eu1—O5112.47 (11)O3ix—K1—O288.93 (13)
O3v—Eu1—O5143.20 (14)O3x—K1—O2120.92 (13)
O3—Eu1—O555.58 (14)O4xi—K1—O2142.03 (14)
O2i—Eu1—O5v76.38 (15)O4—K1—O251.72 (13)
O2ii—Eu1—O5v68.88 (14)O5vii—K1—O2xi99.13 (14)
O4iii—Eu1—O5v119.87 (14)O5viii—K1—O2xi64.32 (13)
O4iv—Eu1—O5v76.45 (15)O3ix—K1—O2xi120.92 (13)
O1—Eu1—O5v112.47 (11)O3x—K1—O2xi88.93 (13)
O3v—Eu1—O5v55.58 (14)O4xi—K1—O2xi51.72 (13)
O3—Eu1—O5v143.20 (14)O4—K1—O2xi142.03 (14)
O5—Eu1—O5v135.1 (2)O2—K1—O2xi142.94 (19)
O2i—Eu1—S1v80.93 (10)O5vii—K1—S189.74 (9)
O2ii—Eu1—S1v96.53 (10)O5viii—K1—S189.12 (10)
O4iii—Eu1—S1v96.44 (10)O3ix—K1—S187.27 (10)
O4iv—Eu1—S1v84.68 (10)O3x—K1—S194.81 (10)
O1—Eu1—S1v91.61 (3)O4xi—K1—S1156.52 (12)
O3v—Eu1—S1v27.98 (9)O4—K1—S125.19 (10)
O3—Eu1—S1v154.22 (9)O2—K1—S126.53 (9)
O5—Eu1—S1v149.79 (11)O2xi—K1—S1151.64 (10)
O5v—Eu1—S1v27.67 (11)O5vii—K1—S1xi89.12 (10)
O2i—Eu1—S196.53 (10)O5viii—K1—S1xi89.74 (9)
O2ii—Eu1—S180.93 (10)O3ix—K1—S1xi94.81 (10)
O4iii—Eu1—S184.68 (10)O3x—K1—S1xi87.27 (10)
O4iv—Eu1—S196.44 (10)O4xi—K1—S1xi25.19 (10)
O1—Eu1—S191.61 (3)O4—K1—S1xi156.52 (12)
O3v—Eu1—S1154.22 (9)O2—K1—S1xi151.64 (10)
O3—Eu1—S127.98 (9)O2xi—K1—S1xi26.53 (9)
O5—Eu1—S127.67 (11)S1—K1—S1xi177.34 (9)
O5v—Eu1—S1149.79 (11)O5vii—K1—S1vii15.34 (9)
S1v—Eu1—S1176.78 (5)O5viii—K1—S1vii132.36 (15)
O2i—Eu1—K1vi69.92 (10)O3ix—K1—S1vii73.36 (10)
O2ii—Eu1—K1vi141.97 (10)O3x—K1—S1vii144.15 (11)
O4iii—Eu1—K1vi36.57 (10)O4xi—K1—S1vii64.67 (11)
O4iv—Eu1—K1vi127.33 (11)O4—K1—S1vii127.34 (11)
O1—Eu1—K1vi73.44 (2)O2—K1—S1vii79.43 (9)
O3v—Eu1—K1vi35.80 (9)O2xi—K1—S1vii88.26 (10)
O3—Eu1—K1vi129.45 (10)S1—K1—S1vii104.28 (3)
O5—Eu1—K1vi108.36 (11)S1xi—K1—S1vii74.79 (3)
O5v—Eu1—K1vi84.42 (10)O5vii—K1—S1viii132.36 (15)
S1v—Eu1—K1vi59.86 (3)O5viii—K1—S1viii15.34 (9)
S1—Eu1—K1vi121.20 (3)O3ix—K1—S1viii144.15 (11)
O4—S1—O2107.5 (2)O3x—K1—S1viii73.36 (10)
O4—S1—O5112.4 (3)O4xi—K1—S1viii127.34 (11)
O2—S1—O5111.0 (3)O4—K1—S1viii64.67 (11)
O4—S1—O3110.6 (3)O2—K1—S1viii88.26 (10)
O2—S1—O3110.1 (3)O2xi—K1—S1viii79.43 (9)
O5—S1—O3105.2 (2)S1—K1—S1viii74.79 (3)
O4—S1—Eu1130.45 (19)S1xi—K1—S1viii104.28 (3)
O2—S1—Eu1121.99 (18)S1vii—K1—S1viii140.69 (8)
O5—S1—Eu152.70 (17)S1—O4—Eu1x144.3 (3)
O3—S1—Eu152.64 (16)S1—O4—K1106.9 (2)
O4—S1—K147.92 (18)Eu1x—O4—K1108.69 (16)
O2—S1—K159.63 (17)S1—O3—K1iv133.1 (2)
O5—S1—K1129.05 (18)S1—O3—Eu199.4 (2)
O3—S1—K1125.43 (18)K1iv—O3—Eu1107.82 (15)
Eu1—S1—K1177.55 (5)S1—O5—K1i139.4 (2)
O4—S1—K1i106.2 (2)S1—O5—Eu199.6 (2)
O2—S1—K1i91.13 (18)K1i—O5—Eu1117.07 (16)
O5—S1—K1i25.29 (17)S1—O2—Eu1vii140.9 (3)
O3—S1—K1i128.50 (17)S1—O2—K193.8 (2)
Eu1—S1—K1i76.13 (3)Eu1vii—O2—K1104.89 (15)
Symmetry codes: (i) y+1, xy, z+1/3; (ii) xy, y+1, z+2/3; (iii) xy+1, y+1, z+2/3; (iv) y+1, xy+1, z+1/3; (v) y, x, z+1; (vi) x+y+1, x+1, z+2/3; (vii) x+y+1, x+1, z1/3; (viii) x+1, x+y+1, z+1/3; (ix) x+1, x+y, z+1/3; (x) x+y, x+1, z1/3; (xi) y, x, z.
 

Acknowledgements

Professor S. Natarajan is thanked for providing facilities.

Funding information

The SERB and DST, India, are thanked for the research grant.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlackburn, A. C. & Gerkin, R. E. (1995). Acta Cryst. C51, 2215–2218.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576–3586.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeng, P., Bu, X. & Zheng, N. (2005). Acc. Chem. Res. 38, 293–303.  CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHalasyamani, P. S. & Poeppelmeier, K. R. (1998). Chem. Mater. 10, 2753–2769.  Web of Science CrossRef CAS Google Scholar
First citationHathwar, V. R., Paul, A. K., Natarajan, S. & Guru Row, T. N. (2011). J. Phys. Chem. A, 115, 12818–12825.  CSD CrossRef CAS PubMed Google Scholar
First citationHeld, P. (2014). Acta Cryst. E70, 403–405.  CSD CrossRef IUCr Journals Google Scholar
First citationHöppe, H. A. (2009). Angew. Chem. Int. Ed. 48, 3572–3582.  Google Scholar
First citationKazmierczak, K. & Höppe, H. A. (2010). J. Solid State Chem. 183, 2087–2094.  CrossRef CAS Google Scholar
First citationMahata, P., Ramya, K. V. & Natarajan, S. (2008). Chem. Eur. J. 14, 5839–5850.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNatarajan, S. & Mandal, S. (2008). Angew. Chem. Int. Ed. 47, 4798–4828.  Web of Science CrossRef CAS Google Scholar
First citationNatarajan, S., Manual, S., Mahata, P., Rao, V. K., Ramaswamy, P., Banerjee, A., Paul, A. K. & Ramya, K. V. (2006). J. Chem. Sci. 118, 525–536.  Google Scholar
First citationPaul, A. K. (2016). J. Mol. Struct. 1125, 696–704.  CSD CrossRef CAS Google Scholar
First citationPaul, A. K., Madras, G. & Natarajan, S. (2009). CrystEngComm, 11, 55–57.  CSD CrossRef CAS Google Scholar
First citationPaul, A. K. & Natarajan, S. (2010). Cryst. Growth Des. 10, 765–774.  CSD CrossRef CAS Google Scholar
First citationPaul, A. K., Sachidananda, S. & Natarajan, S. (2010). Cryst. Growth Des. 10, 456–464.  CSD CrossRef CAS Google Scholar
First citationRamya, A. R., Sharma, D., Natarajan, S. & Reddy, M. L. P. (2012). Inorg. Chem. 51, 8818–8826.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationShehee, T. C., Sykora, R. E., Ok, K. M., Halasyamani, P. S. & Albrecht-Schmitt, T. E. (2003). Inorg. Chem. 42, 457–462.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSweeting, L. M., Cashel, M. L. & Rosenblatt, M. M. (1992). J. Lumin. 52, 281–291.  CrossRef CAS Google Scholar
First citationSweeting, L. M. & Rheingold, A. L. (1987). J. Am. Chem. Soc. 109, 2652–2658.  CSD CrossRef CAS Web of Science Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationWu, C.-D. & Liu, Z.-Y. (2006). J. Solid State Chem. 179, 3500–3504.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds