research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Methyl-5-[(4-methyl­benzene)­sulfon­yl]-2H,5H-[1,3]dioxolo[4,5-f]indole: crystal structure and Hirshfeld analysis

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bLaboratório de Cristalografia, Esterodinâmica e Modelagem Molecular, Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, cDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and dCentre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 8 January 2018; accepted 14 January 2018; online 19 January 2018)

In the title indole derivative, C17H15NO4S, the fused dioxolo-indole system is essentially planar [r.m.s. deviation of the 12 fitted atoms = 0.0249 Å] and is effectively perpendicular to the appended 4-tolyl ring, forming a dihedral angle of 89.95 (6)°. Overall, the mol­ecule has the shape of the letter L. In the crystal, supra­molecular layers in the ab plane are formed via weak 4-tolyl-C—H⋯π(C6-ring of indole) and S—O⋯π(1,3-dioxole) contacts. The aforementioned inter­actions along with inter­atomic H⋯H and H⋯O contacts are all shown to make significant contributions to the calculated Hirshfeld surfaces.

1. Chemical context

Nitro­gen-based heterocycles comprise a class of compounds with significant biological importance that are crucial in organic synthesis (Trofimov et al., 2004[Trofimov, B. A., Sobenina, L. N., Demenev, A. P. & Mikhaleva, A. I. (2004). Chem. Rev. 104, 2481-2506.]). In particular, indole and oxindole derivatives continue to receive significant attention in both contexts as these residues are found in both natural products as well as in synthetic drugs (Dalpozzo, 2015[Dalpozzo, R. (2015). Chem. Soc. Rev. 44, 742-778.]). Not surprisingly, considerable effort is continually being made to develop new and efficient methods for their synthesis. Recently, the development of a useful method for the synthesis of indoles and oxindoles was described (da Silva et al., 2015[Silva, G. P. da, Ali, A., da Silva, R. C., Jiang, H. & Paixão, M. W. (2015). Chem. Commun. 51, 15110-15113.]). The protocol was based on a combination of tris­(tri­methyl­sil­yl)silane, as the hydride source, and visible light to promote intra­molecular reductive cyclization of suitable precursors. Among the compounds synthesized in this study was the title compound (I)[link], which features an indole residue N-bound to a (4-methyl­benzene)­sulfonyl, i.e. tosyl, residue and fused to a 1,3-dioxole ring at the benzene ring. Herein, the crystal and mol­ecular structures of (I)[link] are described along with an analysis of the calculated Hirshfeld surfaces.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link], Fig. 1[link], comprises two essentially planar residues, viz. 4-tolyl and the fused dioxolo-indole system, hinged at the SO2 group. The r.m.s. deviation of the five non-hydrogen atoms comprising the 1,3-dioxole ring is 0.0158 Å with the maximum deviations above and below this plane being 0.022 (14) and 0.021 (14) Å for the C1 and O2 atoms, respectively. This planarity extends over the entire dioxolo-indole residue, which exhibits an r.m.s. deviation of 0.0249 Å for the 12 constituent atoms with maximum deviations of 0.058 (2) and 0.0284 (14) Å for the C1 and C8 atoms, respectively. The dihedral angle between the residues linked at the S atom is 89.95 (6)°, i.e. indicating a perpendicular relationship consistent with the shape of the letter L. The CNO2 atoms about the S atom define a tetra­hedron with widest angle being subtended by the doubly bonded O3 and O4 atoms, i.e. O3—S—O4, is 120.32 (10)°.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

3. Supra­molecular features

The mol­ecular packing of (I)[link] features a number of weak inter­molecular contacts with the weaker ones discussed below in Analysis of the Hirshfeld surface (§4). Three specific points of contact between mol­ecules are highlighted here, i.e. within the standard distance criteria in PLATON (Spek, 2009). These are: a 4-tolyl-C11—H11⋯π(C2–C4,C7–C9) contact and a pair of S—O⋯π(1,3-dioxole) contacts, Table 1[link], implying the 1,3-dioxole ring serves as a bridge between two symmetry-related mol­ecules. These inter­actions cooperate to form a supra­molecular layer in the ab plane as shown in Fig. 2[link]a. Layers stack along the c axis with no directional inter­actions between them, Fig. 2[link]b.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the (O1,O2,C1,C2,C9) and (C2–C4,C7–C9) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯Cg2i 0.93 2.88 3.662 (2) 142
S—O3⋯Cg1i 1.42 (1) 3.77 (1) 4.9921 (12) 144 (1)
S—O4⋯Cg1ii 1.43 (1) 3.86 (1) 4.9243 (12) 132 (1)
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [x+1, -y, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Mol­ecular packing in (I)[link]: (a) view of the supra­molecular layer in the ab plane and (b) the unit-cell contents shown in projection down the a axis; one layer is highlighted in space-filling mode. The C—H⋯π and S—O⋯π contacts are shown as purple and orange dashed lines, respectively.

4. Hirshfeld surface analysis

The Hirshfeld surfaces calculated for (I)[link] were performed in accord with a recent report on a related organic mol­ecule (Zukerman-Schpector et al., 2017[Zukerman-Schpector, J., Sugiyama, F. H., Garcia, A. L. L., Correia, C. R. D., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1218-1222.]) and provide an explanation of the influence of short inter­atomic contacts upon the mol­ecular packing in the absence of conventional hydrogen bonding. The donor and acceptor of the relatively weak inter­atomic C—H⋯O inter­action, summarized in Table 2[link], are viewed as diminutive-red spots near methyl-H16C and dioxole-O1 on the Hirshfeld surfaces mapped over dnorm in Fig. 3[link]; this contact occurs in the inter­layer region along the c axis. On the Hirshfeld surfaces mapped over the electrostatic potential, Fig. 4[link], the blue and red regions are assigned to positive and negative potentials, respectively. Views of the Hirshfeld surfaces about a reference mol­ecule mapped within the shape-index property highlighting short inter­atomic H⋯H, O⋯H/H⋯O, C⋯H/H⋯C, C—H⋯π/π⋯H—C and S—O⋯π/π⋯O—S contacts, Tables 1[link] and 2[link], are highlighted in Fig. 5[link].

Table 2
Summary of short inter­atomic contacts (Å) in (I)

Contact Distance Symmetry operation
H8⋯H16C 2.23 [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z
H14⋯H16A 2.33 [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z
O1⋯H8 2.61 1 − x, y, [{1\over 2}] − z
O1⋯H16C 2.54 [{1\over 2}] + x, − [{1\over 2}] + y, z
O2⋯H16B 2.62 [{3\over 2}] − x, [{1\over 2}] − y, 1 − z
O3⋯H1B 2.63 x, − y, − [{1\over 2}] + z
C4⋯H12 2.84 1 − x, y, [{1\over 2}] − z
C9⋯H6 2.78 [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z
C9⋯H11 2.86 1 − x, y/, [{1\over 2}] − z
[Figure 3]
Figure 3
Two views of the Hirshfeld surface mapped over dnorm for (I)[link] in the range −0.039 to +1.643 au.
[Figure 4]
Figure 4
Two views of the Hirshfeld surface mapped over the electrostatic potential for (I)[link] in the range ±0.075 au.
[Figure 5]
Figure 5
Two views of the Hirshfeld surface about reference mol­ecule of (I)[link] mapped with the shape-index property highlighting (a) H⋯H, O⋯H/H⋯O and C⋯H/H⋯C contacts by sky-blue, red and yellow dashed lines, respectively, and (b) C—H⋯π/π⋯H—C contacts by red dashed, S—O⋯π and its reciprocal, i.e. π⋯O—S, contacts by black and white dashed lines, respectively.

The overall two-dimensional fingerprint plot for (I)[link] is shown in Fig. 6[link]a and those delineated into H⋯H, O⋯H/H⋯O and C⋯H/H⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are shown in Fig.6bd. All plots illustrate the influence of the short inter­atomic contacts in the crystal. The percentage contributions from the different inter­atomic contacts to the Hirshfeld surfaces are summarized in Table 3[link] and indicate that H⋯H, O⋯H/H⋯O and C⋯H/H⋯C contacts all make quite significant contributions as a result of the short inter­atomic contacts listed in Tables 1[link] and 2[link]. These inter­atomic contacts are viewed as the distribution of points with the pair of tips at de + di ∼ 2.2, 2.6 and 2.8 Å in their respective delineated fingerprint plots, Fig. 6[link]bd. The inter­molecular C—H⋯π contact involving the tolyl-C11 atom and the fused (C2–C4,C7–C9) ring is viewed as the pair of characteristic wings in the fingerprint plot delineated into C⋯H/H⋯C contact, Fig. 6[link]d. The presence of a pair of inter­molecular S—O⋯π contacts in the crystal is also indicated by small but significant contributions from C⋯O/O⋯C and O⋯O contacts to the Hirshfeld surface, Table 3[link]. The contribution from C⋯C and N⋯H/H⋯N contacts do not have a great influence on the mol­ecular packing as their inter­atomic separations are greater than sum of their respective van der Waals radii.

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)

Contact Percentage contribution
H⋯H 35.1
O⋯H/H⋯O 31.1
C⋯H/H⋯C 28.6
N⋯H/H⋯N 2.4
C⋯C 1.7
C⋯O/O⋯C 0.7
O⋯O 0.4
[Figure 6]
Figure 6
(a) The full two-dimensional fingerprint plot and fingerprint plots delineated into (b) H⋯H, (c) O⋯H/H⋯O and (d) C⋯H/H⋯C contacts for (I)[link].

5. Database survey

The N-bound tosyl and methyl group substitution pattern, flanking the central hydrogen atom, in the five-membered ring of the indole residue, as in (I)[link], has one precedent in the literature, namely, a derivative with a benzo­yloxy substituent in the indole-benzene ring, i.e. 5-benz­yloxy-3-methyl-1-tosyl-1H-indole (Pozza Silveira et al., 2013[Pozza Silveira, G., Oliver, A. G. & Noll, B. C. (2013). Acta Cryst. E69, o979.]). On the other hand, there are several more examples where a 1,3-dioxole ring has been fused to the indole-benzene ring. A closely related species to (I)[link] has two such fused ring systems linked via a C(=O)—C(=O) bridge and with each nitro­gen bound to a benzyl group, i.e. 1,2-bis­[5-benzyl-5H-(1,3)dioxolo(4,5-f)indole-6-yl]ethane (Lindsay et al., 2007[Lindsay, K. B., Ferrando, F., Christensen, K. L., Overgaard, J., Roca, T., Bennasar, M.-L. & Skrydstrup, T. (2007). J. Org. Chem. 72, 4181-4188.]); the mol­ecule has twofold symmetry. To a first approximation, the conformations of the ring systems in the cited literature structures matches that observed in (I)[link].

6. Synthesis and crystallization

The compound was prepared and characterized as described in the literature (da Silva et al., 2015[Silva, G. P. da, Ali, A., da Silva, R. C., Jiang, H. & Paixão, M. W. (2015). Chem. Commun. 51, 15110-15113.]). Irregular, colourless, crystals of (I)[link] for the X-ray study were obtained by slow evaporation from its ethanol solution.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C).

Table 4
Experimental details

Crystal data
Chemical formula C17H15NO4S
Mr 329.36
Crystal system, space group Monoclinic, C2/c
Temperature (K) 290
a, b, c (Å) 15.2673 (13), 12.5337 (9), 17.6096 (15)
β (°) 112.628 (3)
V3) 3110.3 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.35 × 0.28 × 0.17
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.709, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 27617, 3198, 2784
Rint 0.028
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.125, 1.07
No. of reflections 3198
No. of parameters 210
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.27
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2014/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), MarvinSketch (ChemAxon, 2010[ChemAxon (2010). Marvinsketch. https://www.chemaxon.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

7-Methyl-5-[(4-methylbenzene)sulfonyl]-2H,5H-[1,3]dioxolo[4,5-f]indole top
Crystal data top
C17H15NO4SF(000) = 1376
Mr = 329.36Dx = 1.407 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.2673 (13) ÅCell parameters from 9928 reflections
b = 12.5337 (9) Åθ = 2.2–26.4°
c = 17.6096 (15) ŵ = 0.23 mm1
β = 112.628 (3)°T = 290 K
V = 3110.3 (4) Å3Irregular, colourless
Z = 80.35 × 0.28 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
2784 reflections with I > 2σ(I)
φ and ω scansRint = 0.028
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 26.4°, θmin = 2.2°
Tmin = 0.709, Tmax = 0.745h = 1919
27617 measured reflectionsk = 1515
3198 independent reflectionsl = 2221
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0609P)2 + 2.5262P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3198 reflectionsΔρmax = 0.26 e Å3
210 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.63451 (17)0.0477 (2)0.44548 (14)0.0694 (7)
H1B0.58720.04170.46950.083*
H1A0.66150.11880.45650.083*
C20.71138 (13)0.08717 (16)0.41601 (11)0.0460 (4)
C30.77317 (13)0.16699 (16)0.41880 (11)0.0471 (4)
H30.81990.18990.46790.057*
C40.76150 (11)0.21227 (14)0.34255 (11)0.0398 (4)
C50.81363 (13)0.29544 (15)0.32141 (12)0.0474 (4)
C60.77434 (14)0.30697 (15)0.23940 (13)0.0511 (5)
H60.79390.35630.20970.061*
C70.68969 (11)0.17599 (13)0.26958 (10)0.0363 (4)
C80.62689 (12)0.09373 (14)0.26740 (11)0.0399 (4)
H80.57960.06980.21900.048*
C90.64139 (12)0.05175 (14)0.34288 (11)0.0414 (4)
C100.54356 (13)0.35424 (15)0.12094 (11)0.0450 (4)
C110.46506 (13)0.33127 (17)0.13887 (12)0.0513 (5)
H110.44940.26100.14500.062*
C120.41023 (14)0.41411 (19)0.14760 (13)0.0585 (5)
H120.35760.39890.16000.070*
C130.43162 (16)0.51894 (19)0.13835 (14)0.0603 (5)
C140.51076 (19)0.53963 (19)0.12083 (19)0.0789 (8)
H140.52650.61000.11490.095*
C150.56675 (18)0.45869 (18)0.11193 (18)0.0695 (7)
H150.61970.47410.10000.083*
C160.89722 (17)0.3540 (2)0.38141 (17)0.0742 (7)
H16A0.94230.30370.41610.111*
H16B0.87640.40020.41460.111*
H16C0.92650.39580.35190.111*
C170.3709 (2)0.6088 (2)0.1472 (2)0.0907 (9)
H17A0.41010.65950.18650.136*
H17B0.32410.58090.16580.136*
H17C0.34000.64320.09490.136*
N0.69912 (11)0.23364 (12)0.20445 (10)0.0447 (4)
O10.59147 (10)0.03034 (12)0.35900 (9)0.0605 (4)
O20.70666 (11)0.02948 (14)0.48058 (9)0.0708 (5)
O30.56284 (12)0.15436 (12)0.09072 (9)0.0636 (4)
O40.66542 (13)0.28779 (14)0.06197 (10)0.0718 (5)
S0.61611 (4)0.25106 (4)0.11113 (3)0.04973 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0734 (14)0.0767 (15)0.0543 (13)0.0216 (12)0.0204 (11)0.0117 (11)
C20.0420 (9)0.0550 (11)0.0375 (9)0.0013 (8)0.0116 (7)0.0063 (8)
C30.0406 (9)0.0561 (11)0.0371 (9)0.0072 (8)0.0067 (7)0.0005 (8)
C40.0341 (8)0.0407 (9)0.0423 (9)0.0017 (7)0.0121 (7)0.0019 (7)
C50.0416 (9)0.0446 (10)0.0557 (11)0.0046 (8)0.0184 (8)0.0015 (8)
C60.0528 (11)0.0455 (10)0.0605 (12)0.0022 (8)0.0281 (9)0.0077 (9)
C70.0373 (8)0.0359 (8)0.0357 (8)0.0060 (6)0.0140 (6)0.0007 (7)
C80.0372 (8)0.0404 (9)0.0374 (9)0.0008 (7)0.0092 (7)0.0037 (7)
C90.0365 (8)0.0414 (9)0.0447 (10)0.0024 (7)0.0138 (7)0.0015 (7)
C100.0489 (10)0.0457 (10)0.0380 (9)0.0053 (8)0.0139 (7)0.0037 (7)
C110.0478 (10)0.0528 (11)0.0490 (11)0.0034 (8)0.0141 (8)0.0027 (9)
C120.0447 (10)0.0735 (14)0.0561 (12)0.0056 (10)0.0179 (9)0.0034 (10)
C130.0582 (12)0.0620 (13)0.0538 (12)0.0172 (10)0.0141 (10)0.0006 (10)
C140.0844 (17)0.0455 (12)0.114 (2)0.0059 (11)0.0467 (16)0.0118 (13)
C150.0691 (14)0.0508 (12)0.104 (2)0.0064 (10)0.0505 (14)0.0160 (12)
C160.0631 (13)0.0690 (15)0.0804 (17)0.0278 (12)0.0166 (12)0.0014 (12)
C170.0891 (19)0.0856 (19)0.091 (2)0.0387 (16)0.0270 (16)0.0044 (16)
N0.0482 (8)0.0456 (8)0.0419 (8)0.0030 (7)0.0191 (7)0.0048 (6)
O10.0558 (8)0.0645 (9)0.0548 (9)0.0203 (7)0.0143 (7)0.0108 (7)
O20.0675 (9)0.0912 (12)0.0436 (8)0.0247 (9)0.0102 (7)0.0182 (8)
O30.0841 (10)0.0512 (8)0.0418 (8)0.0043 (7)0.0092 (7)0.0097 (6)
O40.0925 (12)0.0847 (11)0.0534 (9)0.0253 (10)0.0450 (9)0.0168 (8)
S0.0639 (3)0.0513 (3)0.0347 (3)0.0115 (2)0.0198 (2)0.00229 (18)
Geometric parameters (Å, º) top
C1—O21.417 (3)C10—C111.382 (3)
C1—O11.424 (3)C10—S1.7539 (19)
C1—H1B0.9700C11—C121.379 (3)
C1—H1A0.9700C11—H110.9300
C2—C31.363 (3)C12—C131.379 (3)
C2—O21.373 (2)C12—H120.9300
C2—C91.392 (3)C13—C141.382 (3)
C3—C41.404 (3)C13—C171.503 (3)
C3—H30.9300C14—C151.374 (3)
C4—C71.406 (2)C14—H140.9300
C4—C51.445 (3)C15—H150.9300
C5—C61.341 (3)C16—H16A0.9600
C5—C161.499 (3)C16—H16B0.9600
C6—N1.414 (2)C16—H16C0.9600
C6—H60.9300C17—H17A0.9600
C7—C81.398 (2)C17—H17B0.9600
C7—N1.409 (2)C17—H17C0.9600
C8—C91.366 (2)N—S1.6589 (16)
C8—H80.9300O3—S1.4264 (16)
C9—O11.374 (2)O4—S1.4245 (16)
C10—C151.381 (3)
O2—C1—O1108.90 (17)C13—C12—C11121.5 (2)
O2—C1—H1B109.9C13—C12—H12119.2
O1—C1—H1B109.9C11—C12—H12119.2
O2—C1—H1A109.9C12—C13—C14118.2 (2)
O1—C1—H1A109.9C12—C13—C17121.2 (2)
H1B—C1—H1A108.3C14—C13—C17120.6 (2)
C3—C2—O2127.80 (17)C15—C14—C13121.5 (2)
C3—C2—C9122.80 (17)C15—C14—H14119.2
O2—C2—C9109.39 (16)C13—C14—H14119.2
C2—C3—C4115.51 (16)C14—C15—C10119.2 (2)
C2—C3—H3122.2C14—C15—H15120.4
C4—C3—H3122.2C10—C15—H15120.4
C3—C4—C7120.70 (16)C5—C16—H16A109.5
C3—C4—C5131.16 (16)C5—C16—H16B109.5
C7—C4—C5108.13 (16)H16A—C16—H16B109.5
C6—C5—C4107.02 (16)C5—C16—H16C109.5
C6—C5—C16127.80 (19)H16A—C16—H16C109.5
C4—C5—C16125.17 (19)H16B—C16—H16C109.5
C5—C6—N110.52 (17)C13—C17—H17A109.5
C5—C6—H6124.7C13—C17—H17B109.5
N—C6—H6124.7H17A—C17—H17B109.5
C8—C7—C4123.30 (16)C13—C17—H17C109.5
C8—C7—N129.75 (15)H17A—C17—H17C109.5
C4—C7—N106.87 (15)H17B—C17—H17C109.5
C9—C8—C7113.86 (15)C7—N—C6107.42 (15)
C9—C8—H8123.1C7—N—S126.55 (13)
C7—C8—H8123.1C6—N—S121.92 (13)
C8—C9—O1126.47 (16)C9—O1—C1105.71 (15)
C8—C9—C2123.82 (16)C2—O2—C1106.13 (16)
O1—C9—C2109.70 (16)O4—S—O3120.32 (10)
C15—C10—C11120.45 (19)O4—S—N105.29 (10)
C15—C10—S119.21 (16)O3—S—N106.38 (8)
C11—C10—S120.33 (15)O4—S—C10108.84 (9)
C12—C11—C10119.1 (2)O3—S—C10109.32 (10)
C12—C11—H11120.5N—S—C10105.67 (8)
C10—C11—H11120.5
O2—C2—C3—C4179.98 (19)C17—C13—C14—C15179.5 (3)
C9—C2—C3—C40.3 (3)C13—C14—C15—C100.2 (4)
C2—C3—C4—C70.4 (3)C11—C10—C15—C140.1 (4)
C2—C3—C4—C5178.72 (19)S—C10—C15—C14179.0 (2)
C3—C4—C5—C6178.8 (2)C8—C7—N—C6178.99 (17)
C7—C4—C5—C60.3 (2)C4—C7—N—C62.23 (18)
C3—C4—C5—C160.3 (3)C8—C7—N—S23.7 (3)
C7—C4—C5—C16178.9 (2)C4—C7—N—S159.50 (13)
C4—C5—C6—N1.1 (2)C5—C6—N—C72.1 (2)
C16—C5—C6—N177.4 (2)C5—C6—N—S160.66 (14)
C3—C4—C7—C80.6 (3)C8—C9—O1—C1178.0 (2)
C5—C4—C7—C8178.63 (16)C2—C9—O1—C11.6 (2)
C3—C4—C7—N177.66 (16)O2—C1—O1—C93.5 (3)
C5—C4—C7—N1.60 (19)C3—C2—O2—C1176.7 (2)
C4—C7—C8—C90.2 (2)C9—C2—O2—C13.0 (2)
N—C7—C8—C9176.48 (16)O1—C1—O2—C24.0 (3)
C7—C8—C9—O1179.05 (17)C7—N—S—O4164.49 (15)
C7—C8—C9—C20.5 (3)C6—N—S—O441.24 (17)
C3—C2—C9—C80.8 (3)C7—N—S—O335.75 (17)
O2—C2—C9—C8179.44 (18)C6—N—S—O3169.99 (15)
C3—C2—C9—O1178.81 (18)C7—N—S—C1080.39 (16)
O2—C2—C9—O10.9 (2)C6—N—S—C1073.87 (16)
C15—C10—C11—C120.0 (3)C15—C10—S—O424.4 (2)
S—C10—C11—C12178.91 (15)C11—C10—S—O4156.74 (16)
C10—C11—C12—C130.4 (3)C15—C10—S—O3157.60 (19)
C11—C12—C13—C140.7 (4)C11—C10—S—O323.51 (18)
C11—C12—C13—C17179.4 (2)C15—C10—S—N88.3 (2)
C12—C13—C14—C150.6 (4)C11—C10—S—N90.61 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the (O1,O2,C1,C2,C9) and (C2–C4,C7–C9) rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11···Cg2i0.932.883.662 (2)142
S—O3···Cg1i1.42 (1)3.77 (1)4.9921 (12)144 (1)
S—O4···Cg1ii1.43 (1)3.86 (1)4.9243 (12)132 (1)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y, z1/2.
Summary of short interatomic contacts (Å) in (I) top
ContactDistanceSymmetry operation
H8···H16C2.233/2 - x, -1/2 + y, 1/2 - z
H14···H16A2.333/2 - x, 1/2 + y, 1/2 - z
O1···H82.611 - x, y, 1/2 - z
O1···H16C2.54- 1/2 + x, - 1/2 + y, z
O2···H16B2.623/2 - x, 1/2 - y, 1 - z
O3···H1B2.63x, - y, - 1/2 + z
C4···H122.841 - x, y, 1/2 - z
C9···H62.783/2 - x, 1/2 + y, 1/2 - z
C9···H112.861 - x, y/, 1/2 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I) top
ContactPercentage contribution
H···H35.1
O···H/H···O31.1
C···H/H···C28.6
N···H/H···N2.4
C···C1.7
C···O/O···C0.7
O···O0.4
 

Footnotes

Additional correspondence author, e-mail: edwardt@sunway.edu.my.

Acknowledgements

We thank Professor Regina H. A. Santos from IQSC-USP for the X-ray data collection.

Funding information

The Brazilian agency, the National Council for Scientific and Technological Development, CNPq, is gratefully acknowledged for fellowships to JZ-S (305626/2013–2) and MWP (13/02311–3). AA acknowledges CNPQ–TWAS for a scholarship.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChemAxon (2010). Marvinsketch. https://www.chemaxon.com.  Google Scholar
First citationDalpozzo, R. (2015). Chem. Soc. Rev. 44, 742–778.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLindsay, K. B., Ferrando, F., Christensen, K. L., Overgaard, J., Roca, T., Bennasar, M.-L. & Skrydstrup, T. (2007). J. Org. Chem. 72, 4181–4188.  CSD CrossRef PubMed CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationPozza Silveira, G., Oliver, A. G. & Noll, B. C. (2013). Acta Cryst. E69, o979.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, G. P. da, Ali, A., da Silva, R. C., Jiang, H. & Paixão, M. W. (2015). Chem. Commun. 51, 15110–15113.  CrossRef Google Scholar
First citationTrofimov, B. A., Sobenina, L. N., Demenev, A. P. & Mikhaleva, A. I. (2004). Chem. Rev. 104, 2481–2506.  CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZukerman-Schpector, J., Sugiyama, F. H., Garcia, A. L. L., Correia, C. R. D., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1218–1222.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds