research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-meth­­oxy­chalcone 4-ethyl­thio­semi­carbazon­ato-κ2N1,S)zinc(II): crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aDepartment of Physical Sciences, Faculty of Applied Sciences and Computing, Tunku Abdul Rahman, University College, 50932 Setapak, Kuala Lumpur, Malaysia, bDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia, cDepartment of Chemistry, St. Francis Xavier University, PO Box 5000, Antigonish, NS B2G 2W5, Canada, dDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and eResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 3 January 2018; accepted 5 January 2018; online 12 January 2018)

The title ZnII complex, [Zn(C19H20N3OS)2] {systematic name: bis­[(N-ethyl-N′-{(Z)-[(2E)-3-(4-meth­oxy­phen­yl)-1-phenyl­prop-2-en-1-yl­idene]amino}­carb­am­im­id­o­yl)sulfanido]zinc(II)}, features a tetra­hedrally coordinated ZnII ion within an N2S2 donor set provided by two N,S-chelating thio­semicarbazone anions. The resulting five-membered Zn,C,N2,S chelate rings adopt different conformations, i.e. almost planar and an envelope with the Zn atom being the flap atom. The configuration about the imine bond within the chelate ring is Z but those about the exocyclic imine and ethyl­ene bonds are E. In the crystal, supra­molecular [100] chains mediated by thio­amide-N—H⋯S(thione) hydrogen bonds and eight-membered thio­amide {⋯HNCS}2 synthons are observed. A range of inter­actions, including C—H⋯O, C—H⋯π, C—H⋯π(chelate ring) and π(meth­oxy­benzene)—π(chelate ring) consolidate the packing. The Hirshfeld surface analysis performed on the title complex also indicates the influence of the inter­actions involving the chelate rings upon the packing along with the more conventional contacts.

1. Chemical context

With potentially five different substituents, thio­semicarbazone derivatives, R1R2C=N—N(R3)—C(=S)NR4R5 for R1–5 = H/alk­yl/aryl, are numerous and multi-functional. Their preparation is often facile, being formed from the condensation reaction between an aldehyde (or a ketone) with the amine group of a thio­semicarbazide precursor. In the same way, the diversity in ligand construction ensures a rich coord­ination chemistry (Lobana et al., 2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]). A primary motivation for investigating metal complexes of thio­semi­carbazones and related derivatives rests with their putative biological activity (Espíndola et al., 2015[Espíndola, J. W. P., Cardoso, M. V. de O., Filho, G. B. de O., Silva, D. A. O e, Moreira, D. R. M., Bastos, T. M., de Simone, C. A., Soares, M. B. P., Villela, F. S., Ferreira, R. S., de Castro, M. C. A. B., Pereira, V. R. A., Murta, S. M. F., Sales Junior, P. A., Romanha, A. J. & Leite, A. C. L. (2015). Eur. J. Med. Chem. 101, 818-835.]; Pelivan, et al., 2016[Pelivan, K., Miklos, W., van Schoonhoven, S., Koellensperger, G., Gille, L., Berger, W., Heffeter, P., Kowol, C. R. & Keppler, B. K. (2016). J. Inorg. Biochem. 160, 61-69.]; Low et al., 2016[Low, M. L., Maigre, L. M., Tahir, M. I. M. T., Tiekink, E. R. T., Dorlet, P., Guillot, R., Ravoof, T. B., Rosli, R., Pagès, J.-M., Policar, C., Delsuc, N. & Crouse, K. A. (2016). Eur. J. Med. Chem. 120, 1-12.]; Bisceglie et al., 2018[Bisceglie, F., Tavone, M., Mussi, F., Azzoni, S., Montalbano, S., Franzoni, S., Tarasconi, P., Buschini, A. & Pelosi, G. (2018). J. Inorg. Biochem. 179, 60-70.]). Thus, promising activity has been exhibited by various metal complexes against a range of diseases (Dilworth & Hueting, 2012[Dilworth, J. R. & Hueting, R. (2012). Inorg. Chim. Acta, 389, 3-15.]). In the context of the present report, it is noteworthy that ZnII thio­semicarbazone complexes have been explored as therapeutics for the treatment of cancer (Afrasiabi et al., 2003[Afrasiabi, Z., Sinn, E., Padhye, S., Dutta, S., Padhye, S., Newton, C., Anson, C. E. & Powell, A. K. (2003). J. Inorg. Biochem. 95, 306-314.]), viral diseases (Garoufis et al., 2009[Garoufis, A., Hadjikakou, S. K. & Hadjiliadis, N. (2009). Coord. Chem. Rev. 253, 1384-1397.]) and bacterial infections (Quiroga & Ranninger, 2004[Quiroga, A. G. & Ranninger, C. N. (2004). Coord. Chem. Rev. 248, 119-133.]). Such considerations motivate our inter­est in this class of compound (Yusof et al., 2015[Yusof, E. N. M., Ravoof, T. B. S. A., Tiekink, E. R. T., Veerakumarasivam, A., Crouse, K. A., Tahir, M. I. M. & Ahmad, H. (2015). Int. J. Mol. Sci. 16, 11034-11054.]). Herein, in contin­uation of our structural studies of ZnII thio­semi­carbazones (Tan et al., 2017[Tan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1001-1008.]), the X-ray crystal structure of the title compound, (I)[link], is described along with an analysis of its Hirshfeld surfaces in order to gain more information on the mode of association between mol­ecules in the mol­ecular packing.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link], Fig. 1[link], sees the ZnII atom coordinated by two chelating thio­semicarbazone anions, each via the thiol­ate-S and imine-N atoms, Table 1[link]. The resulting N2S2 donor set defines a distorted tetra­hedral geometry, with the range of angles subtended at the zinc atom being an acute 87.29 (9)° for the S1—Zn—N3 chelate angle to 127.92 (4)° for S1—Zn—S2. The assignment of four-coordinate geometries can be qu­anti­fied by comparing the calculated value of τ4, in this case 0.74, with the ideal values for an ideal tetra­hedron, i.e. 1.00, and perfect square-planar geometry, i.e. 0.00 (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]), indicating a distorted tetra­hedral geometry in (I)[link]. The configuration about each of the endocyclic imine bonds is Z, because of the dictates of chelation. By contrast, each of the exocyclic imine C=N bonds is E, as are the configurations about the ethyl­ene bonds, Table 1[link].

Table 1
Selected bond lengths (Å)

Zn—N3 2.041 (3) C4—N3 1.310 (5)
Zn—N6 2.071 (3) C5—C6 1.349 (5)
Zn—S1 2.2879 (11) C20—N5 1.307 (5)
Zn—S2 2.2757 (11) C23—N6 1.319 (5)
C1—N2 1.314 (5) C24—C25 1.344 (5)
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

The mode of the coordination of the thio­semicarbazone ligands leads to the formation of five-membered ZnSCN2 chelate rings, and these adopt different conformations. Whereas, the (Zn,S1,C1,N2,N3) ring is almost planar (r.m.s. deviation = 0.0325 Å), the (Zn,S2,C20,N5,N6) chelate ring is best described as an envelope with the Zn atom lying 0.205 (5) Å out of the plane of the remaining four atoms (r.m.s. deviation = 0.0011 Å). The dihedral angle between the mean planes through the chelate rings is 79.68 (8)°. To a first approximation, the thio­semicarbazone ligands comprise two planar regions. Thus, the non-hydrogen, non-phenyl atoms of the atoms of the S1-ligand define one plane (r.m.s. deviation = 0.1910 Å), which forms a dihedral angle of 54.53 (8)° with the (C14–C19) ring, consistent with a near perpendicular relationship. The comparable values for the S2-ligand are 0.2800 Å and 75.09 (11)°, respectively.

3. Supra­molecular features

The most prominent feature of the mol­ecular packing is the formation of supra­molecular chains along the c-axis direction sustained by eight-membered thio­amide {⋯HNCS}2 synthons, Fig. 2[link]a and Table 2[link]. When the array is viewed down the axis of propagation, Fig. 2[link]b, it is evident that two rows of mol­ecules, each with a right-angle topology, are connected by N—H⋯S(thione) hydrogen bonds. Centrosymmetrically related right angles are connected into a supra­molecular tube, Fig. 2[link]c, via imine-phenyl-C—H⋯O(meth­oxy), imine-phenyl-C—H⋯π(imine-phen­yl) and imine-phenyl-C—H⋯π(meth­oxy­benzene) inter­actions, Table 2[link]. The connections between the tubes over and above the hydrogen bonding involve chelate rings, which are more and more being recognized as being important in consolidating crystal structures (Tiekink, 2017[Tiekink, E. R. T. (2017). Coord. Chem. Rev. 345, 209-228.]). The first kind of inter­action is of the type imine-phenyl-C—H⋯(chelate ring) where the chelate ring is defined by the five-membered (Zn,S2,C20,N5,N6) grouping which, as mentioned above, is non-planar, indicating that aromaticity is not the sole criterion for the formation of C—H⋯(chelate ring) inter­actions (Palusiak & Krygowski, 2007[Palusiak, M. & Krygowski, T. M. (2007). Chem. Eur. J. 13, 7996-8006.]; Yeo et al., 2014[Yeo, C. I., Halim, S. N. A., Ng, S. W., Tan, S. L., Zukerman-Schpector, J., Ferreira, M. A. B. & Tiekink, E. R. T. (2014). Chem. Commun. 50, 5984-5986.]; Zukerman-Schpector et al., 2016[Zukerman-Schpector, J., Yeo, C. I. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 55-64.]). The second contact between tubes involving chelate rings is of the type π(Zn,S1,C1,N2,N3)–π(C7–C12)v with a ring centroid–ring centroid separation of 3.778 (2) Å and angle of inclination = 15.04 (17)° for symmetry operation (v): 2 − x, 1 − y, 1 − z. A review has appeared very recently on the topic of π(chelate ring)–π(arene) and π(chelate ring)–π(chelate ring) inter­actions where it was suggested that inter­actions of the former type provide comparable energies of stabilization to mol­ecular packing as do weak conventional hydrogen bonds (Malenov et al., 2017[Malenov, D. P., Janjić, G. V., Medaković, V. B., Hall, M. B. & Zarić, S. D. (2017). Coord. Chem. Rev. 345, 318-341.]). A view of the unit-cell contents is shown in Fig. 2[link]d.

Table 2
Hydrogen-bond geometry (Å, °)

Cg1—Cg4 are the centroids of the (C33–C38), (Zn,S2,C20,N5,N6), (C26—C31) and (Zn,S1,C1,N2,N3) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S1i 0.85 (5) 2.66 (5) 3.506 (4) 171 (3)
N4—H4N⋯S2ii 0.84 (5) 2.82 (5) 3.477 (5) 137 (4)
C36—H36⋯O1iii 0.95 2.57 3.428 (6) 151
C16—H16⋯Cg1iv 0.95 2.85 3.747 (4) 157
C18—H18⋯Cg2v 0.95 2.69 3.485 (5) 141
C34—H34⋯Cg3iv 0.95 2.72 3.555 (6) 148
C5—H5⋯Cg2 0.95 2.67 3.462 (5) 142
C24—H24⋯Cg4 0.95 2.55 3.421 (5) 153
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+1; (iv) -x+1, -y, -z; (v) x+1, y, z.
[Figure 2]
Figure 2
Mol­ecular packing in (I)[link]: (a) a view of the linear supra­molecular chain sustained by thio­amide-N—H⋯S(thiol­ate) hydrogen bonds shown as orange dashed lines, (b) a view of the supra­molecular chain down the axis of propagation, (c) a side-on view of the centrosymmetric supra­molecular tube stabilized by C—H⋯O (pink dashed lines) and C—H⋯π (purple dashed lines) inter­actions and (d) a view of the unit-cell contents shown in projection down the c axis showing C—H⋯(chelate ring) and π(chelate ring)–π(arene) inter­actions as as purple and black dashed lines, respectively.

4. Analysis of the Hirshfeld surfaces

The Hirshfeld surfaces calculated for (I)[link] were performed in accord with recent work on a related complex (Tan et al., 2017[Tan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1001-1008.]) and provide more insight into the inter­molecular inter­actions occurring in the crystal. The donors and acceptors of the inter­molecular N—H⋯S hydrogen bonds are viewed as bright-red spots, labelled as `1' and `2' in Fig. 3[link]a, and the inter­molecular C—H⋯O contacts appear as tiny red spots with label `3' in Fig. 3[link]b on the Hirshfeld surface mapped over dnorm. The faint-red spots near the H3B, H11, H28 and C6 sites represent significant short inter­atomic H⋯H and C⋯H/H⋯C contacts, Fig. 3[link] and Table 3[link]. The structure features two intra­molecular C—H⋯π(chelate) contacts, i.e. between ethyl­ene-C5—H and the (Zn,S2,C20,N5,N6) ring and between ethyl­ene-C24—H and the (Zn,S1,C1,N2,N3) ring, Table 2[link], which are viewed as blue and red regions assigned to positive and negative potentials, respectively, on the Hirshfeld surfaces mapped over electrostatic potential and are highlighted in Fig. 4[link]a. The donors and acceptors of the inter­molecular N—H⋯S and C—H⋯O inter­actions are also viewed as blue and red regions about respective atoms in the images of Fig. 4[link]. The C—H⋯π inter­actions involving imine-phenyl and meth­oxy-benzene rings are evident in short inter­atomic C⋯H/H⋯C contacts, Table 3[link]. The views of Hirshfeld surfaces about a reference mol­ecule mapped over the electrostatic potential highlighting short inter­atomic H⋯H and C⋯H/H⋯C contacts and that mapped within the shape-index property highlighting C—H⋯π/π⋯H—C contacts are illustrated in Fig. 5[link]a and b, respectively.

Table 3
Summary of short inter-atomic contacts (Å) in (I)

Contact Distance Symmetry operation
H3B⋯H11 2.11 x, y, − 1 + z
Zn⋯H18 2.93 − 1 + x, y, z
Zn⋯C18 3.871 (8) − 1 + x, y, z
O2⋯H22B 2.56 x, y, − 1 + z
C6⋯H28 2.74 1 − x, − y, − z
C7⋯H28 2.85 1 − x, − y, − z
C15⋯H27 2.80 1 − x, − y, − z
C17⋯H38 2.79 1 + x, y, z
C24⋯H17 2.78 − 1 + x, y, z
C26⋯H34 2.81 1 − x, − y, − z
C30⋯H35 2.84 1 − x, − y, − z
C31⋯H34 2.80 1 − x, − y, − z
C36⋯H16 2.85 1 − x, − y, − z
C37⋯H16 2.83 1 − x, − y, − z
[Figure 3]
Figure 3
Two views of Hirshfeld surface mapped over dnorm for (I)[link] in the range −0.152 to +1.534 au.
[Figure 4]
Figure 4
Two views of Hirshfeld surface mapped over the electrostatic potential for (I)[link] in the range ± 0.051 au highlighting intra­molecular C—H⋯π(chelate) inter­actions as black dotted lines.
[Figure 5]
Figure 5
Views of Hirshfeld surface about reference mol­ecule of (I)[link] mapped (a) over the electrostatic potential highlighting short inter­atomic H⋯H and C⋯H/H⋯C contacts by red and yellow dashed lines, respectively, and (b) with the shape-index property highlighting C—H⋯π/π⋯H—C contacts involving imine-phenyl and meth­oxy-benzene rings by red and black dashed lines, respectively.

The overall two dimensional fingerprint plot for (I)[link], Fig. 6[link]a, and those delineated into H⋯H, C⋯H/H⋯C, S⋯H/H⋯S and O⋯H/H⋯O contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are shown in Fig. 6[link]be and illustrate the influence of various inter­molecular inter­actions instrumental in the crystal of (I)[link]. The percentage contributions from the different inter­atomic contacts to the Hirshfeld surface are summarized in Table 4[link]. The single spike in the centre at de + di ∼ 2.1 Å in Fig. 6[link]a is due to a short inter­atomic H⋯H contact (Table 3[link]) and the two pairs of spikes about this central spike, at de + di ∼ 2.6 Å, indicate the inter­molecular C—H⋯O and N—H⋯S inter­actions, Fig. 6[link]c,d. The points related to short inter­atomic O⋯H/H⋯O contacts listed in Table 3[link] are merged within the respective plot of Fig. 6[link]e. The C⋯H/H⋯C contacts provide the second greatest contribution to the Hirshfeld surface, Table 4[link]. This is due to the combined effect of short inter­atomic C⋯H/H⋯C contacts (Table 3[link]) in addition to C—H⋯π contacts, summarized in Table 2[link]. The most significant short atomic C6⋯H28 contact is evident from a pair of short peaks at de + di ∼ 2.7 Å in the fingerprint plot delineated into C⋯H/H⋯C contacts, Fig. 6[link]c. The short inter­atomic contact between the ZnII atom and imine-phenyl-C18 and H18 atoms, Table 3[link], and the contribution of 0.6% from Zn⋯H/H⋯Zn and Zn⋯C/C⋯Zn contacts to the Hirshfeld surface, Table 4[link], reflect the presence of inter­molecular C—H⋯π(chelate) inter­actions in the crystal. The π(chelate)–π(benzene) contacts described in the Supra­molecular features section (§3) are also reflected from the small but important contribution from C⋯N/N⋯C and C⋯S/S⋯C contacts, Table 4[link], to the Hirshfeld surface of (I)[link].

Table 4
Percentage contributions of inter-atomic contacts to the Hirshfeld surface for (I)

Contact Percentage contribution
H⋯H 56.1
C⋯H/H⋯C 23.1
S⋯H/H⋯S 9.0
O⋯H/H⋯O 5.4
N⋯H/H⋯N 1.6
C⋯S/S⋯C 1.3
C⋯N/N⋯C 1.1
Zn⋯H/H⋯Zn 0.6
Zn⋯C/C⋯Zn 0.6
C⋯C 0.6
C⋯O/O⋯C 0.3
N⋯O/O⋯N 0.3
[Figure 6]
Figure 6
(a) The full two-dimensional fingerprint plot and fingerprint plots delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) S⋯H/H⋯S and (e) O⋯H/H⋯O contacts for (I)[link].

5. Database survey

The most relevant structure available for comparison is that of the recently described bis­(N′-{(E)-[(2E)-1,3-di­phenyl­prop-2-en-1-yl­idene]-amino}-N-ethyl­carbamimido­thio­ato-κ2N′,S)zinc(II) mol­ecule, which differs from (I)[link] in that there are no additional substituents in the phenyl ring appended at the ethyl­ene bond (Tan et al., 2017[Tan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1001-1008.]). Similar tetra­hedral N2S2 coordination geometries are found with values of τ4 of 0.70 and 0.74 for the two independent mol­ecules comprising the asymmetric unit. Indeed, in the publication describing this structure (Tan et al., 2017[Tan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1001-1008.]), it was mentioned there are nine structures in the literature conforming to the general formula Zn[SC(NHR)=NN=CRR′′]2 and all structures adopt the same basic structural motif as described herein for (I)[link].

6. Synthesis and crystallization

Analytical grade reagents were used as procured and without further purification. 4-Ethyl-3-thio­semicarbazide (1.1919 g, 0.01 mol) and 4-meth­oxy­chalcone (2.3828 g, 0.01 mol) were dissolved separately in hot absolute ethanol (30 ml) and mixed while stirring. About five drops of concentrated hydro­chloric acid were added to the mixture to catalyse the reaction. The reaction mixture was heated and stirred for about 20 min, and stirring was continued for another 30 min at room temperature. The resulting yellow precipitate, 4-meth­oxy­chalcone-4-ethyl-3-thio­semicarbazone, was filtered off, washed with cold absolute ethanol and dried in vacuo after which it was used without further purification. 4-Meth­oxy­chalcone-4-ethyl-3-thio­semicarbazone (0.3395 g, 0.01 mol) was dissolved in hot absolute ethanol (30 ml), which was added to a solution of Zn(CH3COO)2·2H2O (0.1098 g, 0.50 mmol) in hot absolute ethanol (40 ml). The mixture was heated and stirred for about 10 min, followed by stirring for 1 h at room temperature. The yellow precipitate obtained was filtered, washed with cold ethanol and dried in vacuo. Single crystals were grown at room temperature from the slow evaporation of the title compound in a mixed solvent system containing di­methyl­formamide and aceto­nitrile (1:1; v/v 20 ml). IR (cm−1): 3351 ν(N—H), 1597 ν(C=N), 1009 ν(N—N), 420 ν(M—N), 362 ν(M—S).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The nitro­gen-bound H atoms were located in a difference-Fourier map but were refined with a distance restraint of N—H = 0.88±0.01 Å, and with Uiso(H) set to 1.2Ueq(N). The maximum and minimum residual electron density peaks of 1.10 and 0.59 e Å−3, respectively, are located 1.04 and 0.71 Å from the Zn atom.

Table 5
Experimental details

Crystal data
Chemical formula [Zn(C19H20N3OS)2]
Mr 742.25
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 10.5013 (6), 14.2836 (8), 14.8282 (9)
α, β, γ (°) 107.173 (5), 108.152 (5), 106.259 (5)
V3) 1842.0 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.82
Crystal size (mm) 0.25 × 0.15 × 0.05
 
Data collection
Diffractometer Agilent Technologies SuperNova Dual diffractometer with Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.887, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 19299, 8464, 5619
Rint 0.071
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.171, 1.01
No. of reflections 8464
No. of parameters 452
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.10, −0.59
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[(N-ethyl-N'-{(Z)-[(2E)-3-(4-methoxyphenyl)-1-phenylprop-2-en-1-ylidene]amino}carbamimidoyl)sulfanido]zinc(II) top
Crystal data top
[Zn(C19H20N3OS)2]Z = 2
Mr = 742.25F(000) = 776
Triclinic, P1Dx = 1.338 Mg m3
a = 10.5013 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.2836 (8) ÅCell parameters from 4004 reflections
c = 14.8282 (9) Åθ = 2.8–27.5°
α = 107.173 (5)°µ = 0.82 mm1
β = 108.152 (5)°T = 100 K
γ = 106.259 (5)°Prism, yellow
V = 1842.0 (2) Å30.25 × 0.15 × 0.05 mm
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with Atlas detector
8464 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5619 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.071
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.9°
ω scanh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1818
Tmin = 0.887, Tmax = 1.000l = 1919
19299 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.065 w = 1/[σ2(Fo2) + (0.066P)2 + 1.1328P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.171(Δ/σ)max = 0.001
S = 1.01Δρmax = 1.10 e Å3
8464 reflectionsΔρmin = 0.59 e Å3
452 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The maximum and minimum residual electron density peaks of 1.10 and 0.59 eÅ-3, respectively, were located 1.04 Å and 0.71 Å from the Zn atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.61283 (5)0.39864 (3)0.26017 (3)0.01731 (14)
S10.53424 (11)0.44366 (8)0.12335 (8)0.0199 (2)
S20.63421 (11)0.47815 (8)0.42482 (7)0.0209 (2)
O11.0784 (3)0.3417 (2)0.8198 (2)0.0285 (7)
O20.2660 (4)0.0652 (2)0.4057 (2)0.0383 (8)
N10.6593 (4)0.4265 (3)0.0084 (2)0.0211 (8)
H1N0.615 (5)0.463 (3)0.029 (3)0.025*
N20.7664 (4)0.3874 (2)0.1248 (2)0.0192 (7)
N30.7733 (3)0.3790 (2)0.2167 (2)0.0162 (7)
N40.5490 (4)0.3597 (3)0.5203 (2)0.0221 (8)
H4N0.556 (5)0.420 (3)0.556 (3)0.027*
N50.4901 (4)0.2575 (3)0.3512 (2)0.0201 (7)
N60.4944 (4)0.2545 (2)0.2579 (2)0.0186 (7)
C10.6656 (4)0.4179 (3)0.0811 (3)0.0163 (8)
C20.7722 (5)0.4190 (4)0.0435 (3)0.0346 (11)
H2A0.77670.34850.05340.042*
H2B0.86890.47580.01060.042*
C30.7415 (7)0.4310 (5)0.1443 (4)0.0499 (14)
H3A0.64720.37350.19860.075*
H3B0.81980.42660.16570.075*
H3C0.73730.50080.13470.075*
C40.8760 (4)0.3507 (3)0.2610 (3)0.0160 (8)
C50.8940 (4)0.3512 (3)0.3620 (3)0.0188 (8)
H50.83450.37570.39130.023*
C60.9879 (4)0.3199 (3)0.4181 (3)0.0183 (8)
H61.04450.29250.38770.022*
C71.0097 (4)0.3247 (3)0.5222 (3)0.0203 (9)
C81.1094 (5)0.2881 (3)0.5709 (3)0.0246 (9)
H81.16100.26020.53550.030*
C91.1352 (4)0.2915 (3)0.6701 (3)0.0241 (9)
H91.20250.26530.70150.029*
C101.0617 (5)0.3334 (3)0.7223 (3)0.0233 (9)
C110.9624 (5)0.3715 (3)0.6745 (3)0.0238 (9)
H110.91260.40120.71050.029*
C120.9368 (4)0.3663 (3)0.5766 (3)0.0223 (9)
H120.86810.39150.54500.027*
C131.1781 (5)0.3025 (3)0.8702 (3)0.0309 (11)
H13A1.14500.22580.82760.046*
H13B1.18070.31280.93920.046*
H13C1.27660.34200.87820.046*
C140.9722 (4)0.3227 (3)0.2124 (3)0.0186 (8)
C150.9112 (5)0.2427 (3)0.1112 (3)0.0228 (9)
H150.80750.20640.07260.027*
C161.0016 (5)0.2162 (3)0.0672 (3)0.0266 (10)
H160.95950.16060.00110.032*
C171.1524 (5)0.2698 (3)0.1217 (3)0.0275 (10)
H171.21370.25250.09020.033*
C181.2141 (5)0.3488 (3)0.2223 (3)0.0280 (10)
H181.31790.38490.26030.034*
C191.1250 (4)0.3755 (3)0.2677 (3)0.0224 (9)
H191.16790.42990.33680.027*
C200.5495 (4)0.3535 (3)0.4270 (3)0.0184 (8)
C210.4684 (5)0.2645 (3)0.5309 (3)0.0299 (10)
H21A0.37280.22180.46860.036*
H21B0.44800.28810.59280.036*
C220.5510 (6)0.1933 (4)0.5426 (4)0.0411 (12)
H22A0.56340.16410.47880.062*
H22B0.49500.13420.55430.062*
H22C0.64770.23590.60230.062*
C230.4179 (4)0.1593 (3)0.1782 (3)0.0200 (9)
C240.4155 (4)0.1516 (3)0.0785 (3)0.0216 (9)
H240.48330.21140.07800.026*
C250.3253 (5)0.0669 (3)0.0139 (3)0.0248 (9)
H250.26470.00390.01320.030*
C260.3140 (5)0.0651 (3)0.1153 (3)0.0249 (10)
C270.2184 (5)0.0286 (3)0.2070 (3)0.0295 (10)
H270.16510.09110.20180.035*
C280.1998 (5)0.0322 (3)0.3052 (3)0.0318 (11)
H280.13460.09660.36610.038*
C290.2763 (5)0.0582 (3)0.3139 (3)0.0299 (10)
C300.3721 (5)0.1522 (3)0.2241 (3)0.0282 (10)
H300.42470.21480.22950.034*
C310.3900 (5)0.1540 (3)0.1278 (3)0.0259 (10)
H310.45670.21840.06730.031*
C320.1792 (7)0.0321 (4)0.5000 (3)0.0525 (16)
H32A0.21380.08770.49310.079*
H32B0.18850.01850.55910.079*
H32C0.07590.05630.51200.079*
C330.3334 (5)0.0649 (3)0.1917 (3)0.0218 (9)
C340.3828 (5)0.0154 (3)0.1916 (4)0.0319 (11)
H340.46680.01290.17900.038*
C350.3087 (5)0.0999 (4)0.2103 (4)0.0385 (12)
H350.34360.15440.21120.046*
C360.1864 (5)0.1056 (3)0.2271 (3)0.0327 (11)
H360.13710.16330.24010.039*
C370.1351 (5)0.0266 (3)0.2251 (3)0.0317 (11)
H370.04940.03060.23570.038*
C380.2088 (5)0.0584 (3)0.2076 (3)0.0274 (10)
H380.17330.11250.20650.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0161 (2)0.0230 (2)0.0138 (2)0.00749 (18)0.00647 (18)0.00934 (18)
S10.0182 (5)0.0282 (5)0.0191 (5)0.0120 (4)0.0084 (4)0.0146 (4)
S20.0217 (5)0.0230 (5)0.0160 (5)0.0072 (4)0.0089 (4)0.0068 (4)
O10.0313 (17)0.0351 (16)0.0156 (14)0.0077 (13)0.0071 (13)0.0147 (13)
O20.050 (2)0.0385 (17)0.0188 (16)0.0078 (16)0.0142 (15)0.0127 (14)
N10.0229 (19)0.0325 (19)0.0167 (17)0.0154 (15)0.0089 (14)0.0173 (15)
N20.0205 (18)0.0293 (17)0.0120 (16)0.0113 (14)0.0083 (13)0.0117 (14)
N30.0156 (16)0.0206 (16)0.0112 (15)0.0069 (13)0.0046 (13)0.0068 (13)
N40.0245 (19)0.0297 (18)0.0118 (16)0.0102 (16)0.0098 (14)0.0070 (14)
N50.0214 (18)0.0260 (17)0.0140 (16)0.0093 (14)0.0083 (14)0.0095 (14)
N60.0195 (17)0.0263 (17)0.0159 (16)0.0117 (14)0.0096 (13)0.0121 (14)
C10.018 (2)0.0170 (18)0.0117 (18)0.0046 (15)0.0047 (15)0.0066 (15)
C20.039 (3)0.054 (3)0.024 (2)0.027 (2)0.018 (2)0.024 (2)
C30.055 (4)0.076 (4)0.040 (3)0.032 (3)0.032 (3)0.035 (3)
C40.0141 (19)0.0165 (17)0.0130 (18)0.0033 (15)0.0031 (15)0.0064 (15)
C50.017 (2)0.027 (2)0.0177 (19)0.0095 (16)0.0106 (16)0.0125 (16)
C60.020 (2)0.0224 (19)0.0132 (18)0.0077 (16)0.0076 (15)0.0081 (16)
C70.021 (2)0.0204 (19)0.0145 (19)0.0067 (16)0.0039 (16)0.0062 (16)
C80.026 (2)0.032 (2)0.019 (2)0.0132 (18)0.0099 (17)0.0130 (18)
C90.021 (2)0.033 (2)0.020 (2)0.0128 (18)0.0040 (17)0.0171 (18)
C100.025 (2)0.023 (2)0.0137 (19)0.0021 (17)0.0042 (17)0.0087 (16)
C110.026 (2)0.027 (2)0.018 (2)0.0089 (18)0.0097 (17)0.0090 (17)
C120.023 (2)0.025 (2)0.016 (2)0.0109 (17)0.0050 (16)0.0077 (16)
C130.034 (3)0.037 (2)0.017 (2)0.009 (2)0.0023 (18)0.0198 (19)
C140.020 (2)0.0241 (19)0.0157 (19)0.0098 (16)0.0079 (16)0.0120 (16)
C150.029 (2)0.026 (2)0.0137 (19)0.0125 (18)0.0060 (17)0.0097 (16)
C160.036 (3)0.032 (2)0.017 (2)0.023 (2)0.0105 (18)0.0102 (18)
C170.036 (3)0.042 (2)0.022 (2)0.026 (2)0.0203 (19)0.0186 (19)
C180.021 (2)0.039 (2)0.025 (2)0.0130 (19)0.0080 (18)0.018 (2)
C190.024 (2)0.028 (2)0.0142 (19)0.0108 (17)0.0063 (16)0.0094 (17)
C200.0149 (19)0.027 (2)0.0157 (19)0.0104 (16)0.0064 (15)0.0104 (16)
C210.026 (2)0.042 (3)0.022 (2)0.008 (2)0.0134 (18)0.016 (2)
C220.036 (3)0.047 (3)0.046 (3)0.013 (2)0.019 (2)0.030 (2)
C230.021 (2)0.025 (2)0.0168 (19)0.0100 (17)0.0095 (16)0.0090 (16)
C240.025 (2)0.0185 (18)0.022 (2)0.0072 (16)0.0106 (17)0.0106 (16)
C250.032 (2)0.021 (2)0.019 (2)0.0095 (18)0.0115 (18)0.0070 (17)
C260.028 (2)0.022 (2)0.016 (2)0.0072 (18)0.0065 (17)0.0037 (17)
C270.032 (3)0.029 (2)0.020 (2)0.0041 (19)0.0109 (19)0.0103 (18)
C280.042 (3)0.027 (2)0.014 (2)0.006 (2)0.0066 (19)0.0063 (17)
C290.037 (3)0.036 (2)0.019 (2)0.015 (2)0.0140 (19)0.0139 (19)
C300.036 (3)0.026 (2)0.023 (2)0.0109 (19)0.0135 (19)0.0120 (18)
C310.032 (2)0.025 (2)0.018 (2)0.0076 (18)0.0114 (18)0.0096 (17)
C320.073 (4)0.047 (3)0.015 (2)0.004 (3)0.014 (2)0.008 (2)
C330.025 (2)0.024 (2)0.0129 (19)0.0068 (17)0.0072 (16)0.0075 (16)
C340.030 (3)0.032 (2)0.037 (3)0.012 (2)0.016 (2)0.017 (2)
C350.037 (3)0.033 (2)0.046 (3)0.014 (2)0.010 (2)0.025 (2)
C360.036 (3)0.027 (2)0.027 (2)0.0022 (19)0.009 (2)0.0163 (19)
C370.030 (3)0.034 (2)0.026 (2)0.005 (2)0.012 (2)0.013 (2)
C380.031 (3)0.026 (2)0.028 (2)0.0095 (18)0.0146 (19)0.0142 (18)
Geometric parameters (Å, º) top
Zn—N32.041 (3)C14—C151.395 (5)
Zn—N62.071 (3)C14—C191.397 (5)
Zn—S12.2879 (11)C15—C161.382 (6)
Zn—S22.2757 (11)C15—H150.9500
C1—N21.314 (5)C16—C171.381 (6)
C4—N31.310 (5)C16—H160.9500
C5—C61.349 (5)C17—C181.383 (6)
C20—N51.307 (5)C17—H170.9500
C23—N61.319 (5)C18—C191.384 (6)
C24—C251.344 (5)C18—H180.9500
S2—C201.768 (4)C19—H190.9500
O1—C101.365 (5)C21—C221.524 (6)
O1—C131.433 (5)C21—H21A0.9900
O2—C291.366 (5)C21—H21B0.9900
O2—C321.438 (5)C22—H22A0.9800
N1—C11.352 (5)C22—H22B0.9800
N1—C21.453 (6)C22—H22C0.9800
N1—H1N0.85 (4)C23—C241.441 (6)
N2—N31.385 (4)C23—C331.499 (6)
N4—C201.361 (5)C24—H240.9500
N4—C211.467 (6)C25—C261.463 (6)
N4—H4N0.83 (4)C25—H250.9500
N5—N61.386 (5)C26—C311.396 (6)
C2—C31.500 (7)C26—C271.403 (5)
C2—H2A0.9900C27—C281.391 (6)
C2—H2B0.9900C27—H270.9500
C3—H3A0.9800C28—C291.382 (6)
C3—H3B0.9800C28—H280.9500
C3—H3C0.9800C29—C301.394 (6)
C4—C51.449 (5)C30—C311.373 (6)
C4—C141.486 (5)C30—H300.9500
C5—H50.9500C31—H310.9500
C6—C71.465 (5)C32—H32A0.9800
C6—H60.9500C32—H32B0.9800
C7—C81.396 (6)C32—H32C0.9800
C7—C121.396 (6)C33—C381.383 (6)
C8—C91.394 (6)C33—C341.385 (6)
C8—H80.9500C34—C351.394 (7)
C9—C101.382 (6)C34—H340.9500
C9—H90.9500C35—C361.368 (7)
C10—C111.404 (6)C35—H350.9500
C11—C121.367 (6)C36—C371.382 (6)
C11—H110.9500C36—H360.9500
C12—H120.9500C37—C381.388 (6)
C13—H13A0.9800C37—H370.9500
C13—H13B0.9800C38—H380.9500
C13—H13C0.9800
N3—Zn—N6107.16 (12)C15—C16—C17120.6 (4)
N3—Zn—S2127.83 (9)C15—C16—H16119.7
N6—Zn—S286.73 (9)C17—C16—H16119.7
N3—Zn—S187.29 (9)C16—C17—C18119.8 (4)
N6—Zn—S1121.90 (9)C16—C17—H17120.1
S2—Zn—S1127.92 (4)C18—C17—H17120.1
C1—S1—Zn92.45 (13)C17—C18—C19120.2 (4)
C20—S2—Zn92.86 (13)C17—C18—H18119.9
C10—O1—C13117.1 (3)C19—C18—H18119.9
C29—O2—C32117.1 (4)C18—C19—C14120.3 (4)
C1—N1—C2121.0 (3)C18—C19—H19119.9
C1—N1—H1N118 (3)C14—C19—H19119.9
C2—N1—H1N115 (3)N5—C20—N4116.9 (4)
C1—N2—N3115.8 (3)N5—C20—S2128.0 (3)
C4—N3—N2115.4 (3)N4—C20—S2115.1 (3)
C4—N3—Zn127.7 (3)N4—C21—C22113.3 (4)
N2—N3—Zn116.7 (2)N4—C21—H21A108.9
C20—N4—C21121.3 (3)C22—C21—H21A108.9
C20—N4—H4N111 (3)N4—C21—H21B108.9
C21—N4—H4N120 (3)C22—C21—H21B108.9
C20—N5—N6115.2 (3)H21A—C21—H21B107.7
C23—N6—N5114.8 (3)C21—C22—H22A109.5
C23—N6—Zn128.6 (3)C21—C22—H22B109.5
N5—N6—Zn116.6 (2)H22A—C22—H22B109.5
N2—C1—N1115.8 (4)C21—C22—H22C109.5
N2—C1—S1127.4 (3)H22A—C22—H22C109.5
N1—C1—S1116.8 (3)H22B—C22—H22C109.5
N1—C2—C3111.2 (4)N6—C23—C24117.3 (4)
N1—C2—H2A109.4N6—C23—C33120.4 (3)
C3—C2—H2A109.4C24—C23—C33122.3 (3)
N1—C2—H2B109.4C25—C24—C23125.5 (4)
C3—C2—H2B109.4C25—C24—H24117.3
H2A—C2—H2B108.0C23—C24—H24117.3
C2—C3—H3A109.5C24—C25—C26124.5 (4)
C2—C3—H3B109.5C24—C25—H25117.7
H3A—C3—H3B109.5C26—C25—H25117.7
C2—C3—H3C109.5C31—C26—C27116.6 (4)
H3A—C3—H3C109.5C31—C26—C25123.6 (3)
H3B—C3—H3C109.5C27—C26—C25119.8 (4)
N3—C4—C5116.2 (3)C28—C27—C26121.6 (4)
N3—C4—C14122.3 (3)C28—C27—H27119.2
C5—C4—C14121.4 (3)C26—C27—H27119.2
C6—C5—C4125.7 (4)C29—C28—C27119.9 (4)
C6—C5—H5117.2C29—C28—H28120.1
C4—C5—H5117.2C27—C28—H28120.1
C5—C6—C7125.3 (4)O2—C29—C28125.4 (4)
C5—C6—H6117.4O2—C29—C30114.9 (4)
C7—C6—H6117.4C28—C29—C30119.7 (4)
C8—C7—C12117.8 (4)C31—C30—C29119.6 (4)
C8—C7—C6119.3 (4)C31—C30—H30120.2
C12—C7—C6122.9 (4)C29—C30—H30120.2
C7—C8—C9121.7 (4)C30—C31—C26122.7 (4)
C7—C8—H8119.1C30—C31—H31118.7
C9—C8—H8119.1C26—C31—H31118.7
C10—C9—C8119.2 (4)O2—C32—H32A109.5
C10—C9—H9120.4O2—C32—H32B109.5
C8—C9—H9120.4H32A—C32—H32B109.5
O1—C10—C9124.7 (4)O2—C32—H32C109.5
O1—C10—C11115.8 (4)H32A—C32—H32C109.5
C9—C10—C11119.5 (4)H32B—C32—H32C109.5
C12—C11—C10120.6 (4)C38—C33—C34119.4 (4)
C12—C11—H11119.7C38—C33—C23120.9 (4)
C10—C11—H11119.7C34—C33—C23119.7 (4)
C11—C12—C7121.1 (4)C33—C34—C35119.6 (5)
C11—C12—H12119.4C33—C34—H34120.2
C7—C12—H12119.4C35—C34—H34120.2
O1—C13—H13A109.5C36—C35—C34121.0 (4)
O1—C13—H13B109.5C36—C35—H35119.5
H13A—C13—H13B109.5C34—C35—H35119.5
O1—C13—H13C109.5C35—C36—C37119.5 (4)
H13A—C13—H13C109.5C35—C36—H36120.2
H13B—C13—H13C109.5C37—C36—H36120.2
C15—C14—C19119.1 (4)C38—C37—C36120.0 (4)
C15—C14—C4120.4 (3)C38—C37—H37120.0
C19—C14—C4120.5 (3)C36—C37—H37120.0
C16—C15—C14120.0 (4)C33—C38—C37120.5 (4)
C16—C15—H15120.0C33—C38—H38119.7
C14—C15—H15120.0C37—C38—H38119.7
C1—N2—N3—C4178.6 (3)C15—C14—C19—C180.3 (6)
C1—N2—N3—Zn6.6 (4)C4—C14—C19—C18179.8 (4)
C20—N5—N6—C23171.6 (3)N6—N5—C20—N4179.2 (3)
C20—N5—N6—Zn6.6 (4)N6—N5—C20—S20.3 (5)
N3—N2—C1—N1179.8 (3)C21—N4—C20—N57.9 (5)
N3—N2—C1—S12.8 (5)C21—N4—C20—S2173.0 (3)
C2—N1—C1—N29.3 (5)Zn—S2—C20—N54.9 (4)
C2—N1—C1—S1173.0 (3)Zn—S2—C20—N4174.0 (3)
Zn—S1—C1—N21.7 (3)C20—N4—C21—C2280.6 (5)
Zn—S1—C1—N1175.7 (3)N5—N6—C23—C24178.6 (3)
C1—N1—C2—C3180.0 (4)Zn—N6—C23—C240.7 (5)
N2—N3—C4—C5174.4 (3)N5—N6—C23—C330.8 (5)
Zn—N3—C4—C511.5 (5)Zn—N6—C23—C33177.1 (3)
N2—N3—C4—C143.8 (5)N6—C23—C24—C25168.2 (4)
Zn—N3—C4—C14170.3 (2)C33—C23—C24—C259.6 (6)
N3—C4—C5—C6176.5 (4)C23—C24—C25—C26173.3 (4)
C14—C4—C5—C65.2 (6)C24—C25—C26—C314.0 (7)
C4—C5—C6—C7177.4 (4)C24—C25—C26—C27178.6 (4)
C5—C6—C7—C8179.1 (4)C31—C26—C27—C280.4 (7)
C5—C6—C7—C122.0 (6)C25—C26—C27—C28177.2 (4)
C12—C7—C8—C90.7 (6)C26—C27—C28—C290.2 (7)
C6—C7—C8—C9179.6 (4)C32—O2—C29—C286.2 (7)
C7—C8—C9—C100.9 (6)C32—O2—C29—C30174.5 (4)
C13—O1—C10—C90.9 (6)C27—C28—C29—O2179.1 (4)
C13—O1—C10—C11179.5 (3)C27—C28—C29—C300.2 (7)
C8—C9—C10—O1179.5 (4)O2—C29—C30—C31179.7 (4)
C8—C9—C10—C110.1 (6)C28—C29—C30—C310.3 (7)
O1—C10—C11—C12179.6 (4)C29—C30—C31—C260.9 (7)
C9—C10—C11—C120.8 (6)C27—C26—C31—C301.0 (7)
C10—C11—C12—C71.0 (6)C25—C26—C31—C30176.5 (4)
C8—C7—C12—C110.3 (6)N6—C23—C33—C3870.3 (5)
C6—C7—C12—C11178.6 (4)C24—C23—C33—C38107.4 (5)
N3—C4—C14—C1555.3 (5)N6—C23—C33—C34107.7 (4)
C5—C4—C14—C15126.6 (4)C24—C23—C33—C3474.6 (5)
N3—C4—C14—C19125.3 (4)C38—C33—C34—C351.7 (6)
C5—C4—C14—C1952.9 (5)C23—C33—C34—C35176.4 (4)
C19—C14—C15—C160.3 (6)C33—C34—C35—C361.0 (7)
C4—C14—C15—C16179.1 (4)C34—C35—C36—C370.4 (7)
C14—C15—C16—C171.3 (6)C35—C36—C37—C381.0 (7)
C15—C16—C17—C181.7 (7)C34—C33—C38—C371.1 (6)
C16—C17—C18—C191.1 (7)C23—C33—C38—C37176.9 (4)
C17—C18—C19—C140.1 (6)C36—C37—C38—C330.2 (6)
Hydrogen-bond geometry (Å, º) top
Cg1—Cg4 are the centroids of the (C33–C38), (Zn,S2,C20,N5,N6), (C26—C31) and (Zn,S1,C1,N2,N3) rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.85 (5)2.66 (5)3.506 (4)171 (3)
N4—H4N···S2ii0.84 (5)2.82 (5)3.477 (5)137 (4)
C36—H36···O1iii0.952.573.428 (6)151
C16—H16···Cg1iv0.952.853.747 (4)157
C18—H18···Cg2v0.952.693.485 (5)141
C34—H34···Cg3iv0.952.723.555 (6)148
C5—H5···Cg20.952.673.462 (5)142
C24—H24···Cg40.952.553.421 (5)153
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x+1, y, z; (v) x+1, y, z.
Summary of short inter-atomic contacts (Å) in (I) top
ContactDistanceSymmetry operation
H3B···H112.11x, y, - 1 + z
Zn···H182.93- 1 + x, y, z
Zn···C183.871 (8)- 1 + x, y, z
O2···H22B2.56x, y, - 1 + z
C6···H282.741 - x, - y, - z
C7···H282.851 - x, - y, - z
C15···H272.801 - x, - y, - z
C17···H382.791 + x, y, z
C24···H172.78- 1 + x, y, z
C26···H342.811 - x, - y, - z
C30···H352.841 - x, - y, - z
C31···H342.801 - x, - y, - z
C36···H162.851 - x, - y, - z
C37···H162.831 - x, - y, - z
Percentage contributions of inter-atomic contacts to the Hirshfeld surface for (I) top
ContactPercentage contribution
H···H56.1
C···H/H···C23.1
S···H/H···S9.0
O···H/H···O5.4
N···H/H···N1.6
C···S/S···C1.3
C···N/N···C1.1
Zn···H/H···Zn0.6
Zn···C/C···Zn0.6
C···C0.6
C···O/O···C0.3
N···O/O···N0.3
 

Footnotes

Additional correspondence author, e-msil: tanmy@acd.tarc.edu.my.

Acknowledgements

We thank the staff of the University of Malaya's X-ray diffraction laboratory for the data collection.

Funding information

The authors are grateful to the Universiti Putra Malaysia's UPM Research University Grant Scheme (RUGS No. 9419400) and Sunway University (INT-RRO-2017-096) for supporting this research.

References

First citationAfrasiabi, Z., Sinn, E., Padhye, S., Dutta, S., Padhye, S., Newton, C., Anson, C. E. & Powell, A. K. (2003). J. Inorg. Biochem. 95, 306–314.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBisceglie, F., Tavone, M., Mussi, F., Azzoni, S., Montalbano, S., Franzoni, S., Tarasconi, P., Buschini, A. & Pelosi, G. (2018). J. Inorg. Biochem. 179, 60–70.  CSD CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDilworth, J. R. & Hueting, R. (2012). Inorg. Chim. Acta, 389, 3–15.  Web of Science CrossRef CAS Google Scholar
First citationEspíndola, J. W. P., Cardoso, M. V. de O., Filho, G. B. de O., Silva, D. A. O e, Moreira, D. R. M., Bastos, T. M., de Simone, C. A., Soares, M. B. P., Villela, F. S., Ferreira, R. S., de Castro, M. C. A. B., Pereira, V. R. A., Murta, S. M. F., Sales Junior, P. A., Romanha, A. J. & Leite, A. C. L. (2015). Eur. J. Med. Chem. 101, 818–835.  Web of Science PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGaroufis, A., Hadjikakou, S. K. & Hadjiliadis, N. (2009). Coord. Chem. Rev. 253, 1384–1397.  Web of Science CrossRef CAS Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationLow, M. L., Maigre, L. M., Tahir, M. I. M. T., Tiekink, E. R. T., Dorlet, P., Guillot, R., Ravoof, T. B., Rosli, R., Pagès, J.-M., Policar, C., Delsuc, N. & Crouse, K. A. (2016). Eur. J. Med. Chem. 120, 1–12.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMalenov, D. P., Janjić, G. V., Medaković, V. B., Hall, M. B. & Zarić, S. D. (2017). Coord. Chem. Rev. 345, 318–341.  Web of Science CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationPalusiak, M. & Krygowski, T. M. (2007). Chem. Eur. J. 13, 7996–8006.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPelivan, K., Miklos, W., van Schoonhoven, S., Koellensperger, G., Gille, L., Berger, W., Heffeter, P., Kowol, C. R. & Keppler, B. K. (2016). J. Inorg. Biochem. 160, 61–69.  Web of Science CrossRef CAS PubMed Google Scholar
First citationQuiroga, A. G. & Ranninger, C. N. (2004). Coord. Chem. Rev. 248, 119–133.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1001–1008.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2017). Coord. Chem. Rev. 345, 209–228.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYeo, C. I., Halim, S. N. A., Ng, S. W., Tan, S. L., Zukerman-Schpector, J., Ferreira, M. A. B. & Tiekink, E. R. T. (2014). Chem. Commun. 50, 5984–5986.  Web of Science CSD CrossRef CAS Google Scholar
First citationYusof, E. N. M., Ravoof, T. B. S. A., Tiekink, E. R. T., Veerakumarasivam, A., Crouse, K. A., Tahir, M. I. M. & Ahmad, H. (2015). Int. J. Mol. Sci. 16, 11034–11054.  Web of Science CAS PubMed Google Scholar
First citationZukerman-Schpector, J., Yeo, C. I. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 55–64.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds