research communications
Bis(4-methoxychalcone 4-ethylthiosemicarbazonato-κ2N1,S)zinc(II): and Hirshfeld surface analysis
aDepartment of Physical Sciences, Faculty of Applied Sciences and Computing, Tunku Abdul Rahman, University College, 50932 Setapak, Kuala Lumpur, Malaysia, bDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia, cDepartment of Chemistry, St. Francis Xavier University, PO Box 5000, Antigonish, NS B2G 2W5, Canada, dDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and eResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my
The title ZnII complex, [Zn(C19H20N3OS)2] {systematic name: bis[(N-ethyl-N′-{(Z)-[(2E)-3-(4-methoxyphenyl)-1-phenylprop-2-en-1-ylidene]amino}carbamimidoyl)sulfanido]zinc(II)}, features a tetrahedrally coordinated ZnII ion within an N2S2 donor set provided by two N,S-chelating thiosemicarbazone anions. The resulting five-membered Zn,C,N2,S chelate rings adopt different conformations, i.e. almost planar and an envelope with the Zn atom being the flap atom. The configuration about the imine bond within the chelate ring is Z but those about the exocyclic imine and ethylene bonds are E. In the crystal, supramolecular [100] chains mediated by thioamide-N—H⋯S(thione) hydrogen bonds and eight-membered thioamide {⋯HNCS}2 synthons are observed. A range of interactions, including C—H⋯O, C—H⋯π, C—H⋯π(chelate ring) and π(methoxybenzene)—π(chelate ring) consolidate the packing. The Hirshfeld surface analysis performed on the title complex also indicates the influence of the interactions involving the chelate rings upon the packing along with the more conventional contacts.
Keywords: crystal structure; zinc; hydrogen bonding; thiosemicarbazone; Hirshfeld surface analysis.
CCDC reference: 1814817
1. Chemical context
With potentially five different substituents, thiosemicarbazone derivatives, R1R2C=N—N(R3)—C(=S)NR4R5 for R1–5 = H/alkyl/aryl, are numerous and multi-functional. Their preparation is often facile, being formed from the condensation reaction between an aldehyde (or a ketone) with the amine group of a thiosemicarbazide precursor. In the same way, the diversity in ligand construction ensures a rich coordination chemistry (Lobana et al., 2009). A primary motivation for investigating metal complexes of thiosemicarbazones and related derivatives rests with their putative biological activity (Espíndola et al., 2015; Pelivan, et al., 2016; Low et al., 2016; Bisceglie et al., 2018). Thus, promising activity has been exhibited by various metal complexes against a range of diseases (Dilworth & Hueting, 2012). In the context of the present report, it is noteworthy that ZnII thiosemicarbazone complexes have been explored as therapeutics for the treatment of cancer (Afrasiabi et al., 2003), viral diseases (Garoufis et al., 2009) and bacterial infections (Quiroga & Ranninger, 2004). Such considerations motivate our interest in this class of compound (Yusof et al., 2015). Herein, in continuation of our structural studies of ZnII thiosemicarbazones (Tan et al., 2017), the X-ray of the title compound, (I), is described along with an analysis of its Hirshfeld surfaces in order to gain more information on the mode of association between molecules in the molecular packing.
2. Structural commentary
The molecular structure of (I), Fig. 1, sees the ZnII atom coordinated by two chelating thiosemicarbazone anions, each via the thiolate-S and imine-N atoms, Table 1. The resulting N2S2 donor set defines a distorted tetrahedral geometry, with the range of angles subtended at the zinc atom being an acute 87.29 (9)° for the S1—Zn—N3 chelate angle to 127.92 (4)° for S1—Zn—S2. The assignment of four-coordinate geometries can be quantified by comparing the calculated value of τ4, in this case 0.74, with the ideal values for an ideal tetrahedron, i.e. 1.00, and perfect square-planar geometry, i.e. 0.00 (Yang et al., 2007), indicating a distorted tetrahedral geometry in (I). The configuration about each of the endocyclic imine bonds is Z, because of the dictates of By contrast, each of the exocyclic imine C=N bonds is E, as are the configurations about the ethylene bonds, Table 1.
|
The mode of the coordination of the thiosemicarbazone ligands leads to the formation of five-membered ZnSCN2 chelate rings, and these adopt different conformations. Whereas, the (Zn,S1,C1,N2,N3) ring is almost planar (r.m.s. deviation = 0.0325 Å), the (Zn,S2,C20,N5,N6) chelate ring is best described as an envelope with the Zn atom lying 0.205 (5) Å out of the plane of the remaining four atoms (r.m.s. deviation = 0.0011 Å). The dihedral angle between the mean planes through the chelate rings is 79.68 (8)°. To a first approximation, the thiosemicarbazone ligands comprise two planar regions. Thus, the non-hydrogen, non-phenyl atoms of the atoms of the S1-ligand define one plane (r.m.s. deviation = 0.1910 Å), which forms a dihedral angle of 54.53 (8)° with the (C14–C19) ring, consistent with a near perpendicular relationship. The comparable values for the S2-ligand are 0.2800 Å and 75.09 (11)°, respectively.
3. Supramolecular features
The most prominent feature of the molecular packing is the formation of supramolecular chains along the c-axis direction sustained by eight-membered thioamide {⋯HNCS}2 synthons, Fig. 2a and Table 2. When the array is viewed down the axis of propagation, Fig. 2b, it is evident that two rows of molecules, each with a right-angle topology, are connected by N—H⋯S(thione) hydrogen bonds. Centrosymmetrically related right angles are connected into a supramolecular tube, Fig. 2c, via imine-phenyl-C—H⋯O(methoxy), imine-phenyl-C—H⋯π(imine-phenyl) and imine-phenyl-C—H⋯π(methoxybenzene) interactions, Table 2. The connections between the tubes over and above the hydrogen bonding involve chelate rings, which are more and more being recognized as being important in consolidating crystal structures (Tiekink, 2017). The first kind of interaction is of the type imine-phenyl-C—H⋯(chelate ring) where the chelate ring is defined by the five-membered (Zn,S2,C20,N5,N6) grouping which, as mentioned above, is non-planar, indicating that aromaticity is not the sole criterion for the formation of C—H⋯(chelate ring) interactions (Palusiak & Krygowski, 2007; Yeo et al., 2014; Zukerman-Schpector et al., 2016). The second contact between tubes involving chelate rings is of the type π(Zn,S1,C1,N2,N3)–π(C7–C12)v with a ring centroid–ring centroid separation of 3.778 (2) Å and angle of inclination = 15.04 (17)° for (v): 2 − x, 1 − y, 1 − z. A review has appeared very recently on the topic of π(chelate ring)–π(arene) and π(chelate ring)–π(chelate ring) interactions where it was suggested that interactions of the former type provide comparable energies of stabilization to molecular packing as do weak conventional hydrogen bonds (Malenov et al., 2017). A view of the unit-cell contents is shown in Fig. 2d.
4. Analysis of the Hirshfeld surfaces
The Hirshfeld surfaces calculated for (I) were performed in accord with recent work on a related complex (Tan et al., 2017) and provide more insight into the intermolecular interactions occurring in the crystal. The donors and acceptors of the intermolecular N—H⋯S hydrogen bonds are viewed as bright-red spots, labelled as `1' and `2' in Fig. 3a, and the intermolecular C—H⋯O contacts appear as tiny red spots with label `3' in Fig. 3b on the Hirshfeld surface mapped over dnorm. The faint-red spots near the H3B, H11, H28 and C6 sites represent significant short interatomic H⋯H and C⋯H/H⋯C contacts, Fig. 3 and Table 3. The structure features two intramolecular C—H⋯π(chelate) contacts, i.e. between ethylene-C5—H and the (Zn,S2,C20,N5,N6) ring and between ethylene-C24—H and the (Zn,S1,C1,N2,N3) ring, Table 2, which are viewed as blue and red regions assigned to positive and negative potentials, respectively, on the Hirshfeld surfaces mapped over electrostatic potential and are highlighted in Fig. 4a. The donors and acceptors of the intermolecular N—H⋯S and C—H⋯O interactions are also viewed as blue and red regions about respective atoms in the images of Fig. 4. The C—H⋯π interactions involving imine-phenyl and methoxy-benzene rings are evident in short interatomic C⋯H/H⋯C contacts, Table 3. The views of Hirshfeld surfaces about a reference molecule mapped over the electrostatic potential highlighting short interatomic H⋯H and C⋯H/H⋯C contacts and that mapped within the shape-index property highlighting C—H⋯π/π⋯H—C contacts are illustrated in Fig. 5a and b, respectively.
|
The overall two dimensional fingerprint plot for (I), Fig. 6a, and those delineated into H⋯H, C⋯H/H⋯C, S⋯H/H⋯S and O⋯H/H⋯O contacts (McKinnon et al., 2007) are shown in Fig. 6b–e and illustrate the influence of various intermolecular interactions instrumental in the crystal of (I). The percentage contributions from the different interatomic contacts to the Hirshfeld surface are summarized in Table 4. The single spike in the centre at de + di ∼ 2.1 Å in Fig. 6a is due to a short interatomic H⋯H contact (Table 3) and the two pairs of spikes about this central spike, at de + di ∼ 2.6 Å, indicate the intermolecular C—H⋯O and N—H⋯S interactions, Fig. 6c,d. The points related to short interatomic O⋯H/H⋯O contacts listed in Table 3 are merged within the respective plot of Fig. 6e. The C⋯H/H⋯C contacts provide the second greatest contribution to the Hirshfeld surface, Table 4. This is due to the combined effect of short interatomic C⋯H/H⋯C contacts (Table 3) in addition to C—H⋯π contacts, summarized in Table 2. The most significant short atomic C6⋯H28 contact is evident from a pair of short peaks at de + di ∼ 2.7 Å in the fingerprint plot delineated into C⋯H/H⋯C contacts, Fig. 6c. The short interatomic contact between the ZnII atom and imine-phenyl-C18 and H18 atoms, Table 3, and the contribution of 0.6% from Zn⋯H/H⋯Zn and Zn⋯C/C⋯Zn contacts to the Hirshfeld surface, Table 4, reflect the presence of intermolecular C—H⋯π(chelate) interactions in the crystal. The π(chelate)–π(benzene) contacts described in the Supramolecular features section (§3) are also reflected from the small but important contribution from C⋯N/N⋯C and C⋯S/S⋯C contacts, Table 4, to the Hirshfeld surface of (I).
|
5. Database survey
The most relevant structure available for comparison is that of the recently described bis(N′-{(E)-[(2E)-1,3-diphenylprop-2-en-1-ylidene]-amino}-N-ethylcarbamimidothioato-κ2N′,S)zinc(II) molecule, which differs from (I) in that there are no additional substituents in the phenyl ring appended at the ethylene bond (Tan et al., 2017). Similar tetrahedral N2S2 coordination geometries are found with values of τ4 of 0.70 and 0.74 for the two independent molecules comprising the Indeed, in the publication describing this structure (Tan et al., 2017), it was mentioned there are nine structures in the literature conforming to the general formula Zn[SC(NHR)=NN=CR′R′′]2 and all structures adopt the same basic structural motif as described herein for (I).
6. Synthesis and crystallization
Analytical grade reagents were used as procured and without further purification. 4-Ethyl-3-thiosemicarbazide (1.1919 g, 0.01 mol) and 4-methoxychalcone (2.3828 g, 0.01 mol) were dissolved separately in hot absolute ethanol (30 ml) and mixed while stirring. About five drops of concentrated hydrochloric acid were added to the mixture to catalyse the reaction. The reaction mixture was heated and stirred for about 20 min, and stirring was continued for another 30 min at room temperature. The resulting yellow precipitate, 4-methoxychalcone-4-ethyl-3-thiosemicarbazone, was filtered off, washed with cold absolute ethanol and dried in vacuo after which it was used without further purification. 4-Methoxychalcone-4-ethyl-3-thiosemicarbazone (0.3395 g, 0.01 mol) was dissolved in hot absolute ethanol (30 ml), which was added to a solution of Zn(CH3COO)2·2H2O (0.1098 g, 0.50 mmol) in hot absolute ethanol (40 ml). The mixture was heated and stirred for about 10 min, followed by stirring for 1 h at room temperature. The yellow precipitate obtained was filtered, washed with cold ethanol and dried in vacuo. Single crystals were grown at room temperature from the slow evaporation of the title compound in a mixed solvent system containing dimethylformamide and acetonitrile (1:1; v/v 20 ml). IR (cm−1): 3351 ν(N—H), 1597 ν(C=N), 1009 ν(N—N), 420 ν(M—N), 362 ν(M—S).
7. Refinement
Crystal data, data collection and structure . The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The nitrogen-bound H atoms were located in a difference-Fourier map but were refined with a distance restraint of N—H = 0.88±0.01 Å, and with Uiso(H) set to 1.2Ueq(N). The maximum and minimum residual electron density peaks of 1.10 and 0.59 e Å−3, respectively, are located 1.04 and 0.71 Å from the Zn atom.
details are summarized in Table 5
|
Supporting information
CCDC reference: 1814817
https://doi.org/10.1107/S2056989018000282/hb7725sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018000282/hb7725Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Zn(C19H20N3OS)2] | Z = 2 |
Mr = 742.25 | F(000) = 776 |
Triclinic, P1 | Dx = 1.338 Mg m−3 |
a = 10.5013 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 14.2836 (8) Å | Cell parameters from 4004 reflections |
c = 14.8282 (9) Å | θ = 2.8–27.5° |
α = 107.173 (5)° | µ = 0.82 mm−1 |
β = 108.152 (5)° | T = 100 K |
γ = 106.259 (5)° | Prism, yellow |
V = 1842.0 (2) Å3 | 0.25 × 0.15 × 0.05 mm |
Agilent Technologies SuperNova Dual diffractometer with Atlas detector | 8464 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 5619 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.071 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 27.5°, θmin = 2.9° |
ω scan | h = −13→13 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | k = −18→18 |
Tmin = 0.887, Tmax = 1.000 | l = −19→19 |
19299 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.065 | w = 1/[σ2(Fo2) + (0.066P)2 + 1.1328P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.171 | (Δ/σ)max = 0.001 |
S = 1.01 | Δρmax = 1.10 e Å−3 |
8464 reflections | Δρmin = −0.59 e Å−3 |
452 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The maximum and minimum residual electron density peaks of 1.10 and 0.59 eÅ-3, respectively, were located 1.04 Å and 0.71 Å from the Zn atom. |
x | y | z | Uiso*/Ueq | ||
Zn | 0.61283 (5) | 0.39864 (3) | 0.26017 (3) | 0.01731 (14) | |
S1 | 0.53424 (11) | 0.44366 (8) | 0.12335 (8) | 0.0199 (2) | |
S2 | 0.63421 (11) | 0.47815 (8) | 0.42482 (7) | 0.0209 (2) | |
O1 | 1.0784 (3) | 0.3417 (2) | 0.8198 (2) | 0.0285 (7) | |
O2 | 0.2660 (4) | 0.0652 (2) | −0.4057 (2) | 0.0383 (8) | |
N1 | 0.6593 (4) | 0.4265 (3) | −0.0084 (2) | 0.0211 (8) | |
H1N | 0.615 (5) | 0.463 (3) | −0.029 (3) | 0.025* | |
N2 | 0.7664 (4) | 0.3874 (2) | 0.1248 (2) | 0.0192 (7) | |
N3 | 0.7733 (3) | 0.3790 (2) | 0.2167 (2) | 0.0162 (7) | |
N4 | 0.5490 (4) | 0.3597 (3) | 0.5203 (2) | 0.0221 (8) | |
H4N | 0.556 (5) | 0.420 (3) | 0.556 (3) | 0.027* | |
N5 | 0.4901 (4) | 0.2575 (3) | 0.3512 (2) | 0.0201 (7) | |
N6 | 0.4944 (4) | 0.2545 (2) | 0.2579 (2) | 0.0186 (7) | |
C1 | 0.6656 (4) | 0.4179 (3) | 0.0811 (3) | 0.0163 (8) | |
C2 | 0.7722 (5) | 0.4190 (4) | −0.0435 (3) | 0.0346 (11) | |
H2A | 0.7767 | 0.3485 | −0.0534 | 0.042* | |
H2B | 0.8689 | 0.4758 | 0.0106 | 0.042* | |
C3 | 0.7415 (7) | 0.4310 (5) | −0.1443 (4) | 0.0499 (14) | |
H3A | 0.6472 | 0.3735 | −0.1986 | 0.075* | |
H3B | 0.8198 | 0.4266 | −0.1657 | 0.075* | |
H3C | 0.7373 | 0.5008 | −0.1347 | 0.075* | |
C4 | 0.8760 (4) | 0.3507 (3) | 0.2610 (3) | 0.0160 (8) | |
C5 | 0.8940 (4) | 0.3512 (3) | 0.3620 (3) | 0.0188 (8) | |
H5 | 0.8345 | 0.3757 | 0.3913 | 0.023* | |
C6 | 0.9879 (4) | 0.3199 (3) | 0.4181 (3) | 0.0183 (8) | |
H6 | 1.0445 | 0.2925 | 0.3877 | 0.022* | |
C7 | 1.0097 (4) | 0.3247 (3) | 0.5222 (3) | 0.0203 (9) | |
C8 | 1.1094 (5) | 0.2881 (3) | 0.5709 (3) | 0.0246 (9) | |
H8 | 1.1610 | 0.2602 | 0.5355 | 0.030* | |
C9 | 1.1352 (4) | 0.2915 (3) | 0.6701 (3) | 0.0241 (9) | |
H9 | 1.2025 | 0.2653 | 0.7015 | 0.029* | |
C10 | 1.0617 (5) | 0.3334 (3) | 0.7223 (3) | 0.0233 (9) | |
C11 | 0.9624 (5) | 0.3715 (3) | 0.6745 (3) | 0.0238 (9) | |
H11 | 0.9126 | 0.4012 | 0.7105 | 0.029* | |
C12 | 0.9368 (4) | 0.3663 (3) | 0.5766 (3) | 0.0223 (9) | |
H12 | 0.8681 | 0.3915 | 0.5450 | 0.027* | |
C13 | 1.1781 (5) | 0.3025 (3) | 0.8702 (3) | 0.0309 (11) | |
H13A | 1.1450 | 0.2258 | 0.8276 | 0.046* | |
H13B | 1.1807 | 0.3128 | 0.9392 | 0.046* | |
H13C | 1.2766 | 0.3420 | 0.8782 | 0.046* | |
C14 | 0.9722 (4) | 0.3227 (3) | 0.2124 (3) | 0.0186 (8) | |
C15 | 0.9112 (5) | 0.2427 (3) | 0.1112 (3) | 0.0228 (9) | |
H15 | 0.8075 | 0.2064 | 0.0726 | 0.027* | |
C16 | 1.0016 (5) | 0.2162 (3) | 0.0672 (3) | 0.0266 (10) | |
H16 | 0.9595 | 0.1606 | −0.0011 | 0.032* | |
C17 | 1.1524 (5) | 0.2698 (3) | 0.1217 (3) | 0.0275 (10) | |
H17 | 1.2137 | 0.2525 | 0.0902 | 0.033* | |
C18 | 1.2141 (5) | 0.3488 (3) | 0.2223 (3) | 0.0280 (10) | |
H18 | 1.3179 | 0.3849 | 0.2603 | 0.034* | |
C19 | 1.1250 (4) | 0.3755 (3) | 0.2677 (3) | 0.0224 (9) | |
H19 | 1.1679 | 0.4299 | 0.3368 | 0.027* | |
C20 | 0.5495 (4) | 0.3535 (3) | 0.4270 (3) | 0.0184 (8) | |
C21 | 0.4684 (5) | 0.2645 (3) | 0.5309 (3) | 0.0299 (10) | |
H21A | 0.3728 | 0.2218 | 0.4686 | 0.036* | |
H21B | 0.4480 | 0.2881 | 0.5928 | 0.036* | |
C22 | 0.5510 (6) | 0.1933 (4) | 0.5426 (4) | 0.0411 (12) | |
H22A | 0.5634 | 0.1641 | 0.4788 | 0.062* | |
H22B | 0.4950 | 0.1342 | 0.5543 | 0.062* | |
H22C | 0.6477 | 0.2359 | 0.6023 | 0.062* | |
C23 | 0.4179 (4) | 0.1593 (3) | 0.1782 (3) | 0.0200 (9) | |
C24 | 0.4155 (4) | 0.1516 (3) | 0.0785 (3) | 0.0216 (9) | |
H24 | 0.4833 | 0.2114 | 0.0780 | 0.026* | |
C25 | 0.3253 (5) | 0.0669 (3) | −0.0139 (3) | 0.0248 (9) | |
H25 | 0.2647 | 0.0039 | −0.0132 | 0.030* | |
C26 | 0.3140 (5) | 0.0651 (3) | −0.1153 (3) | 0.0249 (10) | |
C27 | 0.2184 (5) | −0.0286 (3) | −0.2070 (3) | 0.0295 (10) | |
H27 | 0.1651 | −0.0911 | −0.2018 | 0.035* | |
C28 | 0.1998 (5) | −0.0322 (3) | −0.3052 (3) | 0.0318 (11) | |
H28 | 0.1346 | −0.0966 | −0.3661 | 0.038* | |
C29 | 0.2763 (5) | 0.0582 (3) | −0.3139 (3) | 0.0299 (10) | |
C30 | 0.3721 (5) | 0.1522 (3) | −0.2241 (3) | 0.0282 (10) | |
H30 | 0.4247 | 0.2148 | −0.2295 | 0.034* | |
C31 | 0.3900 (5) | 0.1540 (3) | −0.1278 (3) | 0.0259 (10) | |
H31 | 0.4567 | 0.2184 | −0.0673 | 0.031* | |
C32 | 0.1792 (7) | −0.0321 (4) | −0.5000 (3) | 0.0525 (16) | |
H32A | 0.2138 | −0.0877 | −0.4931 | 0.079* | |
H32B | 0.1885 | −0.0185 | −0.5591 | 0.079* | |
H32C | 0.0759 | −0.0563 | −0.5120 | 0.079* | |
C33 | 0.3334 (5) | 0.0649 (3) | 0.1917 (3) | 0.0218 (9) | |
C34 | 0.3828 (5) | −0.0154 (3) | 0.1916 (4) | 0.0319 (11) | |
H34 | 0.4668 | −0.0129 | 0.1790 | 0.038* | |
C35 | 0.3087 (5) | −0.0999 (4) | 0.2103 (4) | 0.0385 (12) | |
H35 | 0.3436 | −0.1544 | 0.2112 | 0.046* | |
C36 | 0.1864 (5) | −0.1056 (3) | 0.2271 (3) | 0.0327 (11) | |
H36 | 0.1371 | −0.1633 | 0.2401 | 0.039* | |
C37 | 0.1351 (5) | −0.0266 (3) | 0.2251 (3) | 0.0317 (11) | |
H37 | 0.0494 | −0.0306 | 0.2357 | 0.038* | |
C38 | 0.2088 (5) | 0.0584 (3) | 0.2076 (3) | 0.0274 (10) | |
H38 | 0.1733 | 0.1125 | 0.2065 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn | 0.0161 (2) | 0.0230 (2) | 0.0138 (2) | 0.00749 (18) | 0.00647 (18) | 0.00934 (18) |
S1 | 0.0182 (5) | 0.0282 (5) | 0.0191 (5) | 0.0120 (4) | 0.0084 (4) | 0.0146 (4) |
S2 | 0.0217 (5) | 0.0230 (5) | 0.0160 (5) | 0.0072 (4) | 0.0089 (4) | 0.0068 (4) |
O1 | 0.0313 (17) | 0.0351 (16) | 0.0156 (14) | 0.0077 (13) | 0.0071 (13) | 0.0147 (13) |
O2 | 0.050 (2) | 0.0385 (17) | 0.0188 (16) | 0.0078 (16) | 0.0142 (15) | 0.0127 (14) |
N1 | 0.0229 (19) | 0.0325 (19) | 0.0167 (17) | 0.0154 (15) | 0.0089 (14) | 0.0173 (15) |
N2 | 0.0205 (18) | 0.0293 (17) | 0.0120 (16) | 0.0113 (14) | 0.0083 (13) | 0.0117 (14) |
N3 | 0.0156 (16) | 0.0206 (16) | 0.0112 (15) | 0.0069 (13) | 0.0046 (13) | 0.0068 (13) |
N4 | 0.0245 (19) | 0.0297 (18) | 0.0118 (16) | 0.0102 (16) | 0.0098 (14) | 0.0070 (14) |
N5 | 0.0214 (18) | 0.0260 (17) | 0.0140 (16) | 0.0093 (14) | 0.0083 (14) | 0.0095 (14) |
N6 | 0.0195 (17) | 0.0263 (17) | 0.0159 (16) | 0.0117 (14) | 0.0096 (13) | 0.0121 (14) |
C1 | 0.018 (2) | 0.0170 (18) | 0.0117 (18) | 0.0046 (15) | 0.0047 (15) | 0.0066 (15) |
C2 | 0.039 (3) | 0.054 (3) | 0.024 (2) | 0.027 (2) | 0.018 (2) | 0.024 (2) |
C3 | 0.055 (4) | 0.076 (4) | 0.040 (3) | 0.032 (3) | 0.032 (3) | 0.035 (3) |
C4 | 0.0141 (19) | 0.0165 (17) | 0.0130 (18) | 0.0033 (15) | 0.0031 (15) | 0.0064 (15) |
C5 | 0.017 (2) | 0.027 (2) | 0.0177 (19) | 0.0095 (16) | 0.0106 (16) | 0.0125 (16) |
C6 | 0.020 (2) | 0.0224 (19) | 0.0132 (18) | 0.0077 (16) | 0.0076 (15) | 0.0081 (16) |
C7 | 0.021 (2) | 0.0204 (19) | 0.0145 (19) | 0.0067 (16) | 0.0039 (16) | 0.0062 (16) |
C8 | 0.026 (2) | 0.032 (2) | 0.019 (2) | 0.0132 (18) | 0.0099 (17) | 0.0130 (18) |
C9 | 0.021 (2) | 0.033 (2) | 0.020 (2) | 0.0128 (18) | 0.0040 (17) | 0.0171 (18) |
C10 | 0.025 (2) | 0.023 (2) | 0.0137 (19) | 0.0021 (17) | 0.0042 (17) | 0.0087 (16) |
C11 | 0.026 (2) | 0.027 (2) | 0.018 (2) | 0.0089 (18) | 0.0097 (17) | 0.0090 (17) |
C12 | 0.023 (2) | 0.025 (2) | 0.016 (2) | 0.0109 (17) | 0.0050 (16) | 0.0077 (16) |
C13 | 0.034 (3) | 0.037 (2) | 0.017 (2) | 0.009 (2) | 0.0023 (18) | 0.0198 (19) |
C14 | 0.020 (2) | 0.0241 (19) | 0.0157 (19) | 0.0098 (16) | 0.0079 (16) | 0.0120 (16) |
C15 | 0.029 (2) | 0.026 (2) | 0.0137 (19) | 0.0125 (18) | 0.0060 (17) | 0.0097 (16) |
C16 | 0.036 (3) | 0.032 (2) | 0.017 (2) | 0.023 (2) | 0.0105 (18) | 0.0102 (18) |
C17 | 0.036 (3) | 0.042 (2) | 0.022 (2) | 0.026 (2) | 0.0203 (19) | 0.0186 (19) |
C18 | 0.021 (2) | 0.039 (2) | 0.025 (2) | 0.0130 (19) | 0.0080 (18) | 0.018 (2) |
C19 | 0.024 (2) | 0.028 (2) | 0.0142 (19) | 0.0108 (17) | 0.0063 (16) | 0.0094 (17) |
C20 | 0.0149 (19) | 0.027 (2) | 0.0157 (19) | 0.0104 (16) | 0.0064 (15) | 0.0104 (16) |
C21 | 0.026 (2) | 0.042 (3) | 0.022 (2) | 0.008 (2) | 0.0134 (18) | 0.016 (2) |
C22 | 0.036 (3) | 0.047 (3) | 0.046 (3) | 0.013 (2) | 0.019 (2) | 0.030 (2) |
C23 | 0.021 (2) | 0.025 (2) | 0.0168 (19) | 0.0100 (17) | 0.0095 (16) | 0.0090 (16) |
C24 | 0.025 (2) | 0.0185 (18) | 0.022 (2) | 0.0072 (16) | 0.0106 (17) | 0.0106 (16) |
C25 | 0.032 (2) | 0.021 (2) | 0.019 (2) | 0.0095 (18) | 0.0115 (18) | 0.0070 (17) |
C26 | 0.028 (2) | 0.022 (2) | 0.016 (2) | 0.0072 (18) | 0.0065 (17) | 0.0037 (17) |
C27 | 0.032 (3) | 0.029 (2) | 0.020 (2) | 0.0041 (19) | 0.0109 (19) | 0.0103 (18) |
C28 | 0.042 (3) | 0.027 (2) | 0.014 (2) | 0.006 (2) | 0.0066 (19) | 0.0063 (17) |
C29 | 0.037 (3) | 0.036 (2) | 0.019 (2) | 0.015 (2) | 0.0140 (19) | 0.0139 (19) |
C30 | 0.036 (3) | 0.026 (2) | 0.023 (2) | 0.0109 (19) | 0.0135 (19) | 0.0120 (18) |
C31 | 0.032 (2) | 0.025 (2) | 0.018 (2) | 0.0076 (18) | 0.0114 (18) | 0.0096 (17) |
C32 | 0.073 (4) | 0.047 (3) | 0.015 (2) | 0.004 (3) | 0.014 (2) | 0.008 (2) |
C33 | 0.025 (2) | 0.024 (2) | 0.0129 (19) | 0.0068 (17) | 0.0072 (16) | 0.0075 (16) |
C34 | 0.030 (3) | 0.032 (2) | 0.037 (3) | 0.012 (2) | 0.016 (2) | 0.017 (2) |
C35 | 0.037 (3) | 0.033 (2) | 0.046 (3) | 0.014 (2) | 0.010 (2) | 0.025 (2) |
C36 | 0.036 (3) | 0.027 (2) | 0.027 (2) | 0.0022 (19) | 0.009 (2) | 0.0163 (19) |
C37 | 0.030 (3) | 0.034 (2) | 0.026 (2) | 0.005 (2) | 0.012 (2) | 0.013 (2) |
C38 | 0.031 (3) | 0.026 (2) | 0.028 (2) | 0.0095 (18) | 0.0146 (19) | 0.0142 (18) |
Zn—N3 | 2.041 (3) | C14—C15 | 1.395 (5) |
Zn—N6 | 2.071 (3) | C14—C19 | 1.397 (5) |
Zn—S1 | 2.2879 (11) | C15—C16 | 1.382 (6) |
Zn—S2 | 2.2757 (11) | C15—H15 | 0.9500 |
C1—N2 | 1.314 (5) | C16—C17 | 1.381 (6) |
C4—N3 | 1.310 (5) | C16—H16 | 0.9500 |
C5—C6 | 1.349 (5) | C17—C18 | 1.383 (6) |
C20—N5 | 1.307 (5) | C17—H17 | 0.9500 |
C23—N6 | 1.319 (5) | C18—C19 | 1.384 (6) |
C24—C25 | 1.344 (5) | C18—H18 | 0.9500 |
S2—C20 | 1.768 (4) | C19—H19 | 0.9500 |
O1—C10 | 1.365 (5) | C21—C22 | 1.524 (6) |
O1—C13 | 1.433 (5) | C21—H21A | 0.9900 |
O2—C29 | 1.366 (5) | C21—H21B | 0.9900 |
O2—C32 | 1.438 (5) | C22—H22A | 0.9800 |
N1—C1 | 1.352 (5) | C22—H22B | 0.9800 |
N1—C2 | 1.453 (6) | C22—H22C | 0.9800 |
N1—H1N | 0.85 (4) | C23—C24 | 1.441 (6) |
N2—N3 | 1.385 (4) | C23—C33 | 1.499 (6) |
N4—C20 | 1.361 (5) | C24—H24 | 0.9500 |
N4—C21 | 1.467 (6) | C25—C26 | 1.463 (6) |
N4—H4N | 0.83 (4) | C25—H25 | 0.9500 |
N5—N6 | 1.386 (5) | C26—C31 | 1.396 (6) |
C2—C3 | 1.500 (7) | C26—C27 | 1.403 (5) |
C2—H2A | 0.9900 | C27—C28 | 1.391 (6) |
C2—H2B | 0.9900 | C27—H27 | 0.9500 |
C3—H3A | 0.9800 | C28—C29 | 1.382 (6) |
C3—H3B | 0.9800 | C28—H28 | 0.9500 |
C3—H3C | 0.9800 | C29—C30 | 1.394 (6) |
C4—C5 | 1.449 (5) | C30—C31 | 1.373 (6) |
C4—C14 | 1.486 (5) | C30—H30 | 0.9500 |
C5—H5 | 0.9500 | C31—H31 | 0.9500 |
C6—C7 | 1.465 (5) | C32—H32A | 0.9800 |
C6—H6 | 0.9500 | C32—H32B | 0.9800 |
C7—C8 | 1.396 (6) | C32—H32C | 0.9800 |
C7—C12 | 1.396 (6) | C33—C38 | 1.383 (6) |
C8—C9 | 1.394 (6) | C33—C34 | 1.385 (6) |
C8—H8 | 0.9500 | C34—C35 | 1.394 (7) |
C9—C10 | 1.382 (6) | C34—H34 | 0.9500 |
C9—H9 | 0.9500 | C35—C36 | 1.368 (7) |
C10—C11 | 1.404 (6) | C35—H35 | 0.9500 |
C11—C12 | 1.367 (6) | C36—C37 | 1.382 (6) |
C11—H11 | 0.9500 | C36—H36 | 0.9500 |
C12—H12 | 0.9500 | C37—C38 | 1.388 (6) |
C13—H13A | 0.9800 | C37—H37 | 0.9500 |
C13—H13B | 0.9800 | C38—H38 | 0.9500 |
C13—H13C | 0.9800 | ||
N3—Zn—N6 | 107.16 (12) | C15—C16—C17 | 120.6 (4) |
N3—Zn—S2 | 127.83 (9) | C15—C16—H16 | 119.7 |
N6—Zn—S2 | 86.73 (9) | C17—C16—H16 | 119.7 |
N3—Zn—S1 | 87.29 (9) | C16—C17—C18 | 119.8 (4) |
N6—Zn—S1 | 121.90 (9) | C16—C17—H17 | 120.1 |
S2—Zn—S1 | 127.92 (4) | C18—C17—H17 | 120.1 |
C1—S1—Zn | 92.45 (13) | C17—C18—C19 | 120.2 (4) |
C20—S2—Zn | 92.86 (13) | C17—C18—H18 | 119.9 |
C10—O1—C13 | 117.1 (3) | C19—C18—H18 | 119.9 |
C29—O2—C32 | 117.1 (4) | C18—C19—C14 | 120.3 (4) |
C1—N1—C2 | 121.0 (3) | C18—C19—H19 | 119.9 |
C1—N1—H1N | 118 (3) | C14—C19—H19 | 119.9 |
C2—N1—H1N | 115 (3) | N5—C20—N4 | 116.9 (4) |
C1—N2—N3 | 115.8 (3) | N5—C20—S2 | 128.0 (3) |
C4—N3—N2 | 115.4 (3) | N4—C20—S2 | 115.1 (3) |
C4—N3—Zn | 127.7 (3) | N4—C21—C22 | 113.3 (4) |
N2—N3—Zn | 116.7 (2) | N4—C21—H21A | 108.9 |
C20—N4—C21 | 121.3 (3) | C22—C21—H21A | 108.9 |
C20—N4—H4N | 111 (3) | N4—C21—H21B | 108.9 |
C21—N4—H4N | 120 (3) | C22—C21—H21B | 108.9 |
C20—N5—N6 | 115.2 (3) | H21A—C21—H21B | 107.7 |
C23—N6—N5 | 114.8 (3) | C21—C22—H22A | 109.5 |
C23—N6—Zn | 128.6 (3) | C21—C22—H22B | 109.5 |
N5—N6—Zn | 116.6 (2) | H22A—C22—H22B | 109.5 |
N2—C1—N1 | 115.8 (4) | C21—C22—H22C | 109.5 |
N2—C1—S1 | 127.4 (3) | H22A—C22—H22C | 109.5 |
N1—C1—S1 | 116.8 (3) | H22B—C22—H22C | 109.5 |
N1—C2—C3 | 111.2 (4) | N6—C23—C24 | 117.3 (4) |
N1—C2—H2A | 109.4 | N6—C23—C33 | 120.4 (3) |
C3—C2—H2A | 109.4 | C24—C23—C33 | 122.3 (3) |
N1—C2—H2B | 109.4 | C25—C24—C23 | 125.5 (4) |
C3—C2—H2B | 109.4 | C25—C24—H24 | 117.3 |
H2A—C2—H2B | 108.0 | C23—C24—H24 | 117.3 |
C2—C3—H3A | 109.5 | C24—C25—C26 | 124.5 (4) |
C2—C3—H3B | 109.5 | C24—C25—H25 | 117.7 |
H3A—C3—H3B | 109.5 | C26—C25—H25 | 117.7 |
C2—C3—H3C | 109.5 | C31—C26—C27 | 116.6 (4) |
H3A—C3—H3C | 109.5 | C31—C26—C25 | 123.6 (3) |
H3B—C3—H3C | 109.5 | C27—C26—C25 | 119.8 (4) |
N3—C4—C5 | 116.2 (3) | C28—C27—C26 | 121.6 (4) |
N3—C4—C14 | 122.3 (3) | C28—C27—H27 | 119.2 |
C5—C4—C14 | 121.4 (3) | C26—C27—H27 | 119.2 |
C6—C5—C4 | 125.7 (4) | C29—C28—C27 | 119.9 (4) |
C6—C5—H5 | 117.2 | C29—C28—H28 | 120.1 |
C4—C5—H5 | 117.2 | C27—C28—H28 | 120.1 |
C5—C6—C7 | 125.3 (4) | O2—C29—C28 | 125.4 (4) |
C5—C6—H6 | 117.4 | O2—C29—C30 | 114.9 (4) |
C7—C6—H6 | 117.4 | C28—C29—C30 | 119.7 (4) |
C8—C7—C12 | 117.8 (4) | C31—C30—C29 | 119.6 (4) |
C8—C7—C6 | 119.3 (4) | C31—C30—H30 | 120.2 |
C12—C7—C6 | 122.9 (4) | C29—C30—H30 | 120.2 |
C7—C8—C9 | 121.7 (4) | C30—C31—C26 | 122.7 (4) |
C7—C8—H8 | 119.1 | C30—C31—H31 | 118.7 |
C9—C8—H8 | 119.1 | C26—C31—H31 | 118.7 |
C10—C9—C8 | 119.2 (4) | O2—C32—H32A | 109.5 |
C10—C9—H9 | 120.4 | O2—C32—H32B | 109.5 |
C8—C9—H9 | 120.4 | H32A—C32—H32B | 109.5 |
O1—C10—C9 | 124.7 (4) | O2—C32—H32C | 109.5 |
O1—C10—C11 | 115.8 (4) | H32A—C32—H32C | 109.5 |
C9—C10—C11 | 119.5 (4) | H32B—C32—H32C | 109.5 |
C12—C11—C10 | 120.6 (4) | C38—C33—C34 | 119.4 (4) |
C12—C11—H11 | 119.7 | C38—C33—C23 | 120.9 (4) |
C10—C11—H11 | 119.7 | C34—C33—C23 | 119.7 (4) |
C11—C12—C7 | 121.1 (4) | C33—C34—C35 | 119.6 (5) |
C11—C12—H12 | 119.4 | C33—C34—H34 | 120.2 |
C7—C12—H12 | 119.4 | C35—C34—H34 | 120.2 |
O1—C13—H13A | 109.5 | C36—C35—C34 | 121.0 (4) |
O1—C13—H13B | 109.5 | C36—C35—H35 | 119.5 |
H13A—C13—H13B | 109.5 | C34—C35—H35 | 119.5 |
O1—C13—H13C | 109.5 | C35—C36—C37 | 119.5 (4) |
H13A—C13—H13C | 109.5 | C35—C36—H36 | 120.2 |
H13B—C13—H13C | 109.5 | C37—C36—H36 | 120.2 |
C15—C14—C19 | 119.1 (4) | C38—C37—C36 | 120.0 (4) |
C15—C14—C4 | 120.4 (3) | C38—C37—H37 | 120.0 |
C19—C14—C4 | 120.5 (3) | C36—C37—H37 | 120.0 |
C16—C15—C14 | 120.0 (4) | C33—C38—C37 | 120.5 (4) |
C16—C15—H15 | 120.0 | C33—C38—H38 | 119.7 |
C14—C15—H15 | 120.0 | C37—C38—H38 | 119.7 |
C1—N2—N3—C4 | −178.6 (3) | C15—C14—C19—C18 | 0.3 (6) |
C1—N2—N3—Zn | 6.6 (4) | C4—C14—C19—C18 | 179.8 (4) |
C20—N5—N6—C23 | −171.6 (3) | N6—N5—C20—N4 | −179.2 (3) |
C20—N5—N6—Zn | 6.6 (4) | N6—N5—C20—S2 | −0.3 (5) |
N3—N2—C1—N1 | 179.8 (3) | C21—N4—C20—N5 | −7.9 (5) |
N3—N2—C1—S1 | −2.8 (5) | C21—N4—C20—S2 | 173.0 (3) |
C2—N1—C1—N2 | −9.3 (5) | Zn—S2—C20—N5 | −4.9 (4) |
C2—N1—C1—S1 | 173.0 (3) | Zn—S2—C20—N4 | 174.0 (3) |
Zn—S1—C1—N2 | −1.7 (3) | C20—N4—C21—C22 | 80.6 (5) |
Zn—S1—C1—N1 | 175.7 (3) | N5—N6—C23—C24 | 178.6 (3) |
C1—N1—C2—C3 | −180.0 (4) | Zn—N6—C23—C24 | 0.7 (5) |
N2—N3—C4—C5 | 174.4 (3) | N5—N6—C23—C33 | 0.8 (5) |
Zn—N3—C4—C5 | −11.5 (5) | Zn—N6—C23—C33 | −177.1 (3) |
N2—N3—C4—C14 | −3.8 (5) | N6—C23—C24—C25 | −168.2 (4) |
Zn—N3—C4—C14 | 170.3 (2) | C33—C23—C24—C25 | 9.6 (6) |
N3—C4—C5—C6 | 176.5 (4) | C23—C24—C25—C26 | 173.3 (4) |
C14—C4—C5—C6 | −5.2 (6) | C24—C25—C26—C31 | −4.0 (7) |
C4—C5—C6—C7 | 177.4 (4) | C24—C25—C26—C27 | 178.6 (4) |
C5—C6—C7—C8 | 179.1 (4) | C31—C26—C27—C28 | −0.4 (7) |
C5—C6—C7—C12 | −2.0 (6) | C25—C26—C27—C28 | 177.2 (4) |
C12—C7—C8—C9 | 0.7 (6) | C26—C27—C28—C29 | −0.2 (7) |
C6—C7—C8—C9 | 179.6 (4) | C32—O2—C29—C28 | −6.2 (7) |
C7—C8—C9—C10 | −0.9 (6) | C32—O2—C29—C30 | 174.5 (4) |
C13—O1—C10—C9 | −0.9 (6) | C27—C28—C29—O2 | −179.1 (4) |
C13—O1—C10—C11 | 179.5 (3) | C27—C28—C29—C30 | 0.2 (7) |
C8—C9—C10—O1 | −179.5 (4) | O2—C29—C30—C31 | 179.7 (4) |
C8—C9—C10—C11 | 0.1 (6) | C28—C29—C30—C31 | 0.3 (7) |
O1—C10—C11—C12 | −179.6 (4) | C29—C30—C31—C26 | −0.9 (7) |
C9—C10—C11—C12 | 0.8 (6) | C27—C26—C31—C30 | 1.0 (7) |
C10—C11—C12—C7 | −1.0 (6) | C25—C26—C31—C30 | −176.5 (4) |
C8—C7—C12—C11 | 0.3 (6) | N6—C23—C33—C38 | 70.3 (5) |
C6—C7—C12—C11 | −178.6 (4) | C24—C23—C33—C38 | −107.4 (5) |
N3—C4—C14—C15 | −55.3 (5) | N6—C23—C33—C34 | −107.7 (4) |
C5—C4—C14—C15 | 126.6 (4) | C24—C23—C33—C34 | 74.6 (5) |
N3—C4—C14—C19 | 125.3 (4) | C38—C33—C34—C35 | −1.7 (6) |
C5—C4—C14—C19 | −52.9 (5) | C23—C33—C34—C35 | 176.4 (4) |
C19—C14—C15—C16 | 0.3 (6) | C33—C34—C35—C36 | 1.0 (7) |
C4—C14—C15—C16 | −179.1 (4) | C34—C35—C36—C37 | 0.4 (7) |
C14—C15—C16—C17 | −1.3 (6) | C35—C36—C37—C38 | −1.0 (7) |
C15—C16—C17—C18 | 1.7 (7) | C34—C33—C38—C37 | 1.1 (6) |
C16—C17—C18—C19 | −1.1 (7) | C23—C33—C38—C37 | −176.9 (4) |
C17—C18—C19—C14 | 0.1 (6) | C36—C37—C38—C33 | 0.2 (6) |
Cg1—Cg4 are the centroids of the (C33–C38), (Zn,S2,C20,N5,N6), (C26—C31) and (Zn,S1,C1,N2,N3) rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···S1i | 0.85 (5) | 2.66 (5) | 3.506 (4) | 171 (3) |
N4—H4N···S2ii | 0.84 (5) | 2.82 (5) | 3.477 (5) | 137 (4) |
C36—H36···O1iii | 0.95 | 2.57 | 3.428 (6) | 151 |
C16—H16···Cg1iv | 0.95 | 2.85 | 3.747 (4) | 157 |
C18—H18···Cg2v | 0.95 | 2.69 | 3.485 (5) | 141 |
C34—H34···Cg3iv | 0.95 | 2.72 | 3.555 (6) | 148 |
C5—H5···Cg2 | 0.95 | 2.67 | 3.462 (5) | 142 |
C24—H24···Cg4 | 0.95 | 2.55 | 3.421 (5) | 153 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+1; (iv) −x+1, −y, −z; (v) x+1, y, z. |
Contact | Distance | Symmetry operation |
H3B···H11 | 2.11 | x, y, - 1 + z |
Zn···H18 | 2.93 | - 1 + x, y, z |
Zn···C18 | 3.871 (8) | - 1 + x, y, z |
O2···H22B | 2.56 | x, y, - 1 + z |
C6···H28 | 2.74 | 1 - x, - y, - z |
C7···H28 | 2.85 | 1 - x, - y, - z |
C15···H27 | 2.80 | 1 - x, - y, - z |
C17···H38 | 2.79 | 1 + x, y, z |
C24···H17 | 2.78 | - 1 + x, y, z |
C26···H34 | 2.81 | 1 - x, - y, - z |
C30···H35 | 2.84 | 1 - x, - y, - z |
C31···H34 | 2.80 | 1 - x, - y, - z |
C36···H16 | 2.85 | 1 - x, - y, - z |
C37···H16 | 2.83 | 1 - x, - y, - z |
Contact | Percentage contribution |
H···H | 56.1 |
C···H/H···C | 23.1 |
S···H/H···S | 9.0 |
O···H/H···O | 5.4 |
N···H/H···N | 1.6 |
C···S/S···C | 1.3 |
C···N/N···C | 1.1 |
Zn···H/H···Zn | 0.6 |
Zn···C/C···Zn | 0.6 |
C···C | 0.6 |
C···O/O···C | 0.3 |
N···O/O···N | 0.3 |
Footnotes
‡Additional correspondence author, e-msil: tanmy@acd.tarc.edu.my.
Acknowledgements
We thank the staff of the University of Malaya's X-ray diffraction laboratory for the data collection.
Funding information
The authors are grateful to the Universiti Putra Malaysia's UPM Research University Grant Scheme (RUGS No. 9419400) and Sunway University (INT-RRO-2017-096) for supporting this research.
References
Afrasiabi, Z., Sinn, E., Padhye, S., Dutta, S., Padhye, S., Newton, C., Anson, C. E. & Powell, A. K. (2003). J. Inorg. Biochem. 95, 306–314. Web of Science CSD CrossRef PubMed CAS Google Scholar
Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Bisceglie, F., Tavone, M., Mussi, F., Azzoni, S., Montalbano, S., Franzoni, S., Tarasconi, P., Buschini, A. & Pelosi, G. (2018). J. Inorg. Biochem. 179, 60–70. CSD CrossRef CAS PubMed Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dilworth, J. R. & Hueting, R. (2012). Inorg. Chim. Acta, 389, 3–15. Web of Science CrossRef CAS Google Scholar
Espíndola, J. W. P., Cardoso, M. V. de O., Filho, G. B. de O., Silva, D. A. O e, Moreira, D. R. M., Bastos, T. M., de Simone, C. A., Soares, M. B. P., Villela, F. S., Ferreira, R. S., de Castro, M. C. A. B., Pereira, V. R. A., Murta, S. M. F., Sales Junior, P. A., Romanha, A. J. & Leite, A. C. L. (2015). Eur. J. Med. Chem. 101, 818–835. Web of Science PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Garoufis, A., Hadjikakou, S. K. & Hadjiliadis, N. (2009). Coord. Chem. Rev. 253, 1384–1397. Web of Science CrossRef CAS Google Scholar
Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055. Web of Science CrossRef CAS Google Scholar
Low, M. L., Maigre, L. M., Tahir, M. I. M. T., Tiekink, E. R. T., Dorlet, P., Guillot, R., Ravoof, T. B., Rosli, R., Pagès, J.-M., Policar, C., Delsuc, N. & Crouse, K. A. (2016). Eur. J. Med. Chem. 120, 1–12. Web of Science CSD CrossRef CAS PubMed Google Scholar
Malenov, D. P., Janjić, G. V., Medaković, V. B., Hall, M. B. & Zarić, S. D. (2017). Coord. Chem. Rev. 345, 318–341. Web of Science CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Palusiak, M. & Krygowski, T. M. (2007). Chem. Eur. J. 13, 7996–8006. Web of Science CrossRef PubMed CAS Google Scholar
Pelivan, K., Miklos, W., van Schoonhoven, S., Koellensperger, G., Gille, L., Berger, W., Heffeter, P., Kowol, C. R. & Keppler, B. K. (2016). J. Inorg. Biochem. 160, 61–69. Web of Science CrossRef CAS PubMed Google Scholar
Quiroga, A. G. & Ranninger, C. N. (2004). Coord. Chem. Rev. 248, 119–133. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1001–1008. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tiekink, E. R. T. (2017). Coord. Chem. Rev. 345, 209–228. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yeo, C. I., Halim, S. N. A., Ng, S. W., Tan, S. L., Zukerman-Schpector, J., Ferreira, M. A. B. & Tiekink, E. R. T. (2014). Chem. Commun. 50, 5984–5986. Web of Science CSD CrossRef CAS Google Scholar
Yusof, E. N. M., Ravoof, T. B. S. A., Tiekink, E. R. T., Veerakumarasivam, A., Crouse, K. A., Tahir, M. I. M. & Ahmad, H. (2015). Int. J. Mol. Sci. 16, 11034–11054. Web of Science CAS PubMed Google Scholar
Zukerman-Schpector, J., Yeo, C. I. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 55–64. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.