research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Further investigation on the nitration of BODIPY with cupric nitrate: crystal structures of 4,4-di­fluoro-1,3,5,7,8-penta­methyl-2-nitro-4-bora-3a,4a-di­aza-s-indacene, 4,4-di­fluoro-3-nitro-8-phenyl-4-bora-3a,4a-di­aza-s-indacene, and 3-chloro-6-ethyl-5,7,8-tri­methyl-2-nitro-4,4-di­phenyl-4-bora-3a,4a-di­aza-s-indacene

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St., Catharines, ON, L2S 3A1, Canada, and bDepartment of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
*Correspondence e-mail: tyan@brocku.ca, alough@chem.utoronto.ca

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 December 2017; accepted 31 December 2017; online 9 January 2018)

The treatment of non-fully substituted 4,4-di­fluoro-4-bora-3a,4a-di­aza-s-indacene (BODIPY) with cupric nitrate leads to the introduction of a nitro group at different positions of the BODIPY core, depending on the substitution pattern. This methodology complements the treatment of fully substituted BODIPY with cupric nitrate that was previously reported. The crystal structures of 4,4-di­fluoro-1,3,5,7,8-penta­methyl-2-nitro-4-bora-3a,4a-di­aza-s-indacene, C14H16BF2N3O2 (5a) 4,4-di­fluoro-3-nitro-8-phenyl-4-bora-3a,4a-di­aza-s-indacene, C15H10BF2N3O2 (5b) and 3-chloro-6-ethyl-5,7,8-trimethyl-2-nitro-4,4-diphenyl-4-bora-3a,4a-di­aza-s-indacene, C26H25BClN3O2 (5d) are presented. In all three structures, the fused ring system is in a very flattened `V-shape', with dihedral angles between the two outer five membered rings of 8.12 (14), 6.67 (9) and 12.30 (18) Å for 5a, 5b and 5d, respectively. In each case, the central six-membered ring is in a flattened sofa conformation. In the crystal of 5a, mol­ecules are linked by weak C—H⋯O and C—H⋯F hydrogen bonds forming sheets parallel to (10-1). In the crystal of 5b mol­ecules are linked by weak C—H⋯O and C—H⋯F hydrogen bonds and ππ inter­actions forming sheets parallel to (001). In the crystal of 5d, weak C—H⋯O hydrogen bonds link mol­ecules into chains along [001]. In compound 5d, the atoms of the nitro group were refined as disordered over two sets of sites with occupancies 0.618 (12) and 0.382 (12).

1. Chemical context

In recent years, 4,4-di­fluoro-4-bora-3a,4a-di­aza-s-indacene (BODIPY) has been recognized as an attractive fluoro­phore due to its unique photochemical properties (Ulrich et al., 2008[Ulrich, G., Ziessel, R. & Harriman, A. (2008). Angew. Chem. Int. Ed. 47, 1184-1201.]; Loudet & Burgess, 2007[Loudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891-4932.]; Ziessel et al., 2007[Ziessel, R., Ulrich, G. & Harriman, A. (2007). New J. Chem. 31, 496-501.]). Applications of BODIPY in labeling biomolecules such as peptides and proteins, nucleic acids, and lipids, as well as in material sciences have been explored quite extensively (Ulrich et al., 2008[Ulrich, G., Ziessel, R. & Harriman, A. (2008). Angew. Chem. Int. Ed. 47, 1184-1201.]; Loudet & Burgess, 2007[Loudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891-4932.]; Ziessel et al., 2007[Ziessel, R., Ulrich, G. & Harriman, A. (2007). New J. Chem. 31, 496-501.]; Tram et al., 2011[Tram, K., Twohig, D. & Yan, H. (2011). Nucleosides Nucleotides Nucleic Acids, 30, 1-11.]; Lu et al., 2014[Lu, H., Mack, J., Yang, Y. & Shen, Z. (2014). Chem. Soc. Rev. 43, 4778-4823.]; Bessette & Hanan, 2014[Bessette, A. & Hanan, G. S. (2014). Chem. Soc. Rev. 43, 3342-3405.]). In order to broaden its utilities, the discovery of reactions to introduce functional group into BODIPY has attracted significant inter­est. Among these, installation of nitro groups into BODIPY core represents a useful approach to functionalize BODIPY (Ulrich et al., 2012[Ulrich, G., Ziessel, R. & Haefele, A. (2012). J. Org. Chem. 77, 4298-4311.]; Esnal et al., 2013[Esnal, I., Bañuelos, J., Arbeloa, I. L., Costela, A., Garcia-Moreno, I., Garzón, M., Agarrabeitia, A. R. & Ortiz, M. J. (2013). RSC Adv. 3, 1547-1556.]; Gupta et al., 2013[Gupta, M., Mula, S., Tyagi, M., Ghanty, T. K., Murudkar, S., Ray, A. K. & Chattopadhyay, S. (2013). Chem. Eur. J. 19, 17766-17772.]). In this respect, while BODIPY fluoro­phores with nitro groups are poorly fluorescent, their fluorescence is usually restored upon reduction of nitro to amine (Yang et al., 2014[Yang, L., Yalagala, R. S., Hutton, S., Lough, A. J. & Yan, H. (2014). Synlett, 25, 2661-2664.]; Yang et al., 2017[Yang, L., Drew, B., Yalagala, R. S., Chaviwala, R., Simionescu, R., Lough, A. J. & Yan, H. (2017). Acta Cryst. E73, 378-382.]). We previously reported the treatment of fully substituted BODIPY, 4,4-di­fluoro-1,3,5,7,8-penta­methyl-2,6-diethyl-4-bora-3a,4a-di­aza-s-indacene 1 with cupric nitrate under various conditions (Yang et al., 2014[Yang, L., Yalagala, R. S., Hutton, S., Lough, A. J. & Yan, H. (2014). Synlett, 25, 2661-2664.]), leading to the introduction of nitro-, nitro­methyl-, hy­droxy­methyl- and carb­oxy­aldehyde into BODIPY (see Scheme below).

[Scheme 2]

1.1. Reactions between non-fully substituted BODIPY and cupric nitrate

We report herein that treatment of BODIPY, where at least one of the R1R7 is H, with cupric nitrate leads to the nitration of the BODIPY core (see Scheme below).

[Scheme 3]

Thus, treatment of 4,4-di­fluoro-1,3,5,7,8-penta­methyl-4-bora-3a,4a-di­aza-s-indacene 4a with cupric nitrate led to the formation of 4,4-di­fluoro-1,3,5,7,8-penta­methyl-2-nitro-4-bora-3a,4a-di­aza-s-indacene 5a as the main product. Similar pattern of nitration was seen in the case of 4c–d. Reaction of 4,4-di­fluoro-8-phenyl-4-bora-3a,4a-di­aza-s-indacene 4b with cupric nitrate, however, led to the isolation of 4,4-di­fluoro-8-phenyl-3-nitro-4-bora-3a,4a-di­aza-s-indacene 5b as the main product.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of 5a, 5b and 5d are shown in Figs. 1[link], 2[link] and 3[link], respectively. In all three structures the fused ring system is in a very flattened `V-shape' with the two outer five-membered rings (N1/C6–C9 and N2/C1–C4) forming dihedral angles of 8.12 (14), 6.67 (9) and 12.30 (18) Å for 5a, 5b and 5d, respectively. The central six-membered ring in each compound forms a flattened sofa conformation with five of the ring atoms (N1/N2/C4/C5/C6), forming an approximate plane with atom B1 displaced from this plane by 0.183 (2), 0.115 (2) and 0.341 (1) Å in 5a, 5b and 5d, respectively. In compound 5d the nitro group is disordered over two sets of sites with refined occupancies of 0.618 (12) and 0.382 (12). In 5a the mean plane of the nitro group N3/O1/O2 forms a dihedral angle of 23.9 (2)° with the plane of the N2/C1–C4 ring. The corres­ponding dihedral angles in 5b and 5d are 8.47 (17) and 39.8 (8)° [with a value of 18.2 (14)° for the minor component of disorder]. In 5d the dihedral angle between the two phenyl rings (C15–C20 and C21–C26) is 53.72 (7)°. In 5b the phenyl ring (C10–C15) forms a dihedral angle of 53.94 (7)° with the five essentially planar atoms (N1/N2/C4/C4/C6) of the central six-membered ring. The orientation of the phenyl rings in 5b and 5d presumably alleviates any steric inter­action between H atoms of the fused ring system and the phenyl ring(s).

[Figure 1]
Figure 1
The mol­ecular structure of 5a with displacement ellipsoids drawn at the 30% probability level. H atoms are not shown.
[Figure 2]
Figure 2
The mol­ecular structure of 5b with displacement ellipsoids drawn at the 30% probability level. H atoms are not shown.
[Figure 3]
Figure 3
The mol­ecular structure of 5d with displacement ellipsoids drawn at the 30% probability level. Neither the H atoms not the minor component of disorder are shown.

3. Supra­molecular features

In the crystal of 5a, weak C—H⋯O and C—H⋯F hydrogen bonds link the mol­ecules forming `double' sheets (Table 1[link], Fig. 4[link]) parallel to (10[\overline{1}]) and within these sheets there are ππ stacking inter­actions with a centroid–centroid distance of Cg1⋯Cg1(−x + 1, −y + 1, −z + 1) = 3.870 (1) Å, where Cg1 is the centroid of all atoms in the fused ring system (B1/N1/N2/C1–C9). In the crystal of 5b, weak bifurcated C—H⋯(O,F) and C—H⋯F hydrogen bonds link the mol­ecules forming chains (Table 2[link], Fig. 5[link]) along [100]. In addition ππ inter­actions with a centroid–centroid distance of Cg2⋯Cg2(−x + 1, −y + 2, −z + 1) = 3.435 (1) Å connect the chains into sheets parallel to (001), where Cg2 is the centroid of the ring atoms N2/C1–C4. In the crystal of 5d, weak C—H⋯O hydrogen bonds link mol­ecules forming zigzag chains along [001] (Table 3[link], Fig. 6[link]). There are no significant ππ inter­actions in compound 5d.

Table 1
Hydrogen-bond geometry (Å, °) for (5a)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O2i 0.95 2.46 3.290 (3) 146
C10—H10C⋯O1ii 0.98 2.46 3.371 (3) 155
C12—H12B⋯F2iii 0.98 2.53 3.329 (3) 139
Symmetry codes: (i) x-1, y-1, z-1; (ii) -x+2, -y+1, -z+2; (iii) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °) for (5b)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯F1i 0.95 2.40 3.2788 (18) 155
C9—H9A⋯O1i 0.95 2.59 3.3420 (19) 136
C15—H15A⋯F1ii 0.95 2.40 3.2946 (17) 157
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x-1, y, z.

Table 3
Hydrogen-bond geometry (Å, °) for (5d)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19A⋯O2i 0.95 2.43 3.365 (4) 168
C19—H19A⋯O2Ai 0.95 2.36 3.238 (13) 154
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 4]
Figure 4
Part of the crystal structure of 5a with weak C—H⋯O and C—H⋯F hydrogen bonds shown as dashed lines. Only H atoms involved in hydrogen bonds are shown.
[Figure 5]
Figure 5
Part of the crystal structure of 5b with weak C—H⋯O and C—H⋯F hydrogen bonds shown as dashed lines. Only H atoms involved in hydrogen bonds are shown.
[Figure 6]
Figure 6
Part of the crystal structure of 5d with weak C—H⋯O hydrogen bonds shown as dashed lines. Only H atoms involved in hydrogen bonds are shown. Both components of disorder are shown.

4. Database survey

A survey of the Cambridge Structural Database (V5.38, last update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that the crystal structure of 4,4-di­fluoro-1,3,5,7,8-penta­methyl-4-bora-3a,4a-di­aza-s-indacene has been determined at three different temperatures viz. JEHFUX at 295 K (Picou et al., 1990[Picou, C. L., Stevens, E. D., Shah, M. & Boyer, J. H. (1990). Acta Cryst. C46, 1148-1150.]) JEHFUX01 at 200 K (Choi et al. 2014[Choi, S., Bouffard, J. & Kim, Y. (2014). Chem. Sci. 5, 751-755.]) and JEHFUX02 at 100 K (Wang et al., 2014[Wang, H., Vicente, M. G. H., Fronczek, F. R. & Smith, K. M. (2014). Chem. Eur. J. 20, 5064-5074.]). This structure corresponds to compound 5a without the nitro substituent and in all three equivalent literature structures, the atoms of the fused-ring system lie on a crystallographic mirror plane and hence the fused-ring system is exactly planar. In the compound corres­ponding to 5b without the nitro substituent, viz. 4,4-di­fluoro-8-phenyl-4-bora-3a,4a-di­aza-s-indacene (VAWDED, Kee et al., 2005[Kee, H. L., Kirmaier, C., Yu, L., Thamyongkit, P., Youngblood, W. J., Calder, M. E., Ramos, L., Noll, B. C., Bocian, D. F., Scheidt, W. R., Birge, R. R., Lindsey, J. S. & Holten, D. (2005). J. Phys. Chem. B, 109, 20433-20443.]), the mol­ecule is bis­ected by a crystallographic twofold rotation axis through the central B and C atoms of the six-membered ring and the six-membered ring is essentially planar. To date, compound 5d is the only crystal structure with a 4-bora-3a,4a-di­aza-s-indacene core which is substituted by two phenyl rings at boron and a Cl atom in the 3-position.

5. Synthesis and crystallization

1H, 13C, 11B, and 19F NMR spectra were recorded at 400.2, 100.6, 128.4, and 376.6 MHz, respectively, with a Bruker AV400 spectrometer; J values are given in Hz. Chemical shifts are given in ppm. High-resolution mass spectra were measured with a ThermoFisher high resolution Double Focusing magnetic sector mass spectrometer.

Chemicals were purchased from Aldrich or TCI America and used without further purification unless stated otherwise. Tri­ethyl­amine was dried by heating under reflux in the presence of calcium hydride and distilled in an atmosphere of nitro­gen. Silica gel (SiliCycle, >230 mesh) was used for flash chromatography. Thin layer chromatography was performed on SiliCycle SiliaPlate F-254 TLC plates, with the following system: ethyl­acetate–hexane (3:7 v/v).

5.1. Synthesis of BODIPY starting materials

3-Chloro-4,4-di­fluoro-6-ethyl-5,7,8-trimethyl-4-bora-3a,4a-di­aza-s-indacene 4c

To a solution of 2-acetyl-5-chloro­pyrrole (Leen et al., 2011[Leen, V., Leemans, T., Boens, N. & Dehaen, W. (2011). Eur. J. Org. Chem. pp. 4386-4396.]) (325 mg, 2.27 mmol) in di­chloro­methane (10 mL) under nitro­gen was added 3-ethyl-2,4-di­methyl­pyrrole (310 µL, 2.30 mmol) and the resulting solution was cooled (ice–water bath), followed by the addition of POCl3 (220 µL, 2.36 mmol). After the reaction mixture was stirred at room temperature for 6 h, tri­ethyl­amine (3.2 mL, 23 mmol) was added and the mixture was stirred for 10 min. Upon cooling (ice–water bath), boron trifluoride diethyl etherate (3.1 mL, 25 mmol) was added dropwise and the reaction mixture was stirred at room temperature for 1 h. The orange solution was diluted with diethyl ether (200 mL) and extracted with water (3 × 100 mL). The organic layer was dried (MgSO4) and concentrated under reduced pressure. The residue was then purified by column chromatography on silica gel. The appropriate fractions, which were eluted with di­chloro­methane–hexane (70:30 v/v), were combined and evaporated under reduced pressure to give the title compound as an orange solid (500 mg, 74%). Rf: 0.52. δH(CDCl3): 1.08 (3 H, t, J = 7.5), 2.35 (3 H, s), 2.44 (2 H, q, J = 7.5), 2.52 (3 H, s), 2.60 (3 H, s), 6.28 (1 H, d, J = 3.9), 6.98 (1 H, s, J = 3.9); δC(CDCl3): 13.1, 14.0, 14.5, 15.8, 17.1, 114.5, 122.8, 132.5, 133.1, 134.0, 135.7, 138.6, 140.7, 161.1. δB(CDCl3): 0.41 (t, J = 31); δF(CDCl3): −147.2 (q, J = 31). C14H16BClF2N2 requires 296.10631, found (EI) 296.1059.

3-Chloro-4,4-diphenyl-6-ethyl-5,7,8-trimethyl-4-bora-3a,4a-di­aza-s-indacene 4d

To a solution of 2-acetyl-5-chloro­pyrrole (400 mg, 2.80 mmol) in di­chloro­methane (8 mL) under an atmosphere of nitro­gen was added 2,4-di­methyl­pyrrole (380 µL, 3.69 mmol) and the resulting solution was cooled (ice–water bath), followed by addition of POCl3 (260 µL, 2.80 mmol). After the solution was stirred at room temperature for 6 h, tri­ethyl­amine (1.0 mL, 7.2 mmol) was added and the mixture was stirred for 10 min. Diphenyl boronbromide (Nöth & Vahrenkamp, 1968[Nöth, H. & Vahrenkamp, H. (1968). J. Organomet. Chem. 11, 399-405.]) (1.35 g, 5.53 mmol) was then added dropwise while the reaction mixture was cooled (ice–water bath). After the reaction mixture had been stirred at room temperature for 1 h, the orange products were poured into diethyl ether (200 mL) and extracted with water (3 × 100 mL). The organic layer was dried (MgSO4) and concentrated under reduced pressure. The product was purified by flash column chromatography on silica gel. The appropriate fractions, which were eluted with di­chloro­methane–hexane (30:70 v/v), were combined and evaporated under reduced pressure to give the title compound as an orange solid (780 mg, 68%). Rf: 0.66. δH(CDCl3): 1.02 (3 H, t, J = 7.5), 1.78 (3 H, s), 3.92 (2 H, q, J = 7.5), 2.44 (3 H, s) 2.64 (3 H, s), 6.22 (1 H, d, J = 4.2), 7.05 (1 H, s, J = 4.2), 7.18–7.39 (10 H, m). δC(CDCl3): 14.4, 14.7, 15.2, 16.5, 17.4, 114.9, 121.1, 125.8, 127.1, 133.0, 133.9, 135.5, 136.3, 137.4, 138.8, 159.1. δB(CDCl3): 0.33. C26H26BClN2 requires 412.18776, found (EI) 412.1867.

5.2. General procedure for the treatment of 4a–e with cupric nitrate

To a solution of BODIPY (100 mg) in anhydrous CH2Cl2 (20 mL), a solution of Cu(NO3)2·3H2O (5 mol. equiv.) in anhydrous MeCN (10 mL) was added. The reaction mixture was stirred at room temperature and the reaction progress was monitored by TLC. Upon complete consumption of starting materials, the products were evaporated under reduced pressure. The residue was redissolved in CH2Cl2 (20 mL) and extracted with water (320 mL). The organic layer was collected, dried (MgSO4), and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel. The appropriate fractions, eluted with CH2Cl2–hexane, were combined and evaporated under reduced pressure to give the nitro BODIPY.

5.3. Synthesis of 5a–d

4,4-Di­fluoro-1,3,5,7,8-penta­methyl-2-nitro-4-bora-3a,4a-di­aza-s-indacene 5a

Treatment of 4,4-di­fluoro-1,3,5,7,8-penta­amethyl-4-bora-3a,4a-di­aza-s-indacene 4a (Bandichhor et al., 2006[Bandichhor, R., Thivierge, C., Bhuvanesh, N. S. P. & Burgess, K. (2006). Acta Cryst. E62, o4310-o4311.]) with cupric nitrate under the conditions described in the general procedure for 10 min led to the isolation of 4,4-di­fluoro-1,3,5,7,8-penta­methyl-2-nitro-4-bora-2-nitro-3a,4a-di­aza-s-indacene 5a as the main product (35% yield). Rf: 0.30. δH(CDCl3): 2.51 (3 H, s), 2.62 (3 H, s), 2.72 and 2.73 (6 H, two s), 2.83 (3 H, s), 6.32 (1 H, s). δC(CDCl3): 14.1, 14.4, 15.1, 17.7, 18.0, 125.2, 128.2, 132.0, 135.9, 138.9, 143.7, 146.8, 147.7, 162.5. δF(CDCl3): −144.5 (q, J = 31.6). δB(CDCl3): 0.38 (t, J = 31.6). C14H16BF2N3O2 requires 307.13036, found (EI): 307.1298. Orange needles of 5a were recrystallized from mixed solvents of hexa­nes/chloro­form.

4,4-Di­fluoro-8-phenyl-3-nitro-4-bora-3a,4a-di­aza-s-indacene 5b

Treatment of 4,4-di­fluoro-8-phenyl-4-bora-3a,4a-di­aza-s-indacene 4b (Rao et al., 2011[Rao, M. R., Tiwari, M. D., Bellare, J. R. & Ravikanth, M. (2011). J. Org. Chem. 76, 7263-7268.]) with cupric nitrate under the conditions described in the general procedure for 60 min led to the isolation of 4,4-di­fluoro-2-nitro-8-phenyl-4-bora-2-nitro-3a,4a-di­aza-s-indacene 5a as the main product (25%). Rf: 0.24. δH(CDCl3): 6.79 (1 H, d, J = 4.1), 6.84 (1 H, d, J = 4.1), 7.21 (2 H, t, J = 4.4), 7.56–7.71 (5 H, m), 8.36 (1 H, s). δC(CDCl3): 114.9, 123.8, 126.6, 128.9, 130.6, 131.7, 132.6, 134.3, 136.2, 137.9, 149.1, 150.7, 153.6. δB(CDCl3): 0.36 (t, J = 25). δF(CDCl3): −144.0 (q, J = 25). C15H10BF2N3O2 requires 313.08341, found (EI) 313.0832. Orange plates of 5b were recrystallized from mixed solvents of hexa­nes/chloro­form.

3-Chloro-4,4-di­fluoro-6-ethyl-5,7,8-trimethyl-2-nitro-4-bora-3a,4a-di­aza-s-indacene 5c

Treatment of 3-chloro-4,4-di­fluoro-6-ethyl-5,7,8-trimethyl-4-bora-3a,4a-di­aza-s-indacene 4c with cupric nitrate under the conditions described in the general procedure for 1 d led to the isolation of 5c as the main product (60%). Rf: 0.24. δH(CDCl3): 1.13 (3 H, t, J = 7.6), 2.42 (3 H, s), 2.49 (2 H, q, J = 7.6), 2.59 (3 H, s), 2.68 (3 H, s), 7.50 (1 H, s). δC(CDCl3): 13.8, 14.1, 14.4, 15.5, 17.1, 115.2, 129.4, 130.2, 137.3, 137.5, 139.11, 139.13, 143.3, 168.7. δF(CDCl3): −146.3 (t, J = 29.6). δB(CDCl3): 0.19 (t, J = 29.6). C14H15BClF2N3O2 requires 341.09139, found (EI): 341.0907.

3-Chloro-4,4-diphenyl-6-ethyl-5,7,8-trimethyl-2-nitro-4-bora-3a,4a-di­aza-s-indacene 5d

Treatment of 3-chloro-4,4-diphenyl-6-ethyl-5,7,8-trimethyl-4-bora-3a,4a-di­aza-s-indacene 4d with cupric nitrate under the conditions described in the general procedure for 4 h led to the isolation of 5d as the main product (30%). Rf: 0.46. δH(CDCl3): 1.03 (3 H, t, J = 7.6), 1.87 (3 H, s), 2.41 (2 H, q, J = 7.6), 2.48 (3 H, s), 2.70 (3 H, s), 7.23–7.28 (6 H, m), 7.36–7.39 (4 H, m), 7.61 (1 H, s). δC(CDCl3): 14.2, 14.7, 15.8, 16.1, 17.4, 114.5, 126.5, 127.5, 129.5, 130.6, 133.7, 135.1, 137.6, 137.8, 139.3, 140.2, 166.7. δB(CDCl3): 1.08 (br). C26H25BClN3O2 requires 457.17284, found (EI) 457.1733. Orange blocks of 5d were recrystallized from mixed solvents of hexa­nes/chloro­form.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. In all three compounds, the H atoms were placed in calculated positions and included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmeth­yl). In compound 5d the atoms of the nitro group were refined as disordered over two sets of sites with occupancies 0.618 (12) and 0.382 (12).

Table 4
Experimental details

  (5a) (5b) (5d)
Crystal data
Chemical formula C14H16BF2N3O2 C15H10BF2N3O2 C26H25BClN3O2
Mr 307.11 313.07 457.75
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 150 150 150
a, b, c (Å) 8.2837 (9), 8.6660 (9), 10.6619 (12) 7.2833 (2), 8.5450 (3), 11.8803 (4) 11.8359 (4), 12.0825 (4), 16.5811 (5)
α, β, γ (°) 110.762 (3), 101.468 (4), 95.463 (3) 81.093 (2), 74.358 (2), 78.581 (2) 90, 104.116 (1), 90
V3) 689.83 (13) 693.86 (4) 2299.62 (13)
Z 2 2 4
Radiation type Mo Kα Cu Kα Cu Kα
μ (mm−1) 0.12 1.01 1.70
Crystal size (mm) 0.18 × 0.06 × 0.03 0.12 × 0.08 × 0.03 0.19 × 0.18 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEX-DUO CCD Bruker Kappa APEX-DUO CCD Bruker Kappa APEX-DUO CCD
Absorption correction Multi-scan (SADABS, Bruker, 2014[Bruker (2014). APEX2, SAINT & SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS, Bruker, 2014[Bruker (2014). APEX2, SAINT & SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS, Bruker, 2014[Bruker (2014). APEX2, SAINT & SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.681, 0.746 0.661, 0.753 0.586, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 18324, 3194, 2192 21668, 2453, 2109 43708, 4080, 3864
Rint 0.058 0.042 0.047
(sin θ/λ)max−1) 0.651 0.598 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.144, 1.07 0.033, 0.086, 1.05 0.033, 0.085, 1.04
No. of reflections 3194 2453 4080
No. of parameters 204 208 330
No. of restraints 0 0 8
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.24 0.14, −0.24 0.27, −0.29
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT & SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]), APEX2, SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT & SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

In the refinement, restraints were applied to the bond distances of the nitro group so that those in the minor component of disorder were similar to those in the major component. The refinement of the minor component of disorder was also restrained to be approximately planar. These restraints were achieved using the SADI and FLAT commands in SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

For all structures, data collection: APEX2 (Bruker, 2014). Cell refinement: APEX2 for (5a); APEX2 (Bruker, 2014) for (5b), (5d). For all structures, data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a). Program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b) for (5a); SHELXL2016/6 (Sheldrick, 2015b) for (5b), (5d). For all structures, molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4,4-Difluoro-1,3,5,7,8-pentamethyl-2-nitro-4-bora-3a,4a-diaza-s-indacene (5a) top
Crystal data top
C14H16BF2N3O2Z = 2
Mr = 307.11F(000) = 320
Triclinic, P1Dx = 1.479 Mg m3
a = 8.2837 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.6660 (9) ÅCell parameters from 4795 reflections
c = 10.6619 (12) Åθ = 2.6–27.6°
α = 110.762 (3)°µ = 0.12 mm1
β = 101.468 (4)°T = 150 K
γ = 95.463 (3)°Needle, orange
V = 689.83 (13) Å30.18 × 0.06 × 0.03 mm
Data collection top
Bruker Kappa APEX-DUO CCD
diffractometer
2192 reflections with I > 2σ(I)
Radiation source: sealed tube with Bruker Triumph monochromatorRint = 0.058
φ and ω scansθmax = 27.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS, Bruker, 2014)
h = 1010
Tmin = 0.681, Tmax = 0.746k = 1111
18324 measured reflectionsl = 1313
3194 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0736P)2 + 0.204P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3194 reflectionsΔρmax = 0.39 e Å3
204 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.30619 (16)0.28032 (15)0.74821 (12)0.0257 (3)
F20.51390 (15)0.22107 (15)0.63858 (12)0.0242 (3)
O10.9463 (2)0.7217 (2)1.08010 (18)0.0364 (5)
O20.8553 (2)0.9556 (2)1.11463 (18)0.0393 (5)
N10.3009 (2)0.3522 (2)0.54914 (17)0.0158 (4)
N20.5130 (2)0.5113 (2)0.77068 (17)0.0161 (4)
N30.8424 (2)0.8035 (2)1.05038 (19)0.0254 (4)
C10.6403 (3)0.5461 (3)0.8834 (2)0.0179 (4)
C20.7004 (3)0.7192 (3)0.9354 (2)0.0195 (5)
C30.6077 (3)0.7943 (3)0.8555 (2)0.0192 (5)
C40.4894 (3)0.6603 (2)0.7513 (2)0.0167 (4)
C50.3633 (3)0.6568 (2)0.6372 (2)0.0169 (4)
C60.2766 (3)0.5046 (2)0.5355 (2)0.0158 (4)
C70.1555 (3)0.4640 (3)0.4053 (2)0.0179 (5)
C80.1121 (3)0.2929 (3)0.3481 (2)0.0196 (5)
H8A0.03510.22930.26150.024*
C90.2001 (3)0.2260 (3)0.4383 (2)0.0186 (5)
C100.6895 (3)0.4176 (3)0.9389 (2)0.0224 (5)
H10A0.59400.32600.90970.034*
H10B0.72410.46901.04030.034*
H10C0.78280.37320.90320.034*
C110.6437 (3)0.9751 (3)0.8742 (2)0.0277 (5)
H11A0.76461.01720.90890.041*
H11B0.58581.04100.94080.041*
H11C0.60420.98540.78500.041*
C120.3210 (3)0.8177 (3)0.6290 (2)0.0237 (5)
H12A0.20660.79700.57220.036*
H12B0.39950.86220.58710.036*
H12C0.32950.89930.72240.036*
C130.0903 (3)0.5777 (3)0.3373 (2)0.0238 (5)
H13A0.02920.51070.24110.036*
H13B0.18430.65670.33900.036*
H13C0.01480.64000.38730.036*
C140.1843 (3)0.0471 (3)0.4224 (2)0.0220 (5)
H14A0.15680.03590.50430.033*
H14B0.29050.00920.41240.033*
H14C0.09520.02170.33980.033*
B10.4081 (3)0.3348 (3)0.6781 (2)0.0175 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0300 (7)0.0242 (7)0.0225 (7)0.0032 (6)0.0048 (6)0.0114 (5)
F20.0264 (7)0.0162 (6)0.0248 (7)0.0083 (5)0.0004 (6)0.0038 (5)
O10.0245 (9)0.0376 (10)0.0374 (10)0.0074 (8)0.0032 (8)0.0086 (8)
O20.0478 (12)0.0204 (9)0.0319 (10)0.0037 (8)0.0069 (8)0.0008 (7)
N10.0176 (9)0.0109 (8)0.0169 (9)0.0017 (7)0.0019 (7)0.0045 (7)
N20.0178 (9)0.0129 (9)0.0161 (9)0.0037 (7)0.0017 (7)0.0051 (7)
N30.0267 (11)0.0212 (10)0.0227 (10)0.0004 (8)0.0034 (8)0.0044 (8)
C10.0180 (10)0.0189 (11)0.0149 (10)0.0037 (8)0.0036 (8)0.0046 (8)
C20.0192 (11)0.0182 (11)0.0167 (10)0.0017 (9)0.0028 (9)0.0026 (8)
C30.0218 (11)0.0156 (11)0.0187 (10)0.0019 (9)0.0069 (9)0.0043 (8)
C40.0203 (11)0.0128 (10)0.0170 (10)0.0028 (8)0.0058 (8)0.0053 (8)
C50.0182 (10)0.0152 (10)0.0205 (11)0.0039 (8)0.0077 (9)0.0089 (9)
C60.0173 (10)0.0135 (10)0.0182 (10)0.0038 (8)0.0045 (8)0.0077 (8)
C70.0177 (11)0.0192 (11)0.0192 (10)0.0032 (8)0.0055 (9)0.0097 (9)
C80.0179 (11)0.0206 (11)0.0184 (10)0.0018 (9)0.0013 (9)0.0075 (9)
C90.0194 (11)0.0160 (11)0.0177 (10)0.0016 (8)0.0035 (9)0.0044 (8)
C100.0267 (12)0.0198 (11)0.0199 (11)0.0068 (9)0.0015 (9)0.0083 (9)
C110.0345 (13)0.0153 (11)0.0280 (12)0.0031 (10)0.0044 (10)0.0059 (9)
C120.0283 (12)0.0157 (11)0.0288 (12)0.0064 (9)0.0051 (10)0.0109 (9)
C130.0230 (12)0.0246 (12)0.0251 (12)0.0032 (9)0.0022 (10)0.0132 (10)
C140.0259 (12)0.0137 (11)0.0238 (11)0.0008 (9)0.0002 (9)0.0080 (9)
B10.0197 (12)0.0150 (12)0.0176 (11)0.0037 (9)0.0025 (10)0.0070 (9)
Geometric parameters (Å, º) top
F1—B11.385 (3)C7—C81.367 (3)
F2—B11.390 (3)C7—C131.496 (3)
O1—N31.229 (2)C8—C91.410 (3)
O2—N31.233 (2)C8—H8A0.9500
N1—C91.345 (3)C9—C141.489 (3)
N1—C61.408 (3)C10—H10A0.9800
N1—B11.546 (3)C10—H10B0.9800
N2—C11.351 (3)C10—H10C0.9800
N2—C41.403 (3)C11—H11A0.9800
N2—B11.550 (3)C11—H11B0.9800
N3—C21.431 (3)C11—H11C0.9800
C1—C21.401 (3)C12—H12A0.9800
C1—C101.488 (3)C12—H12B0.9800
C2—C31.402 (3)C12—H12C0.9800
C3—C41.407 (3)C13—H13A0.9800
C3—C111.500 (3)C13—H13B0.9800
C4—C51.427 (3)C13—H13C0.9800
C5—C61.388 (3)C14—H14A0.9800
C5—C121.497 (3)C14—H14B0.9800
C6—C71.446 (3)C14—H14C0.9800
C9—N1—C6108.30 (17)C1—C10—H10A109.5
C9—N1—B1125.81 (17)C1—C10—H10B109.5
C6—N1—B1125.47 (17)H10A—C10—H10B109.5
C1—N2—C4109.29 (17)C1—C10—H10C109.5
C1—N2—B1125.41 (17)H10A—C10—H10C109.5
C4—N2—B1125.30 (17)H10B—C10—H10C109.5
O1—N3—O2123.0 (2)C3—C11—H11A109.5
O1—N3—C2118.71 (18)C3—C11—H11B109.5
O2—N3—C2118.29 (19)H11A—C11—H11B109.5
N2—C1—C2106.78 (18)C3—C11—H11C109.5
N2—C1—C10122.98 (19)H11A—C11—H11C109.5
C2—C1—C10130.1 (2)H11B—C11—H11C109.5
C1—C2—C3110.67 (19)C5—C12—H12A109.5
C1—C2—N3123.69 (19)C5—C12—H12B109.5
C3—C2—N3125.57 (19)H12A—C12—H12B109.5
C2—C3—C4104.34 (18)C5—C12—H12C109.5
C2—C3—C11125.6 (2)H12A—C12—H12C109.5
C4—C3—C11129.8 (2)H12B—C12—H12C109.5
N2—C4—C3108.91 (17)C7—C13—H13A109.5
N2—C4—C5120.27 (18)C7—C13—H13B109.5
C3—C4—C5130.80 (19)H13A—C13—H13B109.5
C6—C5—C4120.20 (18)C7—C13—H13C109.5
C6—C5—C12119.87 (19)H13A—C13—H13C109.5
C4—C5—C12119.91 (18)H13B—C13—H13C109.5
C5—C6—N1120.78 (18)C9—C14—H14A109.5
C5—C6—C7131.91 (18)C9—C14—H14B109.5
N1—C6—C7107.31 (17)H14A—C14—H14B109.5
C8—C7—C6106.11 (17)C9—C14—H14C109.5
C8—C7—C13124.27 (19)H14A—C14—H14C109.5
C6—C7—C13129.57 (19)H14B—C14—H14C109.5
C7—C8—C9109.13 (19)F1—B1—F2109.40 (17)
C7—C8—H8A125.4F1—B1—N1110.37 (18)
C9—C8—H8A125.4F2—B1—N1110.00 (17)
N1—C9—C8109.12 (18)F1—B1—N2110.71 (17)
N1—C9—C14123.11 (18)F2—B1—N2109.91 (18)
C8—C9—C14127.73 (19)N1—B1—N2106.41 (16)
C4—N2—C1—C20.9 (2)C4—C5—C6—C7174.0 (2)
B1—N2—C1—C2179.69 (18)C12—C5—C6—C77.7 (3)
C4—N2—C1—C10175.32 (19)C9—N1—C6—C5178.89 (19)
B1—N2—C1—C104.1 (3)B1—N1—C6—C56.0 (3)
N2—C1—C2—C31.0 (2)C9—N1—C6—C71.5 (2)
C10—C1—C2—C3174.9 (2)B1—N1—C6—C7174.36 (18)
N2—C1—C2—N3176.23 (19)C5—C6—C7—C8179.9 (2)
C10—C1—C2—N37.9 (4)N1—C6—C7—C80.5 (2)
O1—N3—C2—C122.4 (3)C5—C6—C7—C132.5 (4)
O2—N3—C2—C1158.0 (2)N1—C6—C7—C13177.1 (2)
O1—N3—C2—C3154.4 (2)C6—C7—C8—C90.6 (2)
O2—N3—C2—C325.1 (3)C13—C7—C8—C9178.35 (19)
C1—C2—C3—C40.7 (2)C6—N1—C9—C81.9 (2)
N3—C2—C3—C4176.5 (2)B1—N1—C9—C8174.73 (19)
C1—C2—C3—C11175.5 (2)C6—N1—C9—C14175.81 (19)
N3—C2—C3—C111.7 (3)B1—N1—C9—C143.0 (3)
C1—N2—C4—C30.5 (2)C7—C8—C9—N11.6 (2)
B1—N2—C4—C3179.93 (18)C7—C8—C9—C14176.0 (2)
C1—N2—C4—C5179.00 (18)C9—N1—B1—F164.5 (3)
B1—N2—C4—C51.6 (3)C6—N1—B1—F1107.2 (2)
C2—C3—C4—N20.1 (2)C9—N1—B1—F256.3 (3)
C11—C3—C4—N2174.6 (2)C6—N1—B1—F2132.0 (2)
C2—C3—C4—C5178.2 (2)C9—N1—B1—N2175.34 (18)
C11—C3—C4—C53.6 (4)C6—N1—B1—N213.0 (3)
N2—C4—C5—C67.6 (3)C1—N2—B1—F170.1 (3)
C3—C4—C5—C6170.4 (2)C4—N2—B1—F1109.2 (2)
N2—C4—C5—C12170.72 (18)C1—N2—B1—F250.9 (3)
C3—C4—C5—C1211.2 (3)C4—N2—B1—F2129.82 (19)
C4—C5—C6—N15.5 (3)C1—N2—B1—N1169.97 (18)
C12—C5—C6—N1172.83 (19)C4—N2—B1—N110.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O2i0.952.463.290 (3)146
C10—H10C···O1ii0.982.463.371 (3)155
C12—H12B···F2iii0.982.533.329 (3)139
Symmetry codes: (i) x1, y1, z1; (ii) x+2, y+1, z+2; (iii) x+1, y+1, z+1.
4,4-Difluoro-3-nitro-8-phenyl-4-bora-3a,4a-diaza-s-indacene (5b) top
Crystal data top
C15H10BF2N3O2Z = 2
Mr = 313.07F(000) = 320
Triclinic, P1Dx = 1.498 Mg m3
a = 7.2833 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 8.5450 (3) ÅCell parameters from 8868 reflections
c = 11.8803 (4) Åθ = 3.9–67.0°
α = 81.093 (2)°µ = 1.01 mm1
β = 74.358 (2)°T = 150 K
γ = 78.581 (2)°Plate, orange
V = 693.86 (4) Å30.12 × 0.08 × 0.03 mm
Data collection top
Bruker Kappa APEX-DUO CCD
diffractometer
2109 reflections with I > 2σ(I)
Radiation source: Bruker ImuS with multi-layer opticsRint = 0.042
φ and ω scansθmax = 67.2°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS, Bruker, 2014)
h = 88
Tmin = 0.661, Tmax = 0.753k = 99
21668 measured reflectionsl = 1414
2453 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0461P)2 + 0.2263P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2453 reflectionsΔρmax = 0.14 e Å3
208 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.86032 (11)0.70745 (10)0.51598 (7)0.0232 (2)
F20.77242 (12)0.51313 (10)0.44006 (7)0.0271 (2)
O10.80576 (16)0.78510 (15)0.28639 (10)0.0377 (3)
O20.58932 (16)0.95022 (14)0.21411 (9)0.0339 (3)
N10.65260 (16)0.53533 (14)0.64532 (10)0.0212 (3)
N20.52944 (16)0.74478 (14)0.50034 (10)0.0182 (3)
N30.64204 (18)0.85969 (15)0.29516 (10)0.0232 (3)
C10.4997 (2)0.84792 (17)0.40503 (12)0.0192 (3)
C20.3211 (2)0.94448 (17)0.42748 (13)0.0218 (3)
H2A0.2687531.0238070.3740590.026*
C30.2339 (2)0.90177 (17)0.54401 (12)0.0204 (3)
H3A0.1099600.9482620.5865270.024*
C40.36123 (19)0.77789 (17)0.58787 (12)0.0183 (3)
C50.3347 (2)0.69070 (17)0.70204 (12)0.0191 (3)
C60.4781 (2)0.57103 (18)0.72872 (12)0.0212 (3)
C70.4826 (2)0.45638 (19)0.82914 (13)0.0282 (4)
H7A0.3832490.4506230.8996640.034*
C80.6557 (2)0.3567 (2)0.80526 (14)0.0335 (4)
H8A0.6997130.2685160.8560700.040*
C90.7574 (2)0.40853 (19)0.69102 (14)0.0285 (4)
H9A0.8829590.3598030.6523020.034*
C100.1497 (2)0.72820 (17)0.79003 (12)0.0204 (3)
C110.1464 (2)0.7666 (2)0.90056 (13)0.0280 (4)
H11A0.2643680.7654470.9206780.034*
C120.0275 (2)0.8063 (2)0.98091 (14)0.0333 (4)
H12A0.0284480.8321371.0560290.040*
C130.2001 (2)0.8085 (2)0.95249 (14)0.0314 (4)
H13A0.3194800.8382831.0072200.038*
C140.1983 (2)0.7672 (2)0.84422 (14)0.0290 (4)
H14A0.3168240.7662330.8254350.035*
C150.0249 (2)0.72708 (18)0.76279 (13)0.0243 (3)
H15A0.0247850.6988660.6885110.029*
B10.7137 (2)0.62463 (19)0.51937 (14)0.0195 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0171 (4)0.0269 (5)0.0255 (4)0.0043 (3)0.0043 (3)0.0031 (3)
F20.0288 (5)0.0252 (5)0.0261 (5)0.0018 (3)0.0049 (4)0.0107 (4)
O10.0238 (6)0.0516 (8)0.0253 (6)0.0076 (5)0.0023 (5)0.0010 (5)
O20.0361 (6)0.0390 (7)0.0196 (5)0.0002 (5)0.0043 (5)0.0056 (5)
N10.0178 (6)0.0225 (6)0.0224 (6)0.0020 (5)0.0048 (5)0.0018 (5)
N20.0167 (6)0.0210 (6)0.0163 (6)0.0031 (5)0.0023 (5)0.0038 (5)
N30.0250 (7)0.0261 (7)0.0170 (6)0.0040 (5)0.0025 (5)0.0026 (5)
C10.0210 (7)0.0216 (7)0.0152 (7)0.0049 (6)0.0034 (5)0.0020 (5)
C20.0215 (7)0.0213 (7)0.0225 (7)0.0022 (6)0.0070 (6)0.0008 (6)
C30.0167 (7)0.0230 (8)0.0200 (7)0.0020 (5)0.0023 (5)0.0037 (6)
C40.0157 (7)0.0214 (7)0.0182 (7)0.0042 (5)0.0019 (5)0.0056 (5)
C50.0191 (7)0.0221 (8)0.0179 (7)0.0064 (6)0.0039 (5)0.0046 (6)
C60.0197 (7)0.0252 (8)0.0185 (7)0.0061 (6)0.0026 (6)0.0023 (6)
C70.0260 (8)0.0323 (9)0.0238 (8)0.0060 (6)0.0045 (6)0.0037 (6)
C80.0325 (9)0.0330 (9)0.0301 (9)0.0007 (7)0.0095 (7)0.0086 (7)
C90.0223 (8)0.0285 (8)0.0314 (8)0.0007 (6)0.0075 (6)0.0014 (7)
C100.0203 (7)0.0211 (7)0.0179 (7)0.0043 (6)0.0013 (6)0.0016 (5)
C110.0268 (8)0.0384 (9)0.0197 (7)0.0086 (7)0.0045 (6)0.0044 (6)
C120.0382 (9)0.0419 (10)0.0189 (8)0.0110 (7)0.0006 (7)0.0081 (7)
C130.0271 (8)0.0340 (9)0.0256 (8)0.0048 (7)0.0061 (6)0.0038 (7)
C140.0193 (7)0.0349 (9)0.0297 (8)0.0043 (6)0.0022 (6)0.0014 (7)
C150.0224 (7)0.0292 (8)0.0210 (7)0.0059 (6)0.0033 (6)0.0035 (6)
B10.0182 (8)0.0203 (8)0.0189 (8)0.0014 (6)0.0026 (6)0.0045 (6)
Geometric parameters (Å, º) top
F1—B11.3822 (18)C5—C101.4782 (19)
F2—B11.3703 (18)C6—C71.425 (2)
O1—N31.2213 (16)C7—C81.361 (2)
O2—N31.2346 (16)C7—H7A0.9500
N1—C91.3288 (19)C8—C91.410 (2)
N1—C61.3970 (18)C8—H8A0.9500
N1—B11.5623 (19)C9—H9A0.9500
N2—C11.3614 (18)C10—C111.395 (2)
N2—C41.3889 (17)C10—C151.396 (2)
N2—B11.5659 (19)C11—C121.381 (2)
N3—C11.4351 (18)C11—H11A0.9500
C1—C21.379 (2)C12—C131.383 (2)
C2—C31.384 (2)C12—H12A0.9500
C2—H2A0.9500C13—C141.382 (2)
C3—C41.397 (2)C13—H13A0.9500
C3—H3A0.9500C14—C151.386 (2)
C4—C51.427 (2)C14—H14A0.9500
C5—C61.375 (2)C15—H15A0.9500
C9—N1—C6107.79 (12)C7—C8—C9107.24 (14)
C9—N1—B1125.56 (12)C7—C8—H8A126.4
C6—N1—B1126.63 (11)C9—C8—H8A126.4
C1—N2—C4104.81 (11)N1—C9—C8110.26 (14)
C1—N2—B1130.53 (12)N1—C9—H9A124.9
C4—N2—B1124.41 (11)C8—C9—H9A124.9
O1—N3—O2123.67 (12)C11—C10—C15119.09 (13)
O1—N3—C1120.11 (12)C11—C10—C5120.78 (13)
O2—N3—C1116.21 (12)C15—C10—C5120.13 (12)
N2—C1—C2112.49 (12)C12—C11—C10120.37 (14)
N2—C1—N3123.66 (12)C12—C11—H11A119.8
C2—C1—N3123.79 (13)C10—C11—H11A119.8
C1—C2—C3105.65 (12)C11—C12—C13120.30 (14)
C1—C2—H2A127.2C11—C12—H12A119.9
C3—C2—H2A127.2C13—C12—H12A119.9
C2—C3—C4107.64 (12)C14—C13—C12119.76 (14)
C2—C3—H3A126.2C14—C13—H13A120.1
C4—C3—H3A126.2C12—C13—H13A120.1
N2—C4—C3109.40 (12)C13—C14—C15120.52 (14)
N2—C4—C5121.78 (12)C13—C14—H14A119.7
C3—C4—C5128.82 (13)C15—C14—H14A119.7
C6—C5—C4120.28 (13)C14—C15—C10119.94 (14)
C6—C5—C10120.61 (13)C14—C15—H15A120.0
C4—C5—C10119.09 (12)C10—C15—H15A120.0
C5—C6—N1120.54 (13)F2—B1—F1111.50 (12)
C5—C6—C7131.83 (14)F2—B1—N1108.45 (12)
N1—C6—C7107.41 (12)F1—B1—N1108.76 (11)
C8—C7—C6107.29 (14)F2—B1—N2111.91 (12)
C8—C7—H7A126.4F1—B1—N2110.28 (12)
C6—C7—H7A126.4N1—B1—N2105.71 (11)
C4—N2—C1—C20.17 (16)N1—C6—C7—C80.26 (17)
B1—N2—C1—C2174.36 (13)C6—C7—C8—C90.16 (19)
C4—N2—C1—N3177.18 (12)C6—N1—C9—C80.16 (18)
B1—N2—C1—N33.0 (2)B1—N1—C9—C8178.48 (14)
O1—N3—C1—N26.6 (2)C7—C8—C9—N10.0 (2)
O2—N3—C1—N2174.85 (13)C6—C5—C10—C1155.5 (2)
O1—N3—C1—C2170.45 (14)C4—C5—C10—C11125.98 (15)
O2—N3—C1—C28.1 (2)C6—C5—C10—C15125.16 (15)
N2—C1—C2—C30.92 (16)C4—C5—C10—C1553.40 (19)
N3—C1—C2—C3176.43 (13)C15—C10—C11—C121.4 (2)
C1—C2—C3—C41.28 (16)C5—C10—C11—C12178.01 (14)
C1—N2—C4—C30.65 (15)C10—C11—C12—C130.1 (3)
B1—N2—C4—C3173.99 (12)C11—C12—C13—C141.5 (3)
C1—N2—C4—C5178.59 (12)C12—C13—C14—C151.5 (2)
B1—N2—C4—C56.8 (2)C13—C14—C15—C100.0 (2)
C2—C3—C4—N21.23 (16)C11—C10—C15—C141.4 (2)
C2—C3—C4—C5177.94 (14)C5—C10—C15—C14178.00 (14)
N2—C4—C5—C60.6 (2)C9—N1—B1—F250.52 (18)
C3—C4—C5—C6179.67 (14)C6—N1—B1—F2127.86 (14)
N2—C4—C5—C10177.97 (12)C9—N1—B1—F170.91 (17)
C3—C4—C5—C101.1 (2)C6—N1—B1—F1110.71 (14)
C4—C5—C6—N11.2 (2)C9—N1—B1—N2170.68 (13)
C10—C5—C6—N1179.75 (12)C6—N1—B1—N27.70 (18)
C4—C5—C6—C7172.63 (15)C1—N2—B1—F259.63 (19)
C10—C5—C6—C75.9 (2)C4—N2—B1—F2127.19 (13)
C9—N1—C6—C5175.45 (13)C1—N2—B1—F165.10 (18)
B1—N1—C6—C53.2 (2)C4—N2—B1—F1108.08 (14)
C9—N1—C6—C70.25 (16)C1—N2—B1—N1177.50 (13)
B1—N1—C6—C7178.36 (13)C4—N2—B1—N19.32 (17)
C5—C6—C7—C8174.70 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···F1i0.952.403.2788 (18)155
C9—H9A···O1i0.952.593.3420 (19)136
C15—H15A···F1ii0.952.403.2946 (17)157
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z.
3-Chloro-6-ethyl-5,7,8-trimethyl-2-nitro-4,4-diphenyl-4-bora-3a,4a-diaza-s-indacene (5d) top
Crystal data top
C26H25BClN3O2F(000) = 960
Mr = 457.75Dx = 1.322 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 11.8359 (4) ÅCell parameters from 9143 reflections
b = 12.0825 (4) Åθ = 4.2–66.9°
c = 16.5811 (5) ŵ = 1.70 mm1
β = 104.116 (1)°T = 150 K
V = 2299.62 (13) Å3Block, orange
Z = 40.19 × 0.18 × 0.10 mm
Data collection top
Bruker Kappa APEX-DUO CCD
diffractometer
3864 reflections with I > 2σ(I)
Radiation source: Bruker ImuS with multi-layer opticsRint = 0.047
φ and ω scansθmax = 67.0°, θmin = 4.2°
Absorption correction: multi-scan
(SADABS, Bruker, 2014)
h = 1414
Tmin = 0.586, Tmax = 0.753k = 1414
43708 measured reflectionsl = 1919
4080 independent reflections
Refinement top
Refinement on F28 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.037P)2 + 1.0066P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
4080 reflectionsΔρmax = 0.27 e Å3
330 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.65541 (3)0.48753 (3)0.73750 (2)0.03002 (11)
O10.8114 (8)0.6549 (7)0.8363 (6)0.0496 (19)0.618 (12)
O20.7942 (2)0.7083 (3)0.9601 (2)0.0483 (9)0.618 (12)
O1A0.8229 (13)0.6468 (11)0.8446 (9)0.047 (3)0.382 (12)
O2A0.7609 (8)0.7616 (10)0.9191 (9)0.106 (5)0.382 (12)
N3A0.7493 (6)0.6751 (7)0.8782 (6)0.057 (4)0.382 (12)
N10.28379 (9)0.44041 (9)0.79566 (6)0.0220 (2)
N20.49001 (9)0.50641 (8)0.82271 (6)0.0202 (2)
N30.7575 (4)0.6637 (4)0.8919 (3)0.0346 (13)0.618 (12)
C10.59526 (11)0.53714 (11)0.81333 (8)0.0230 (3)
C20.64420 (12)0.61408 (11)0.87475 (9)0.0282 (3)
C30.56525 (12)0.63145 (11)0.92368 (9)0.0289 (3)
H3A0.5749610.6792310.9703700.035*
C40.47007 (11)0.56522 (10)0.89058 (7)0.0217 (3)
C50.36080 (11)0.56043 (10)0.91296 (8)0.0225 (3)
C60.27018 (11)0.50137 (10)0.86548 (8)0.0225 (3)
C70.14980 (12)0.49154 (11)0.86915 (9)0.0265 (3)
C80.09486 (11)0.42855 (11)0.80284 (9)0.0274 (3)
C90.18088 (11)0.39655 (11)0.75961 (8)0.0258 (3)
C100.34888 (12)0.62834 (12)0.98638 (8)0.0292 (3)
H10A0.3098660.5843891.0212810.044*
H10B0.3026600.6946730.9668080.044*
H10C0.4263410.6502291.0189280.044*
C110.09350 (13)0.53934 (14)0.93294 (10)0.0363 (3)
H11A0.0089650.5288270.9150240.054*
H11B0.1110570.6185910.9392700.054*
H11C0.1235980.5019110.9862950.054*
C120.03133 (12)0.39544 (13)0.77918 (10)0.0355 (3)
H12A0.0543690.3798430.7187640.043*
H12B0.0792450.4580940.7903300.043*
C130.05679 (15)0.29403 (16)0.82626 (14)0.0541 (5)
H13A0.1401050.2767180.8090330.081*
H13B0.0349290.3091330.8861320.081*
H13C0.0117250.2309430.8139420.081*
C140.16000 (12)0.32166 (13)0.68649 (10)0.0359 (3)
H14A0.2226860.2667430.6944150.054*
H14B0.1583430.3649940.6362520.054*
H14C0.0851900.2837950.6805230.054*
C150.39216 (10)0.42485 (11)0.67672 (8)0.0232 (3)
C160.41692 (13)0.34137 (12)0.62563 (8)0.0319 (3)
H16A0.4420400.2711510.6490360.038*
C170.40564 (15)0.35864 (15)0.54121 (9)0.0431 (4)
H17A0.4229430.3004380.5076080.052*
C180.36943 (14)0.45996 (17)0.50602 (9)0.0456 (4)
H18A0.3618630.4717500.4483000.055*
C190.34425 (14)0.54409 (15)0.55507 (10)0.0430 (4)
H19A0.3192760.6141000.5311950.052*
C200.35542 (12)0.52636 (13)0.63928 (9)0.0317 (3)
H20A0.3375770.5849030.6723670.038*
C210.44966 (11)0.29287 (10)0.81776 (7)0.0218 (3)
C220.39015 (11)0.23405 (11)0.86739 (8)0.0263 (3)
H22A0.3176710.2616790.8737390.032*
C230.43379 (13)0.13640 (12)0.90770 (9)0.0336 (3)
H23A0.3909190.0985710.9407630.040*
C240.53879 (14)0.09428 (12)0.89995 (10)0.0364 (3)
H24A0.5693020.0283270.9282060.044*
C250.59920 (13)0.14938 (12)0.85042 (10)0.0358 (3)
H25A0.6712130.1206490.8440020.043*
C260.55507 (12)0.24623 (11)0.81020 (8)0.0291 (3)
H26A0.5977670.2824080.7762270.035*
B10.40435 (12)0.41142 (12)0.77529 (9)0.0205 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02361 (17)0.0383 (2)0.03203 (19)0.00318 (12)0.01435 (13)0.00588 (13)
O10.029 (3)0.076 (4)0.051 (2)0.023 (2)0.024 (3)0.011 (2)
O20.0407 (12)0.0506 (17)0.0490 (17)0.0191 (11)0.0021 (11)0.0194 (13)
O1A0.027 (4)0.039 (4)0.071 (7)0.002 (2)0.007 (3)0.015 (3)
O2A0.083 (5)0.130 (8)0.129 (8)0.078 (5)0.068 (6)0.101 (7)
N3A0.045 (5)0.082 (8)0.045 (4)0.037 (4)0.016 (3)0.042 (4)
N10.0208 (5)0.0231 (5)0.0231 (5)0.0005 (4)0.0074 (4)0.0010 (4)
N20.0194 (5)0.0214 (5)0.0203 (5)0.0007 (4)0.0062 (4)0.0003 (4)
N30.024 (2)0.0271 (17)0.052 (3)0.0026 (14)0.0089 (15)0.005 (2)
C10.0200 (6)0.0253 (6)0.0246 (6)0.0008 (5)0.0072 (5)0.0010 (5)
C20.0228 (7)0.0292 (7)0.0329 (7)0.0050 (5)0.0070 (5)0.0041 (6)
C30.0290 (7)0.0286 (7)0.0287 (7)0.0019 (5)0.0065 (6)0.0084 (5)
C40.0241 (6)0.0218 (6)0.0196 (6)0.0027 (5)0.0059 (5)0.0006 (5)
C50.0253 (6)0.0219 (6)0.0214 (6)0.0048 (5)0.0079 (5)0.0027 (5)
C60.0236 (6)0.0233 (6)0.0227 (6)0.0038 (5)0.0099 (5)0.0025 (5)
C70.0247 (7)0.0260 (6)0.0317 (7)0.0042 (5)0.0127 (6)0.0063 (5)
C80.0212 (6)0.0281 (7)0.0345 (7)0.0015 (5)0.0097 (5)0.0066 (6)
C90.0217 (6)0.0263 (7)0.0298 (7)0.0013 (5)0.0069 (5)0.0014 (5)
C100.0312 (7)0.0338 (7)0.0243 (7)0.0041 (6)0.0104 (6)0.0033 (6)
C110.0311 (8)0.0439 (8)0.0403 (8)0.0058 (6)0.0210 (7)0.0033 (7)
C120.0219 (7)0.0378 (8)0.0484 (9)0.0001 (6)0.0115 (6)0.0043 (7)
C130.0376 (9)0.0475 (10)0.0789 (13)0.0111 (8)0.0178 (9)0.0141 (9)
C140.0254 (7)0.0410 (8)0.0409 (8)0.0087 (6)0.0074 (6)0.0121 (7)
C150.0178 (6)0.0301 (7)0.0220 (6)0.0041 (5)0.0056 (5)0.0001 (5)
C160.0395 (8)0.0342 (7)0.0241 (7)0.0076 (6)0.0118 (6)0.0042 (6)
C170.0520 (10)0.0558 (10)0.0253 (7)0.0184 (8)0.0169 (7)0.0093 (7)
C180.0392 (9)0.0762 (12)0.0202 (7)0.0208 (8)0.0052 (6)0.0075 (8)
C190.0325 (8)0.0565 (10)0.0376 (9)0.0019 (7)0.0037 (6)0.0217 (8)
C200.0249 (7)0.0376 (8)0.0324 (7)0.0020 (6)0.0063 (6)0.0069 (6)
C210.0242 (6)0.0229 (6)0.0183 (6)0.0017 (5)0.0055 (5)0.0038 (5)
C220.0245 (6)0.0280 (7)0.0269 (7)0.0024 (5)0.0071 (5)0.0002 (5)
C230.0373 (8)0.0314 (7)0.0323 (7)0.0060 (6)0.0086 (6)0.0065 (6)
C240.0431 (9)0.0266 (7)0.0376 (8)0.0053 (6)0.0063 (7)0.0069 (6)
C250.0359 (8)0.0332 (8)0.0402 (8)0.0108 (6)0.0131 (6)0.0020 (6)
C260.0318 (7)0.0284 (7)0.0305 (7)0.0039 (6)0.0142 (6)0.0017 (6)
B10.0185 (7)0.0224 (7)0.0219 (7)0.0013 (5)0.0075 (5)0.0028 (5)
Geometric parameters (Å, º) top
Cl1—C11.6982 (13)C12—H12A0.9900
O1—N31.248 (6)C12—H12B0.9900
O2—N31.232 (5)C13—H13A0.9800
O1A—N3A1.193 (12)C13—H13B0.9800
O2A—N3A1.235 (12)C13—H13C0.9800
N3A—C21.435 (7)C14—H14A0.9800
N1—C91.3292 (17)C14—H14B0.9800
N1—C61.4140 (16)C14—H14C0.9800
N1—B11.5836 (16)C15—C161.3935 (19)
N2—C11.3447 (17)C15—C201.395 (2)
N2—C41.3989 (16)C15—B11.6134 (18)
N2—B11.6045 (17)C16—C171.389 (2)
N3—C21.433 (4)C16—H16A0.9500
C1—C21.3962 (19)C17—C181.379 (3)
C2—C31.3947 (19)C17—H17A0.9500
C3—C41.3817 (19)C18—C191.379 (3)
C3—H3A0.9500C18—H18A0.9500
C4—C51.4309 (18)C19—C201.387 (2)
C5—C61.3666 (19)C19—H19A0.9500
C5—C101.5030 (17)C20—H20A0.9500
C6—C71.4457 (19)C21—C221.4003 (18)
C7—C81.365 (2)C21—C261.4022 (19)
C7—C111.4968 (19)C21—B11.6283 (18)
C8—C91.4339 (19)C22—C231.392 (2)
C8—C121.5030 (19)C22—H22A0.9500
C9—C141.4845 (19)C23—C241.378 (2)
C10—H10A0.9800C23—H23A0.9500
C10—H10B0.9800C24—C251.384 (2)
C10—H10C0.9800C24—H24A0.9500
C11—H11A0.9800C25—C261.385 (2)
C11—H11B0.9800C25—H25A0.9500
C11—H11C0.9800C26—H26A0.9500
C12—C131.522 (2)
O1A—N3A—O2A120.2 (9)C13—C12—H12A109.0
O1A—N3A—C2124.0 (10)C8—C12—H12B109.0
O2A—N3A—C2115.8 (7)C13—C12—H12B109.0
C9—N1—C6107.52 (10)H12A—C12—H12B107.8
C9—N1—B1126.18 (11)C12—C13—H13A109.5
C6—N1—B1125.33 (10)C12—C13—H13B109.5
C1—N2—C4107.19 (10)H13A—C13—H13B109.5
C1—N2—B1129.30 (10)C12—C13—H13C109.5
C4—N2—B1123.17 (10)H13A—C13—H13C109.5
O2—N3—O1125.9 (6)H13B—C13—H13C109.5
O1A—N3—O2A114.0 (7)C9—C14—H14A109.5
O2—N3—C2117.9 (3)C9—C14—H14B109.5
O1A—N3—C2120.2 (8)H14A—C14—H14B109.5
O1—N3—C2116.2 (5)C9—C14—H14C109.5
O2A—N3—C2114.1 (4)H14A—C14—H14C109.5
N2—C1—C2109.32 (11)H14B—C14—H14C109.5
N2—C1—Cl1123.75 (10)C16—C15—C20117.04 (12)
C2—C1—Cl1126.93 (10)C16—C15—B1124.26 (12)
C3—C2—C1107.87 (12)C20—C15—B1118.70 (12)
C3—C2—N3123.3 (2)C17—C16—C15121.41 (15)
C1—C2—N3128.7 (2)C17—C16—H16A119.3
C3—C2—N3A126.6 (4)C15—C16—H16A119.3
C1—C2—N3A124.9 (4)C18—C17—C16120.23 (16)
C4—C3—C2106.19 (12)C18—C17—H17A119.9
C4—C3—H3A126.9C16—C17—H17A119.9
C2—C3—H3A126.9C17—C18—C19119.64 (14)
C3—C4—N2109.42 (11)C17—C18—H18A120.2
C3—C4—C5128.41 (12)C19—C18—H18A120.2
N2—C4—C5121.91 (11)C18—C19—C20119.91 (15)
C6—C5—C4120.25 (11)C18—C19—H19A120.0
C6—C5—C10122.42 (12)C20—C19—H19A120.0
C4—C5—C10117.21 (11)C19—C20—C15121.78 (15)
C5—C6—N1120.90 (11)C19—C20—H20A119.1
C5—C6—C7131.43 (12)C15—C20—H20A119.1
N1—C6—C7107.57 (11)C22—C21—C26115.76 (12)
C8—C7—C6107.02 (12)C22—C21—B1122.74 (11)
C8—C7—C11125.29 (13)C26—C21—B1121.41 (11)
C6—C7—C11127.68 (13)C23—C22—C21122.11 (13)
C7—C8—C9107.23 (12)C23—C22—H22A118.9
C7—C8—C12127.35 (13)C21—C22—H22A118.9
C9—C8—C12125.40 (13)C24—C23—C22120.39 (13)
N1—C9—C8110.62 (12)C24—C23—H23A119.8
N1—C9—C14124.21 (12)C22—C23—H23A119.8
C8—C9—C14125.14 (12)C23—C24—C25119.09 (13)
C5—C10—H10A109.5C23—C24—H24A120.5
C5—C10—H10B109.5C25—C24—H24A120.5
H10A—C10—H10B109.5C24—C25—C26120.24 (13)
C5—C10—H10C109.5C24—C25—H25A119.9
H10A—C10—H10C109.5C26—C25—H25A119.9
H10B—C10—H10C109.5C25—C26—C21122.40 (13)
C7—C11—H11A109.5C25—C26—H26A118.8
C7—C11—H11B109.5C21—C26—H26A118.8
H11A—C11—H11B109.5N1—B1—N2103.40 (9)
C7—C11—H11C109.5N1—B1—C15109.35 (10)
H11A—C11—H11C109.5N2—B1—C15108.31 (10)
H11B—C11—H11C109.5N1—B1—C21108.73 (10)
C8—C12—C13112.89 (13)N2—B1—C21108.37 (10)
C8—C12—H12A109.0C15—B1—C21117.72 (10)
N3—O1A—N3A—O2A93 (2)C5—C6—C7—C115.2 (2)
N3—O1A—N3A—C287 (2)N1—C6—C7—C11178.51 (13)
N3—O2A—N3A—O1A96 (2)C6—C7—C8—C91.71 (14)
N3—O2A—N3A—C284 (2)C11—C7—C8—C9177.82 (13)
N3A—O1A—N3—O2A67 (3)C6—C7—C8—C12179.59 (13)
N3A—O1A—N3—C273 (2)C11—C7—C8—C120.9 (2)
N3A—O2A—N3—O1A64 (3)C6—N1—C9—C81.26 (14)
N3A—O2A—N3—C279 (2)B1—N1—C9—C8170.46 (11)
C4—N2—C1—C20.65 (14)C6—N1—C9—C14176.74 (13)
B1—N2—C1—C2172.70 (12)B1—N1—C9—C147.5 (2)
C4—N2—C1—Cl1179.37 (9)C7—C8—C9—N11.92 (15)
B1—N2—C1—Cl17.27 (18)C12—C8—C9—N1179.35 (12)
N2—C1—C2—C30.21 (16)C7—C8—C9—C14176.06 (13)
Cl1—C1—C2—C3179.82 (10)C12—C8—C9—C142.7 (2)
N2—C1—C2—N3175.6 (3)C7—C8—C12—C1383.32 (19)
Cl1—C1—C2—N34.3 (4)C9—C8—C12—C1395.16 (18)
N2—C1—C2—N3A172.0 (4)C20—C15—C16—C170.1 (2)
Cl1—C1—C2—N3A8.0 (4)B1—C15—C16—C17179.39 (13)
O2—N3—C2—C312.5 (6)C15—C16—C17—C180.1 (2)
O1A—N3—C2—C3178.3 (10)C16—C17—C18—C190.1 (2)
O1—N3—C2—C3169.2 (6)C17—C18—C19—C200.0 (2)
O2A—N3—C2—C337.4 (9)C18—C19—C20—C150.2 (2)
O2—N3—C2—C1162.8 (3)C16—C15—C20—C190.2 (2)
O1A—N3—C2—C16.4 (12)B1—C15—C20—C19179.29 (13)
O1—N3—C2—C115.5 (8)C26—C21—C22—C230.98 (19)
O2A—N3—C2—C1147.3 (8)B1—C21—C22—C23175.73 (12)
O1A—N3—C2—N3A66 (3)C21—C22—C23—C240.2 (2)
O2A—N3—C2—N3A74 (3)C22—C23—C24—C251.1 (2)
O1A—N3A—C2—C3167.9 (8)C23—C24—C25—C260.8 (2)
O2A—N3A—C2—C312.1 (8)C24—C25—C26—C210.4 (2)
O1A—N3A—C2—C121.8 (8)C22—C21—C26—C251.3 (2)
O2A—N3A—C2—C1158.2 (8)B1—C21—C26—C25175.49 (12)
O1A—N3A—C2—N393 (3)C9—N1—B1—N2168.35 (11)
O2A—N3A—C2—N387 (3)C6—N1—B1—N224.31 (15)
C1—C2—C3—C40.32 (16)C9—N1—B1—C1553.14 (16)
N3—C2—C3—C4176.4 (3)C6—N1—B1—C15139.52 (11)
N3A—C2—C3—C4171.3 (4)C9—N1—B1—C2176.62 (15)
C2—C3—C4—N20.72 (15)C6—N1—B1—C2190.71 (13)
C2—C3—C4—C5173.48 (13)C1—N2—B1—N1164.39 (11)
C1—N2—C4—C30.86 (14)C4—N2—B1—N123.20 (14)
B1—N2—C4—C3172.99 (11)C1—N2—B1—C1548.44 (16)
C1—N2—C4—C5173.79 (11)C4—N2—B1—C15139.15 (11)
B1—N2—C4—C512.35 (17)C1—N2—B1—C2180.33 (15)
C3—C4—C5—C6170.50 (13)C4—N2—B1—C2192.08 (13)
N2—C4—C5—C63.07 (18)C16—C15—B1—N1124.11 (13)
C3—C4—C5—C105.6 (2)C20—C15—B1—N156.42 (15)
N2—C4—C5—C10179.18 (11)C16—C15—B1—N2123.87 (13)
C4—C5—C6—N12.62 (18)C20—C15—B1—N255.61 (14)
C10—C5—C6—N1178.52 (11)C16—C15—B1—C210.58 (18)
C4—C5—C6—C7173.26 (13)C20—C15—B1—C21178.90 (11)
C10—C5—C6—C72.6 (2)C22—C21—B1—N13.28 (16)
C9—N1—C6—C5176.94 (12)C26—C21—B1—N1179.80 (11)
B1—N1—C6—C513.75 (18)C22—C21—B1—N2108.47 (13)
C9—N1—C6—C70.18 (14)C26—C21—B1—N268.05 (14)
B1—N1—C6—C7169.49 (11)C22—C21—B1—C15128.27 (13)
C5—C6—C7—C8175.29 (14)C26—C21—B1—C1555.21 (16)
N1—C6—C7—C81.00 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···O2i0.952.433.365 (4)168
C19—H19A···O2Ai0.952.363.238 (13)154
Symmetry code: (i) x1/2, y+3/2, z1/2.
 

Footnotes

Equal contribution from Dhruval J. Joshi and Meesook Jun.

Funding information

This work was supported by the Natural Sciences and Engineering Research Council of Canada.

References

First citationBandichhor, R., Thivierge, C., Bhuvanesh, N. S. P. & Burgess, K. (2006). Acta Cryst. E62, o4310–o4311.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBessette, A. & Hanan, G. S. (2014). Chem. Soc. Rev. 43, 3342–3405.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2014). APEX2, SAINT & SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, S., Bouffard, J. & Kim, Y. (2014). Chem. Sci. 5, 751–755.  Web of Science CSD CrossRef CAS Google Scholar
First citationEsnal, I., Bañuelos, J., Arbeloa, I. L., Costela, A., Garcia-Moreno, I., Garzón, M., Agarrabeitia, A. R. & Ortiz, M. J. (2013). RSC Adv. 3, 1547–1556.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGupta, M., Mula, S., Tyagi, M., Ghanty, T. K., Murudkar, S., Ray, A. K. & Chattopadhyay, S. (2013). Chem. Eur. J. 19, 17766–17772.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKee, H. L., Kirmaier, C., Yu, L., Thamyongkit, P., Youngblood, W. J., Calder, M. E., Ramos, L., Noll, B. C., Bocian, D. F., Scheidt, W. R., Birge, R. R., Lindsey, J. S. & Holten, D. (2005). J. Phys. Chem. B, 109, 20433–20443.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLeen, V., Leemans, T., Boens, N. & Dehaen, W. (2011). Eur. J. Org. Chem. pp. 4386–4396.  Web of Science CrossRef Google Scholar
First citationLoudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891–4932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLu, H., Mack, J., Yang, Y. & Shen, Z. (2014). Chem. Soc. Rev. 43, 4778–4823.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNöth, H. & Vahrenkamp, H. (1968). J. Organomet. Chem. 11, 399–405.  Google Scholar
First citationPicou, C. L., Stevens, E. D., Shah, M. & Boyer, J. H. (1990). Acta Cryst. C46, 1148–1150.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRao, M. R., Tiwari, M. D., Bellare, J. R. & Ravikanth, M. (2011). J. Org. Chem. 76, 7263–7268.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTram, K., Twohig, D. & Yan, H. (2011). Nucleosides Nucleotides Nucleic Acids, 30, 1–11.  Web of Science CrossRef CAS PubMed Google Scholar
First citationUlrich, G., Ziessel, R. & Haefele, A. (2012). J. Org. Chem. 77, 4298–4311.  Web of Science CrossRef CAS PubMed Google Scholar
First citationUlrich, G., Ziessel, R. & Harriman, A. (2008). Angew. Chem. Int. Ed. 47, 1184–1201.  Web of Science CrossRef CAS Google Scholar
First citationWang, H., Vicente, M. G. H., Fronczek, F. R. & Smith, K. M. (2014). Chem. Eur. J. 20, 5064–5074.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYang, L., Drew, B., Yalagala, R. S., Chaviwala, R., Simionescu, R., Lough, A. J. & Yan, H. (2017). Acta Cryst. E73, 378–382.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, L., Yalagala, R. S., Hutton, S., Lough, A. J. & Yan, H. (2014). Synlett, 25, 2661–2664.  CAS Google Scholar
First citationZiessel, R., Ulrich, G. & Harriman, A. (2007). New J. Chem. 31, 496–501.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds