research communications
Monoclinic polymorph of chlorido(dimethyl sulfoxide-κO)triphenyltin(IV)
aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bCentro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico, and cInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sgne0281@yahoo.fr
The 6H5)3Cl(C2H6OS)], (I), has been reported with one molecule in the in an orthorhombic cell [Kumar et al. (2009). Acta Cryst. E65, m1602–m1603]. While using SnPh3Cl as a starting material for a reaction for which the products were recrystallized over a very long time (six months) from dimethyl sulfoxide (DMSO), a new polymorph was obtained for (I), with two independent molecules in the of a monoclinic cell. The coordination geometry of the Sn centres remains unchanged, with the Cl− ion and the DMSO molecule in the apical positions and the phenyl C atoms in the equatorial positions of a trigonal bipyramid. The main difference between the polymorphs is the relative orientation of the phenyl rings in the equatorial plane, reflecting a degree of of these groups about their Sn—C bonds. In the crystal, molecules are linked into [010] chains mediated by weak C—H⋯O interactions.
of the title tin complex, [Sn(CKeywords: crystal structure; polymorphism; tin; dimethyl sulfoxide; conformation.
CCDC reference: 1815199
1. Chemical context
The Dakar research group and others worldwide have been focusing for a long time on the study of interactions of ammonium salts of oxyacids with metallic halides, to obtain adducts and complexes in which the oxyanion behaves as a ligand through its O atoms (Diassé-Sarr & Diop, 2011; Pouye et al., 2014; Toure et al., 2016; Sarr et al., 2016; Ng & Hook, 1999). The main advantage of this general strategy is the high solubility of the ammonium salts in common organic solvents, which facilitates the development of traditional synthetic methods in solution. The well-known flip side is that separation and purification procedures are almost always necessary, and that such syntheses are not in line with the principles of Green Chemistry, since solvent is an intrinsic waste.
However, from time to time, when the recrystallization is the method of purification, as-yet undiscovered polymorphs of unreacted materials, products or by-products, are emerging. In such instances, the involved chemistry may be of little interest, while the chemical crystallography of the unexpected polymorph(s) may be of significant interest, even in borderline cases like the disappearing polymorphs (Bučar et al., 2015). Actually, the propensity of a given molecule to crystallize in various polymorphic forms is still difficult to predict (Price, 2009), and, for example, Ostwald's `law of stages' that states it is the least stable polymorph that crystallizes first, is of limited interest for concrete crystallizations (Threlfall, 2003). The current situation is thus that a significant number of new polymorphs are still obtained serendipitously, using a technique that could be coined as crystallization by oblivion. The herein reported title compound, (I), a new monoclinic polymorph of a frequently used starting material in tin chemistry, was obtained in this way: in one of our research programs, we have initiated the study of the interactions between [CH3NH2(CH2)2NH2CH3]SO4 and SnPh3Cl in a mixture of CH2Cl2 and dimethyl sulfoxide (DMSO) as solvent. One of the products obtained in an attempt of crystallization carried out over a very long time was the adduct obtained by addition of DMSO to the starting material SnPh3Cl, to form [SnPh3Cl(DMSO)]. The of this compound has been reported previously, in P212121 (Kumar et al., 2009; CSD refcode: RUGYOI, Groom et al., 2016). In that case, crystals were obtained by dissolving SnPh3Cl in hot DMSO, affording fine colourless crystals by solvent evaporation over three days.
2. Structural commentary
Instead of the known orthorhombic structure of the title compound, we crystallized a monoclinic polymorph, in P21, with two molecules in the (Fig. 1).
The independent molecules display different conformations, as a consequence of a degree of , inset). This conformational flexibility seems to be the reason why the compound has at least two stable polymorphs, even if the trigonal–bipyramidal geometry for the Sn centre is retained. The relative orientation of the phenyl rings in the observed conformers may be estimated using the dihedral angles formed by the rings in each molecule. These angles span a large range, from 28.3 (4) to 87.2° (Table 1). As a consequence, the orientation of the DMSO molecule with respect to the SnPh3 core is also variable. In the orthorhombic phase, the S—Me groups of DMSO are staggered with the Sn—C bonds; in the new monoclinic phase, one complex displays a similar conformation, while in the other the S—Me groups are eclipsed with the Sn—C bonds (Fig. 2). The resulting simulated powder diffraction patterns for each polymorph are, as expected, also very different (Fig. 2).
of the phenyl groups about their Sn—C bonds. An overlay between both molecules gives deviations as high as 1.7 Å, and the rotation of one phenyl group is obvious (Fig. 1With such contrasting features for the dimorphic phases of [SnPh3Cl(DMSO)], obtained basically from DMSO solutions using short and long evaporation times, one could expect the apparition of other phases under different conditions of crystallization, for example by varying the solvent or the temperature of crystallization.
3. Supramolecular features
In the extended structure of the orthorhombic phase, one methyl group in DMSO forms weak C—H⋯Cl and C—H⋯π interactions, and molecules related by the 21 screw axis in the [010] direction feature π–π interactions between two phenyl rings, separated by 3.934 (3) Å (Kumar et al., 2009). In the monoclinic form, molecules related through the 21 axis in P21 no longer form π–π interactions. The supramolecular structure of (I) is based rather on weak C—H⋯Cl contacts involving, as in the first polymorph, the methyl groups of the DMSO molecule as donor, with H⋯Cl separations ranging from 2.82 to 2.94 Å. The resulting supramolecular one-dimensional structure is a zigzag chain of alternating Sn1 and Sn2 independent molecules, running along the screw axis (Fig. 3). The absence of other stabilizing intermolecular contacts may suggest a less thermodynamically stable crystal, compared to the orthorhombic crystal obtained by fast crystallization, in contradiction with Ostwald's rule (Threlfall, 2003). However, the crystal structures are in agreement with the calculated densities for both polymorphs: 1.562 g cm−3 for the orthorhombic form and 1.514 g cm−3 for the less stable monoclinic form reported here.
4. Database survey
According to the CSD (V5.39; Groom et al., 2016), DMSO is a good coordinating solvent for tin: 64 hits may be recovered, in which the average value for the bond length Sn—O is 2.27 (11) Å for 105 instances. The bond length characterizing the coordination of DMSO in the monoclinic polymorph is very long compared to this average: the bond lengths Sn1—O1 and Sn2—O2 are 2.487 (4) and 2.368 (4) Å, respectively, reflecting a coordination of limited strength. Again, the orthorhombic form seems to be stabilized by comparison with the monoclinic form, as the DMSO is more tightly coordinated, with Sn—O(DMSO) = 2.311 (3) Å (Kumar et al., 2009).
5. Synthesis and crystallization
[CH3NH2(CH2)2NH2CH3]SO4 has been synthesized on allowing CH3NH(CH2)2NHCH3 to react with H2SO4 in water in a 1:1 ratio. Slow evaporation of the resulting solution at 300 K gave after six weeks a yellowish viscous liquid supposed to be [CH3NH2(CH2)2NH2CH3]SO4 (L). When L (0.024 g, 0.130 mmol) dissolved in 50 ml of a 1:1 water/ethanol mixture was reacted with SnPh3Cl (0.100 g, 0.260 mmol) dissolved in a 1:1 dichloromethane/methanol mixture (50 ml), a slightly cloudy solution was obtained and filtered. The filtrate, when submitted to a slow solvent evaporation at 300 K over three days, produced a powder, which was redissolved in DMSO. Slow solvent evaporation at 300 K over six months afforded colourless blocks of (I) suitable for X-ray diffraction.
6. Refinement
Crystal data, data collection and structure . The C-bound H atoms were included in calculated positions (C—H = 0.93–0.96 Å) and refined as riding, with Uiso(H) =1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms. The was assigned on the basis of the of the (Parsons et al., 2013).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1815199
https://doi.org/10.1107/S2056989018000439/hb4193sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018000439/hb4193Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b).[Sn(C6H5)3Cl(C2H6OS)] | F(000) = 928 |
Mr = 463.57 | Dx = 1.514 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.81934 (18) Å | Cell parameters from 28302 reflections |
b = 15.3698 (3) Å | θ = 3.3–25.8° |
c = 15.4209 (3) Å | µ = 1.49 mm−1 |
β = 103.294 (2)° | T = 297 K |
V = 2034.31 (7) Å3 | Block, colourless |
Z = 4 | 0.48 × 0.30 × 0.23 mm |
Rigaku OD Xcalibur Atlas Gemini diffractometer | 14767 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 10835 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
Detector resolution: 10.5564 pixels mm-1 | θmax = 33.0°, θmin = 3.0° |
ω scans | h = −13→13 |
Absorption correction: analytical (CrysAlis PRO; Rigaku OD, 2015) | k = −23→23 |
Tmin = 0.880, Tmax = 0.941 | l = −23→23 |
133515 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.083 | w = 1/[σ2(Fo2) + (0.0301P)2 + 1.1572P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
14767 reflections | Δρmax = 1.48 e Å−3 |
437 parameters | Δρmin = −0.74 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 4338 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 constraints | Absolute structure parameter: −0.039 (6) |
Primary atom site location: structure-invariant direct methods |
x | y | z | Uiso*/Ueq | ||
Sn1 | 0.34055 (4) | 0.62754 (2) | 0.81374 (2) | 0.04086 (8) | |
Cl1 | 0.14377 (15) | 0.71185 (10) | 0.70653 (11) | 0.0575 (3) | |
S1 | 0.6727 (2) | 0.60605 (13) | 0.98769 (13) | 0.0760 (5) | |
O1 | 0.5508 (5) | 0.5538 (3) | 0.9246 (3) | 0.0626 (10) | |
C1 | 0.6394 (12) | 0.5930 (10) | 1.0910 (6) | 0.154 (7) | |
H1A | 0.530448 | 0.600927 | 1.088428 | 0.232* | |
H1B | 0.698577 | 0.635231 | 1.130756 | 0.232* | |
H1C | 0.670287 | 0.535548 | 1.112350 | 0.232* | |
C2 | 0.8465 (9) | 0.5461 (9) | 1.0021 (7) | 0.121 (3) | |
H2A | 0.829588 | 0.488105 | 1.021127 | 0.182* | |
H2B | 0.926307 | 0.573706 | 1.046403 | 0.182* | |
H2C | 0.878378 | 0.543618 | 0.946699 | 0.182* | |
C3 | 0.3347 (6) | 0.7082 (3) | 0.9248 (3) | 0.0440 (11) | |
C4 | 0.2591 (8) | 0.6773 (4) | 0.9877 (4) | 0.0589 (15) | |
H4 | 0.209888 | 0.623450 | 0.978833 | 0.071* | |
C5 | 0.2546 (9) | 0.7242 (5) | 1.0634 (5) | 0.0741 (19) | |
H5 | 0.202098 | 0.702700 | 1.104703 | 0.089* | |
C6 | 0.3290 (10) | 0.8032 (6) | 1.0764 (5) | 0.084 (2) | |
H6 | 0.329355 | 0.834620 | 1.127994 | 0.101* | |
C7 | 0.4025 (9) | 0.8362 (5) | 1.0150 (6) | 0.084 (2) | |
H7 | 0.449645 | 0.890623 | 1.023832 | 0.101* | |
C8 | 0.4066 (8) | 0.7885 (4) | 0.9395 (5) | 0.0661 (16) | |
H8 | 0.458269 | 0.810722 | 0.898147 | 0.079* | |
C9 | 0.2087 (6) | 0.5120 (3) | 0.8110 (3) | 0.0419 (11) | |
C10 | 0.2788 (9) | 0.4313 (4) | 0.8150 (4) | 0.0579 (14) | |
H10 | 0.385218 | 0.426973 | 0.818618 | 0.070* | |
C11 | 0.1885 (11) | 0.3558 (4) | 0.8136 (4) | 0.075 (2) | |
H11 | 0.236112 | 0.301569 | 0.816462 | 0.090* | |
C12 | 0.0321 (11) | 0.3608 (5) | 0.8082 (5) | 0.080 (2) | |
H12 | −0.026361 | 0.310414 | 0.808045 | 0.096* | |
C13 | −0.0371 (9) | 0.4402 (6) | 0.8030 (5) | 0.076 (2) | |
H13 | −0.143832 | 0.443817 | 0.798711 | 0.091* | |
C14 | 0.0488 (7) | 0.5163 (4) | 0.8039 (4) | 0.0578 (14) | |
H14 | −0.000695 | 0.570040 | 0.799842 | 0.069* | |
C15 | 0.5039 (5) | 0.6303 (4) | 0.7325 (3) | 0.0449 (10) | |
C16 | 0.6395 (7) | 0.6785 (4) | 0.7522 (5) | 0.0625 (15) | |
H16 | 0.665734 | 0.709282 | 0.805463 | 0.075* | |
C17 | 0.7363 (8) | 0.6816 (6) | 0.6940 (7) | 0.087 (2) | |
H17 | 0.825710 | 0.715735 | 0.707348 | 0.105* | |
C18 | 0.7026 (10) | 0.6354 (7) | 0.6177 (7) | 0.099 (3) | |
H18 | 0.769586 | 0.637220 | 0.579073 | 0.119* | |
C19 | 0.5686 (12) | 0.5852 (6) | 0.5964 (6) | 0.097 (3) | |
H19 | 0.546093 | 0.552816 | 0.544026 | 0.116* | |
C20 | 0.4687 (8) | 0.5835 (4) | 0.6535 (4) | 0.0616 (15) | |
H20 | 0.377499 | 0.550909 | 0.638875 | 0.074* | |
Sn2 | 0.21662 (4) | 0.54546 (2) | 0.32336 (2) | 0.04487 (8) | |
Cl2 | −0.03762 (16) | 0.62413 (13) | 0.27444 (12) | 0.0729 (4) | |
S2 | 0.52976 (17) | 0.39472 (10) | 0.33520 (9) | 0.0526 (3) | |
O2 | 0.4552 (4) | 0.4702 (3) | 0.3724 (3) | 0.0534 (9) | |
C21 | 0.7148 (10) | 0.4347 (6) | 0.3252 (8) | 0.111 (4) | |
H21A | 0.700502 | 0.475938 | 0.277182 | 0.166* | |
H21B | 0.777566 | 0.387183 | 0.313190 | 0.166* | |
H21C | 0.766040 | 0.462650 | 0.379761 | 0.166* | |
C22 | 0.5951 (9) | 0.3236 (4) | 0.4253 (5) | 0.0731 (18) | |
H22A | 0.651875 | 0.355947 | 0.475644 | 0.110* | |
H22B | 0.661969 | 0.280355 | 0.408952 | 0.110* | |
H22C | 0.507284 | 0.295784 | 0.440433 | 0.110* | |
C23 | 0.1457 (6) | 0.4846 (4) | 0.4317 (3) | 0.0465 (11) | |
C24 | 0.1469 (7) | 0.3946 (4) | 0.4382 (4) | 0.0604 (14) | |
H24 | 0.186122 | 0.361348 | 0.398009 | 0.073* | |
C25 | 0.0900 (9) | 0.3541 (6) | 0.5046 (5) | 0.082 (2) | |
H25 | 0.087611 | 0.293635 | 0.507276 | 0.098* | |
C26 | 0.0380 (9) | 0.4017 (8) | 0.5655 (5) | 0.091 (3) | |
H26 | 0.002901 | 0.374122 | 0.610813 | 0.109* | |
C27 | 0.0370 (9) | 0.4904 (7) | 0.5604 (5) | 0.084 (2) | |
H27 | 0.000894 | 0.522937 | 0.602374 | 0.101* | |
C28 | 0.0893 (7) | 0.5321 (5) | 0.4932 (4) | 0.0683 (16) | |
H28 | 0.086386 | 0.592521 | 0.489635 | 0.082* | |
C29 | 0.1821 (6) | 0.4685 (4) | 0.2058 (3) | 0.0449 (11) | |
C30 | 0.2624 (8) | 0.4840 (5) | 0.1406 (4) | 0.0627 (16) | |
H30 | 0.333652 | 0.529506 | 0.147514 | 0.075* | |
C31 | 0.2388 (10) | 0.4330 (6) | 0.0654 (5) | 0.081 (2) | |
H31 | 0.292424 | 0.445230 | 0.021473 | 0.097* | |
C32 | 0.1357 (10) | 0.3636 (6) | 0.0544 (5) | 0.083 (2) | |
H32 | 0.122027 | 0.328401 | 0.004200 | 0.099* | |
C33 | 0.0542 (9) | 0.3475 (5) | 0.1184 (5) | 0.077 (2) | |
H33 | −0.016318 | 0.301658 | 0.111762 | 0.093* | |
C34 | 0.0780 (7) | 0.4004 (4) | 0.1930 (4) | 0.0608 (15) | |
H34 | 0.021684 | 0.389495 | 0.236020 | 0.073* | |
C35 | 0.3540 (6) | 0.6620 (4) | 0.3340 (4) | 0.0477 (12) | |
C36 | 0.2896 (8) | 0.7420 (4) | 0.3393 (4) | 0.0596 (15) | |
H36 | 0.184343 | 0.745718 | 0.339215 | 0.072* | |
C37 | 0.3757 (9) | 0.8177 (4) | 0.3449 (5) | 0.0664 (17) | |
H37 | 0.329304 | 0.871349 | 0.349298 | 0.080* | |
C38 | 0.5283 (9) | 0.8128 (5) | 0.3439 (5) | 0.0745 (19) | |
H38 | 0.586515 | 0.863655 | 0.347323 | 0.089* | |
C39 | 0.5983 (9) | 0.7348 (5) | 0.3381 (6) | 0.087 (2) | |
H39 | 0.703561 | 0.732256 | 0.337942 | 0.104* | |
C40 | 0.5110 (8) | 0.6591 (5) | 0.3323 (6) | 0.074 (2) | |
H40 | 0.557948 | 0.605751 | 0.327231 | 0.089* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.04052 (16) | 0.03857 (15) | 0.04383 (16) | −0.00402 (14) | 0.01042 (12) | −0.00110 (15) |
Cl1 | 0.0418 (6) | 0.0626 (8) | 0.0669 (8) | 0.0044 (6) | 0.0100 (6) | 0.0178 (7) |
S1 | 0.0559 (9) | 0.0893 (13) | 0.0750 (11) | 0.0037 (8) | −0.0011 (8) | −0.0046 (9) |
O1 | 0.065 (2) | 0.055 (2) | 0.057 (2) | 0.007 (2) | −0.0088 (18) | 0.000 (2) |
C1 | 0.082 (6) | 0.30 (2) | 0.070 (5) | −0.013 (8) | −0.003 (5) | −0.019 (8) |
C2 | 0.066 (5) | 0.174 (10) | 0.117 (7) | 0.033 (6) | 0.008 (5) | −0.025 (8) |
C3 | 0.046 (3) | 0.040 (2) | 0.044 (3) | 0.001 (2) | 0.006 (2) | −0.003 (2) |
C4 | 0.072 (4) | 0.048 (3) | 0.059 (4) | 0.004 (3) | 0.019 (3) | −0.002 (3) |
C5 | 0.082 (5) | 0.089 (5) | 0.059 (4) | 0.019 (4) | 0.031 (4) | −0.005 (4) |
C6 | 0.089 (5) | 0.091 (5) | 0.070 (5) | 0.011 (4) | 0.014 (4) | −0.033 (4) |
C7 | 0.084 (5) | 0.072 (5) | 0.095 (6) | −0.016 (4) | 0.021 (4) | −0.037 (4) |
C8 | 0.069 (4) | 0.061 (4) | 0.068 (4) | −0.014 (3) | 0.015 (3) | −0.015 (3) |
C9 | 0.050 (3) | 0.043 (3) | 0.034 (2) | −0.008 (2) | 0.010 (2) | 0.0001 (19) |
C10 | 0.076 (4) | 0.048 (3) | 0.049 (3) | 0.004 (3) | 0.013 (3) | −0.002 (2) |
C11 | 0.124 (7) | 0.041 (3) | 0.059 (4) | −0.017 (4) | 0.018 (4) | −0.005 (3) |
C12 | 0.116 (7) | 0.074 (5) | 0.054 (4) | −0.049 (5) | 0.026 (4) | −0.008 (3) |
C13 | 0.070 (4) | 0.103 (6) | 0.059 (4) | −0.045 (4) | 0.021 (3) | −0.011 (4) |
C14 | 0.056 (3) | 0.066 (4) | 0.055 (3) | −0.012 (3) | 0.021 (3) | −0.004 (3) |
C15 | 0.034 (2) | 0.049 (2) | 0.052 (3) | 0.005 (2) | 0.0104 (18) | 0.007 (3) |
C16 | 0.043 (3) | 0.067 (4) | 0.076 (4) | −0.002 (2) | 0.010 (3) | 0.012 (3) |
C17 | 0.046 (4) | 0.094 (6) | 0.130 (7) | 0.007 (3) | 0.038 (4) | 0.029 (5) |
C18 | 0.079 (5) | 0.110 (6) | 0.133 (8) | 0.018 (5) | 0.074 (5) | 0.026 (7) |
C19 | 0.128 (8) | 0.101 (6) | 0.074 (5) | 0.036 (5) | 0.047 (5) | 0.001 (4) |
C20 | 0.060 (4) | 0.068 (4) | 0.061 (4) | −0.002 (3) | 0.023 (3) | −0.007 (3) |
Sn2 | 0.03997 (16) | 0.04791 (18) | 0.04579 (17) | 0.00040 (15) | 0.00790 (13) | 0.00084 (15) |
Cl2 | 0.0441 (7) | 0.0668 (8) | 0.0983 (11) | 0.0105 (8) | −0.0033 (7) | 0.0098 (10) |
S2 | 0.0523 (8) | 0.0547 (7) | 0.0489 (7) | 0.0072 (6) | 0.0076 (6) | −0.0020 (6) |
O2 | 0.0425 (19) | 0.056 (2) | 0.059 (2) | 0.0104 (17) | 0.0079 (17) | −0.0024 (18) |
C21 | 0.082 (5) | 0.080 (5) | 0.196 (11) | 0.022 (4) | 0.086 (7) | 0.031 (6) |
C22 | 0.081 (5) | 0.070 (4) | 0.070 (4) | 0.020 (3) | 0.020 (4) | 0.015 (3) |
C23 | 0.037 (2) | 0.062 (3) | 0.040 (2) | 0.001 (2) | 0.008 (2) | −0.002 (2) |
C24 | 0.063 (4) | 0.064 (3) | 0.055 (3) | 0.005 (3) | 0.016 (3) | 0.009 (3) |
C25 | 0.085 (5) | 0.087 (5) | 0.073 (5) | −0.007 (4) | 0.016 (4) | 0.027 (4) |
C26 | 0.062 (4) | 0.163 (9) | 0.050 (4) | −0.007 (5) | 0.016 (3) | 0.023 (5) |
C27 | 0.071 (5) | 0.139 (8) | 0.050 (4) | −0.008 (5) | 0.027 (3) | −0.019 (4) |
C28 | 0.066 (4) | 0.080 (5) | 0.061 (4) | 0.005 (3) | 0.019 (3) | −0.011 (3) |
C29 | 0.044 (3) | 0.054 (3) | 0.036 (2) | 0.005 (2) | 0.010 (2) | 0.004 (2) |
C30 | 0.060 (4) | 0.078 (4) | 0.055 (3) | 0.002 (3) | 0.023 (3) | 0.012 (3) |
C31 | 0.093 (5) | 0.109 (6) | 0.050 (4) | 0.028 (5) | 0.032 (4) | 0.015 (4) |
C32 | 0.104 (6) | 0.088 (5) | 0.050 (4) | 0.026 (5) | 0.005 (4) | −0.013 (4) |
C33 | 0.089 (5) | 0.076 (4) | 0.057 (4) | −0.015 (4) | −0.004 (4) | −0.012 (3) |
C34 | 0.062 (4) | 0.070 (4) | 0.051 (3) | −0.013 (3) | 0.014 (3) | −0.007 (3) |
C35 | 0.047 (3) | 0.049 (3) | 0.045 (3) | −0.003 (2) | 0.007 (2) | −0.001 (2) |
C36 | 0.059 (4) | 0.060 (3) | 0.057 (4) | 0.003 (3) | 0.007 (3) | −0.007 (3) |
C37 | 0.080 (5) | 0.049 (3) | 0.063 (4) | 0.000 (3) | 0.003 (3) | −0.001 (3) |
C38 | 0.084 (5) | 0.059 (4) | 0.078 (5) | −0.021 (4) | 0.012 (4) | 0.005 (3) |
C39 | 0.065 (4) | 0.066 (4) | 0.137 (8) | −0.020 (3) | 0.035 (5) | −0.003 (4) |
C40 | 0.052 (4) | 0.064 (4) | 0.109 (6) | −0.001 (3) | 0.026 (4) | −0.004 (4) |
Sn1—C15 | 2.115 (4) | Sn2—C29 | 2.127 (5) |
Sn1—C9 | 2.118 (5) | Sn2—C23 | 2.130 (5) |
Sn1—C3 | 2.125 (5) | Sn2—C35 | 2.147 (6) |
Sn1—Cl1 | 2.4708 (14) | Sn2—O2 | 2.368 (4) |
Sn1—O1 | 2.487 (4) | Sn2—Cl2 | 2.5061 (14) |
S1—O1 | 1.505 (4) | S2—O2 | 1.510 (4) |
S1—C1 | 1.697 (10) | S2—C22 | 1.757 (6) |
S1—C2 | 1.758 (9) | S2—C21 | 1.784 (8) |
C1—H1A | 0.9600 | C21—H21A | 0.9600 |
C1—H1B | 0.9600 | C21—H21B | 0.9600 |
C1—H1C | 0.9600 | C21—H21C | 0.9600 |
C2—H2A | 0.9600 | C22—H22A | 0.9600 |
C2—H2B | 0.9600 | C22—H22B | 0.9600 |
C2—H2C | 0.9600 | C22—H22C | 0.9600 |
C3—C4 | 1.381 (8) | C23—C28 | 1.378 (8) |
C3—C8 | 1.383 (8) | C23—C24 | 1.386 (8) |
C4—C5 | 1.379 (9) | C24—C25 | 1.388 (9) |
C4—H4 | 0.9300 | C24—H24 | 0.9300 |
C5—C6 | 1.373 (11) | C25—C26 | 1.351 (12) |
C5—H5 | 0.9300 | C25—H25 | 0.9300 |
C6—C7 | 1.362 (12) | C26—C27 | 1.364 (13) |
C6—H6 | 0.9300 | C26—H26 | 0.9300 |
C7—C8 | 1.384 (9) | C27—C28 | 1.385 (10) |
C7—H7 | 0.9300 | C27—H27 | 0.9300 |
C8—H8 | 0.9300 | C28—H28 | 0.9300 |
C9—C10 | 1.381 (8) | C29—C34 | 1.377 (8) |
C9—C14 | 1.390 (8) | C29—C30 | 1.377 (8) |
C10—C11 | 1.405 (9) | C30—C31 | 1.375 (10) |
C10—H10 | 0.9300 | C30—H30 | 0.9300 |
C11—C12 | 1.364 (11) | C31—C32 | 1.386 (12) |
C11—H11 | 0.9300 | C31—H31 | 0.9300 |
C12—C13 | 1.359 (12) | C32—C33 | 1.370 (11) |
C12—H12 | 0.9300 | C32—H32 | 0.9300 |
C13—C14 | 1.391 (9) | C33—C34 | 1.385 (9) |
C13—H13 | 0.9300 | C33—H33 | 0.9300 |
C14—H14 | 0.9300 | C34—H34 | 0.9300 |
C15—C16 | 1.381 (8) | C35—C36 | 1.366 (8) |
C15—C20 | 1.387 (8) | C35—C40 | 1.391 (8) |
C16—C17 | 1.375 (10) | C36—C37 | 1.381 (9) |
C16—H16 | 0.9300 | C36—H36 | 0.9300 |
C17—C18 | 1.348 (13) | C37—C38 | 1.351 (10) |
C17—H17 | 0.9300 | C37—H37 | 0.9300 |
C18—C19 | 1.386 (13) | C38—C39 | 1.361 (11) |
C18—H18 | 0.9300 | C38—H38 | 0.9300 |
C19—C20 | 1.382 (10) | C39—C40 | 1.386 (9) |
C19—H19 | 0.9300 | C39—H39 | 0.9300 |
C20—H20 | 0.9300 | C40—H40 | 0.9300 |
C15—Sn1—C9 | 116.8 (2) | C29—Sn2—C23 | 114.4 (2) |
C15—Sn1—C3 | 127.7 (2) | C29—Sn2—C35 | 119.8 (2) |
C9—Sn1—C3 | 112.9 (2) | C23—Sn2—C35 | 124.7 (2) |
C15—Sn1—Cl1 | 93.59 (13) | C29—Sn2—O2 | 86.73 (16) |
C9—Sn1—Cl1 | 97.39 (15) | C23—Sn2—O2 | 86.23 (17) |
C3—Sn1—Cl1 | 95.16 (14) | C35—Sn2—O2 | 86.50 (18) |
C15—Sn1—O1 | 85.09 (16) | C29—Sn2—Cl2 | 93.96 (14) |
C9—Sn1—O1 | 87.17 (17) | C23—Sn2—Cl2 | 92.53 (14) |
C3—Sn1—O1 | 82.21 (17) | C35—Sn2—Cl2 | 94.06 (16) |
Cl1—Sn1—O1 | 175.36 (11) | O2—Sn2—Cl2 | 178.75 (11) |
O1—S1—C1 | 107.0 (5) | O2—S2—C22 | 105.6 (3) |
O1—S1—C2 | 105.9 (4) | O2—S2—C21 | 104.8 (3) |
C1—S1—C2 | 98.8 (5) | C22—S2—C21 | 98.2 (4) |
S1—O1—Sn1 | 120.6 (2) | S2—O2—Sn2 | 133.4 (2) |
S1—C1—H1A | 109.5 | S2—C21—H21A | 109.5 |
S1—C1—H1B | 109.5 | S2—C21—H21B | 109.5 |
H1A—C1—H1B | 109.5 | H21A—C21—H21B | 109.5 |
S1—C1—H1C | 109.5 | S2—C21—H21C | 109.5 |
H1A—C1—H1C | 109.5 | H21A—C21—H21C | 109.5 |
H1B—C1—H1C | 109.5 | H21B—C21—H21C | 109.5 |
S1—C2—H2A | 109.5 | S2—C22—H22A | 109.5 |
S1—C2—H2B | 109.5 | S2—C22—H22B | 109.5 |
H2A—C2—H2B | 109.5 | H22A—C22—H22B | 109.5 |
S1—C2—H2C | 109.5 | S2—C22—H22C | 109.5 |
H2A—C2—H2C | 109.5 | H22A—C22—H22C | 109.5 |
H2B—C2—H2C | 109.5 | H22B—C22—H22C | 109.5 |
C4—C3—C8 | 118.0 (5) | C28—C23—C24 | 118.5 (6) |
C4—C3—Sn1 | 118.1 (4) | C28—C23—Sn2 | 121.6 (5) |
C8—C3—Sn1 | 123.9 (4) | C24—C23—Sn2 | 119.8 (4) |
C5—C4—C3 | 121.8 (6) | C23—C24—C25 | 120.3 (7) |
C5—C4—H4 | 119.1 | C23—C24—H24 | 119.9 |
C3—C4—H4 | 119.1 | C25—C24—H24 | 119.9 |
C6—C5—C4 | 118.7 (7) | C26—C25—C24 | 120.4 (8) |
C6—C5—H5 | 120.7 | C26—C25—H25 | 119.8 |
C4—C5—H5 | 120.7 | C24—C25—H25 | 119.8 |
C7—C6—C5 | 121.0 (7) | C25—C26—C27 | 120.1 (7) |
C7—C6—H6 | 119.5 | C25—C26—H26 | 120.0 |
C5—C6—H6 | 119.5 | C27—C26—H26 | 120.0 |
C6—C7—C8 | 119.7 (7) | C26—C27—C28 | 120.4 (7) |
C6—C7—H7 | 120.1 | C26—C27—H27 | 119.8 |
C8—C7—H7 | 120.1 | C28—C27—H27 | 119.8 |
C3—C8—C7 | 120.7 (7) | C23—C28—C27 | 120.3 (7) |
C3—C8—H8 | 119.6 | C23—C28—H28 | 119.8 |
C7—C8—H8 | 119.6 | C27—C28—H28 | 119.8 |
C10—C9—C14 | 118.8 (5) | C34—C29—C30 | 117.7 (5) |
C10—C9—Sn1 | 120.9 (4) | C34—C29—Sn2 | 120.3 (4) |
C14—C9—Sn1 | 120.3 (4) | C30—C29—Sn2 | 122.0 (5) |
C9—C10—C11 | 119.7 (7) | C31—C30—C29 | 120.9 (7) |
C9—C10—H10 | 120.2 | C31—C30—H30 | 119.5 |
C11—C10—H10 | 120.2 | C29—C30—H30 | 119.5 |
C12—C11—C10 | 121.1 (7) | C30—C31—C32 | 120.6 (7) |
C12—C11—H11 | 119.5 | C30—C31—H31 | 119.7 |
C10—C11—H11 | 119.5 | C32—C31—H31 | 119.7 |
C13—C12—C11 | 119.2 (6) | C33—C32—C31 | 119.3 (7) |
C13—C12—H12 | 120.4 | C33—C32—H32 | 120.4 |
C11—C12—H12 | 120.4 | C31—C32—H32 | 120.4 |
C12—C13—C14 | 121.2 (7) | C32—C33—C34 | 119.2 (7) |
C12—C13—H13 | 119.4 | C32—C33—H33 | 120.4 |
C14—C13—H13 | 119.4 | C34—C33—H33 | 120.4 |
C9—C14—C13 | 120.1 (6) | C29—C34—C33 | 122.2 (6) |
C9—C14—H14 | 120.0 | C29—C34—H34 | 118.9 |
C13—C14—H14 | 120.0 | C33—C34—H34 | 118.9 |
C16—C15—C20 | 118.6 (5) | C36—C35—C40 | 117.3 (6) |
C16—C15—Sn1 | 123.7 (4) | C36—C35—Sn2 | 121.4 (4) |
C20—C15—Sn1 | 117.7 (4) | C40—C35—Sn2 | 121.3 (5) |
C17—C16—C15 | 120.8 (7) | C35—C36—C37 | 122.2 (6) |
C17—C16—H16 | 119.6 | C35—C36—H36 | 118.9 |
C15—C16—H16 | 119.6 | C37—C36—H36 | 118.9 |
C18—C17—C16 | 120.5 (7) | C38—C37—C36 | 119.2 (7) |
C18—C17—H17 | 119.8 | C38—C37—H37 | 120.4 |
C16—C17—H17 | 119.8 | C36—C37—H37 | 120.4 |
C17—C18—C19 | 120.3 (7) | C37—C38—C39 | 121.2 (7) |
C17—C18—H18 | 119.8 | C37—C38—H38 | 119.4 |
C19—C18—H18 | 119.8 | C39—C38—H38 | 119.4 |
C20—C19—C18 | 119.6 (8) | C38—C39—C40 | 119.3 (7) |
C20—C19—H19 | 120.2 | C38—C39—H39 | 120.3 |
C18—C19—H19 | 120.2 | C40—C39—H39 | 120.3 |
C19—C20—C15 | 120.2 (7) | C39—C40—C35 | 120.8 (7) |
C19—C20—H20 | 119.9 | C39—C40—H40 | 119.6 |
C15—C20—H20 | 119.9 | C35—C40—H40 | 119.6 |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1B···Cl2i | 0.96 | 2.83 | 3.555 (9) | 134 |
C21—H21B···Cl1ii | 0.96 | 2.82 | 3.716 (9) | 156 |
C22—H22B···Cl1ii | 0.96 | 2.94 | 3.813 (7) | 153 |
Symmetry codes: (i) x+1, y, z+1; (ii) −x+1, y−1/2, −z+1. |
Rings are arbitrarily labelled φi (i = 1, 2, 3) to compute the dihedral angles δi. For (I), δi angles were calculated with SHELXL2016/6 (Sheldrick, 2015b). |
Dihedral angle (°) | P212121 phasea | P21 phase, molecule 1 | P21 phase, molecule 2 |
δ1 = φ1/φ2 | 63.5 | 65.1 (2) | 53.6 (3) |
δ2 = φ2/φ3 | 70.7 | 65.1 (2) | 59.1 (3) |
δ3 = φ1/φ3 | 87.2 | 28.3 (4) | 39.2 (3) |
Note: (a) Kumar et al., 2009. |
Funding information
The authors acknowledge the Cheikh Anta Diop University of Dakar (Senegal) and the Universidad Autónoma de Puebla (Mexico) for financial support.
References
Bučar, D.-K., Lancaster, R. W. & Bernstein, J. (2015). Angew. Chem. Int. Ed. 54, 6972–6993. Google Scholar
Diassé-Sarr, A. & Diop, L. (2011). St. Cerc. St. CICBIA, 12, 203–205. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kumar, S., Shadab, S. M. & Idrees, M. (2009). Acta Cryst. E65, m1602–m1603. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ng, S. W. & Hook, J. M. (1999). Acta Cryst. C55, 310–312. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pouye, S. F., Cissé, I., Diop, L. & Diop, L. A. D. (2014). St. Cerc. St. CICBIA, 15, 149–153. Google Scholar
Price, S. L. (2009). Acc. Chem. Res. 42, 117–126. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, TX, USA. Google Scholar
Sarr, B., Diop, C. A. K., Diop, L., Blanchard, F. & Michaud, F. (2016). IUCrData, 1, x161545. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Threlfall, T. (2003). Org. Process Res. Dev. 7, 1017–1027. Web of Science CrossRef CAS Google Scholar
Toure, A., Diop, L., Diop, C. A. K. & Oliver, A. G. (2016). Acta Cryst. E72, 1830–1832. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.