research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a new mixed-metal coordin­ation polymer consisting of NiII piperidine-di­thio­carbamate and penta­nuclear CuI—I cluster units

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan, bResearch and Utilization Division, Japan Synchrotron Radiation Research Institute, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan, and cResearch Institute for Science and Technology, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
*Correspondence e-mail: okubo_t@chem.kindai.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 15 December 2017; accepted 12 January 2018; online 26 January 2018)

A new heterometallic CuI–NiII coordination polymer, poly[[tetra-μ3-iodido-μ2-iodido-bis­(μ3-piperidine-1-di­thio­carbamato)propio­nitrilepenta­copper(I)nickel(II)] chloro­form monosolvate], {[CuI5NiIII5(C6H10NS2)2(C3H5N)]·CHCl3}n, has been synthesized and structurally characterized. This coordination polymer consists of an NiII mononuclear unit of NiII(Pip-dtc)2 (Pip-dtc is piperidine-1-di­thio­carbamate) and a penta­nuclear copper(I) cluster unit of Cu5I5(CH3CH2CN). The NiII ion, which lies on an inversion centre, is surrounded by four S atoms in a square-planar coordination geometry while all CuI ions have distorted tetra­hedral coordination geometries. In the penta­nuclear copper(I) cluster unit, a mirror plane passes through one CuI ion and three I ions. All the S atoms in NiII(Pip-dtc) are also coordinated by the CuI ions, forming an infinite zigzag chain structure along the b-axis direction. The chains are weakly connected by solvent CHCl3 mol­ecules via Cl⋯I [3.653 (1) Å] and Cl⋯S [3.4370 (1) Å] short-contact inter­actions.

1. Chemical context

The crystal engineering of coordination polymers is one of the most attractive areas in the field of materials science because their characteristic assembled structures and electronic states bearing features of organic–inorganic hybrid materials have new chemical and/or physical properties such as catalytic activity (Yaghi et al., 2003[Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature, 423, 705-714.]), gas adsorption (Kitagawa et al., 2004[Kitagawa, S., Kitaura, R. & Noro, S.-I. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]), conductivity (Givaja et al., 2012[Givaja, G., Amo-Ochoa, P., Gómez-García, C. J. & Zamora, F. (2012). Chem. Soc. Rev. 41, 115-147.]), magnetism (Sato et al., 1996[Sato, O., Iyoda, T., Fujishima, A. & Hashimoto, K. (1996). Science, 272, 704-705.]) and optical properties (Watanabe et al., 2017[Watanabe, A., Kobayashi, A., Saitoh, E., Nagao, Y., Omagari, S., Nakanishi, T., Hasegawa, Y., Sameera, W. M. C., Yoshida, M. & Kato, M. (2017). Inorg. Chem. 56, 3005-3013.]). The design and synthesis of coordination polymers have drawn much inter­est; in particular, the establishment of a rational synthetic method for preparing heterometallic coordination polymers is important in developing the chemistry of coordination complexes because of the unique coordination networks created by the combination of several metal ions with versatile coordination geometries (Ghosh et al., 2018[Ghosh, S., Roy, S., Liu, C.-M. & Mohanta, S. (2018). Dalton Trans. 47 doi: 10.1039/c7dt04032f. Any update?]). Metal complexes with di­thio­carbamate (dtc) derivatives are some of the most useful building units to form heterometallic coordination polymers (Engelhardt et al., 1988[Engelhardt, L. M., Healy, P. C., Shephard, R. M., Skelton, B. W. & White, A. H. (1988). Inorg. Chem. 27, 2371-2373.], 1989[Engelhardt, L. M., Healy, P. C., Skelton, B. W. & White, A. H. (1989). Aust. J. Chem. 42, 885-893.]; Healy et al., 1989[Healy, P. C., Skelton, B. W. & White, A. H. (1989). J. Chem. Soc. Dalton Trans. pp. 971-976.]; Tokoro et al., 1995[Tokoro, K., Ebihara, M. & Kawamura, T. (1995). Acta Cryst. C51, 2010-2013.]; Okubo et al., 2012[Okubo, T., Tanaka, N., Anma, H., Kim, K. H., Maekawa, M. & Kuroda-Sowa, T. (2012). Polymers, 4, 1613-1626.]) because one can employ a variety of mononuclear metal complexes as building units for coordination polymers owing to the coord­ination ability of the sulfur atoms in the di­thio­carbamate complexes. In this paper, we report the synthesis and X-ray crystal structure of the title new heterometallic CuI–NiII coordination polymer.

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]) has an infinite chain structure consisting of a mononuclear NiII di­thio­carbamate unit NiII(Pip-dtc)2 (Pip–dtc = piperidine-di­thio­carbamate) and a penta­nuclear CuI cluster unit Cu5I5(CH3CH2CN). The NiII ion, which lies on an inversion centre, is surrounded by four S atoms from the dithiocarbamate ligands in a square-planar coordination geometry. The four S atoms in NiII(Pip-dtc)2 are also coordinated by the CuI ions in the CuI cluster unit, forming an infinite zigzag chain along the b-axis direction (Fig. 2[link]). In the CuI cluster unit, a mirror plane passes through one CuI ion (Cu2) and three I ions (I1, I3 and I4). The five CuI ions in the cluster create a distorted square-pyramidal structure bridged by five iodide ions, where four CuI ions [Cu1, Cu1i, Cu3 and Cu3i; symmetry code: (i) x, −y + [1\over2], z] construct the basal plane and atom Cu2 is in the apical position. Atom I3 bridges the four basal CuI ions to stabilize the plane structure, while atoms I1 and I2 each bridge the two basal CuI ions and the apical CuI ion (Cu2). Atom I4 bridges the two basal CuI ions (Cu3 and Cu3i). One propionitrile ligand is coordinated to the apical CuI ion. In this cluster, the Cu1⋯Cu2 and Cu1⋯Cu3 distances of 2.6920 (6) and 2.7883 (3) Å, respectively, are shorter than the sum of the van der Waals radii for Cu⋯Cu (2.80 Å). In order to confirm the oxidation state of the copper ions, a bond-valence-sum (BVS) calculation was performed (Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]). The estimated BVS values for atoms Cu1, Cu2 and Cu3 are 1.08, 1.10 and 1.08, respectively, indicating their monovalent oxidation states.

[Figure 1]
Figure 1
An ORTEP view of the title compound, showing the mononuclear NiII di­thio­carbamate unit NiII(Pip-dtc)2, the penta­nuclear CuI cluster unit Cu5I5(CH3CH2CN) and the chloro­form mol­ecule with 50% probability level ellipsoids. H atoms have been omitted for clarity. [Symmetry codes: (i) x, −y + [1\over2], z; (ii) −x, −y + 1, −z; (iii) x, −y + [3\over2], z.]
[Figure 2]
Figure 2
A packing diagram of the title compound, showing the one-dimensional chain structure: Cu red–brown, Ni green, I purple, S yellow, C white, N blue. H atoms and CH3Cl mol­ecules have been omitted for clarity.

3. Supra­molecular features

Fig. 3[link] shows a packing diagram of zigzag chains alternately injected. The shortest I⋯I and I⋯S separations between the chains are 4.8100 (3) and 6.6517 (3) Å, respectively, which are greater than the sums of the van der Waals radii for I⋯I (3.96 Å) and I⋯S (3.78 Å). These chains are connected by solvent CHCl3 mol­ecules via Cl⋯I [3.653 (1) Å] and Cl⋯S [3.4370 (1) Å] contacts (Fig. 4[link]), which are shorter than the sums of the van der Waals radii for Cl⋯I (3.73 Å) and Cl⋯S (3.55 Å), forming an undulating sheet parallel to (10[\overline{1}]).

[Figure 3]
Figure 3
A packing diagram of the title compound viewed along the a axis: Cu red–brown, Ni green, I purple, S yellow, C white, N blue. H atoms and CH3Cl mol­ecules have been omitted for clarity.
[Figure 4]
Figure 4
A packing diagram of the title compound, showing chains connected by weak Cl⋯S and Cl⋯I inter­actions (dashed lines). Piperidine groups of Pip-dtc ligands and H atoms have omitted for clarity.

4. Spectroscopic properties

UV–vis–NIR spectra of the mononuclear NiII di­thio­carbamate complex, NiII(Pip-dtc)2, and the title coordination polymer, 1, were acquired using a U–4100 UV/VIS/NIR Spectrophotometer (HITACHI). Fig. 5[link] shows the diffuse-reflection spectra converted from the diffusion-reflectance (R) spectra using the Kubelka–Munk function: f(R) = (1 − R)2/2R (Kubelka, 1948[Kubelka, P. (1948). J. Opt. Soc. Am. 38, 448-457.]). NiII(Pip-dtc)2 shows two small absorption bands originating from the dd transition of the NiII ion at 480 and 630 nm, as well as large absorption bands based on the charge-transfer transitions in the region of wavelengths less than 450 nm. On the other hand, 1 shows an absorption band at 680 nm, close to the wavelength (630 nm) of the dd trans­ition of NiII(Pip-dtc)2, but the absorption edge of the dd transition shifts to the NIR region because of the formation of the energy band structure.

[Figure 5]
Figure 5
Diffuse–reflection UV–vis–NIR absorption spectra of mononuclear complex Ni(Pip–dtc)2 and coordination polymer 1 (0.01 mmol) doped in MgO powder (80 mg) obtained via the Kubelka–Munk analysis of reflectance spectra.

5. Database survey

A search of the Cambridge Structural Database (version 5.38, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for heterometallic coordination polymers with transition metal dithiocarbamate complexes and bridging copper-halides gave 11 hits: four heterometallic Co–Cu coordination polymers [refcodes GIJDEI and GIJDIM (Engelhardt et al., 1988[Engelhardt, L. M., Healy, P. C., Shephard, R. M., Skelton, B. W. & White, A. H. (1988). Inorg. Chem. 27, 2371-2373.]), SATWOZ and SATWUF (Healy et al., 1989[Healy, P. C., Skelton, B. W. & White, A. H. (1989). J. Chem. Soc. Dalton Trans. pp. 971-976.])], two heterometallic Cr–Cu coordination polymers (refcodes KEBREO and KEBRIS; Engelhardt et al., 1989[Engelhardt, L. M., Healy, P. C., Skelton, B. W. & White, A. H. (1989). Aust. J. Chem. 42, 885-893.]), two heterometallic Ni–Cu coordination polymers (refcodes UZENIY and UZENOE; Okubo et al., 2012[Okubo, T., Tanaka, N., Anma, H., Kim, K. H., Maekawa, M. & Kuroda-Sowa, T. (2012). Polymers, 4, 1613-1626.]), two heterometallic Pt–Cu coordination polymers (refcodes ZENDAX and ZENDEB; Tokoro et al., 1995[Tokoro, K., Ebihara, M. & Kawamura, T. (1995). Acta Cryst. C51, 2010-2013.]), and one heterometallic Rh–Cu coordination polymer (refcode KEBRAK; Engelhardt et al., 1989[Engelhardt, L. M., Healy, P. C., Skelton, B. W. & White, A. H. (1989). Aust. J. Chem. 42, 885-893.]).

6. Synthesis and crystallization

The title compound was synthesized by the reaction of a CHCl3 solution (20 mL) of NiII(Pip-dtc)2 (0.114 g, 0.1 mmol) and a 1:1 acetone/propio­nitrile solution (20 mL) of CuI (0.042g, 0.6 mmol). The reaction mixture was filtered, and dark-orange [black in CIF?] single crystals were obtained after letting the filtered solution stand for one day at room temperature. Yield: 56.7%. Analysis calculated for C16H26Cl3Cu5I5N3NiS4: C 12.76, H 1.74, N 2.79%; found: C 12.86, H 2.02, N 2.76%.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms were located in a difference-Fourier map and then they were treated as constrained or restrained atoms.

Table 1
Experimental details

Crystal data
Chemical formula [Cu5NiI5(C6H10NS2)2(C3H5N)]·CHCl3
Mr 1505.90
Crystal system, space group Monoclinic, P21/m
Temperature (K) 100
a, b, c (Å) 11.6906 (4), 13.2597 (3), 12.6351 (4)
β (°) 112.829 (4)
V3) 1805.19 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 8.15
Crystal size (mm) 0.10 × 0.05 × 0.02
 
Data collection
Diffractometer Rigaku XtaLAB P200
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan])
Tmin, Tmax 0.547, 0.850
No. of measured, independent and observed [I > 2σ(I)] reflections 22696, 5667, 5007
Rint 0.037
(sin θ/λ)max−1) 0.734
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.048, 1.02
No. of reflections 5667
No. of parameters 192
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.37, −1.09
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and CrystalStructure (Rigaku, 2017[Rigaku (2017). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: CrystalStructure (Rigaku, 2017); software used to prepare material for publication: CrystalStructure (Rigaku, 2017).

Poly[[tetra-µ3-iodido-µ2-iodido-bis(µ3-piperidine-1-dithiocarbamato)propionitrilepentacopper(I)nickel(II)] chloroform monosolvate] top
Crystal data top
[Cu5NiI5(C6H10NS2)2(C3H5N)]·CHCl3F(000) = 1392
Mr = 1505.90Dx = 2.770 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 11.6906 (4) ÅCell parameters from 10013 reflections
b = 13.2597 (3) Åθ = 3.5–31.7°
c = 12.6351 (4) ŵ = 8.15 mm1
β = 112.829 (4)°T = 100 K
V = 1805.19 (11) Å3Block, black
Z = 20.10 × 0.05 × 0.02 mm
Data collection top
Rigaku XtaLAB P200
diffractometer
5007 reflections with I > 2σ(I)
Detector resolution: 5.811 pixels mm-1Rint = 0.037
ω scansθmax = 31.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
h = 1615
Tmin = 0.547, Tmax = 0.850k = 1917
22696 measured reflectionsl = 1817
5667 independent reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0175P)2 + 1.401P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5667 reflectionsΔρmax = 2.37 e Å3
192 parametersΔρmin = 1.09 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.07870 (3)0.35696 (2)0.22826 (3)0.01492 (6)
Cu20.06118 (4)0.2500000.40244 (4)0.01831 (9)
Cu30.17631 (3)0.36078 (2)0.09941 (3)0.01699 (6)
I10.27076 (2)0.2500000.36316 (2)0.01584 (5)
I20.07921 (2)0.41447 (2)0.31791 (2)0.01423 (4)
I30.01641 (2)0.2500000.03136 (2)0.01220 (5)
I40.37218 (2)0.2500000.04357 (2)0.01957 (5)
C10.2475 (2)0.49357 (15)0.13153 (19)0.0107 (4)
C20.4150 (2)0.50565 (19)0.32142 (19)0.0160 (4)
H2A0.4527330.4435590.3642450.019*
H2B0.3468890.5268780.3446310.019*
C30.5122 (3)0.5885 (2)0.3494 (2)0.0232 (5)
H3A0.5476690.6009740.4332270.028*
H3B0.4727160.6517520.3105790.028*
C40.6153 (2)0.5587 (2)0.3103 (2)0.0261 (6)
H4A0.6755530.6147940.3256560.031*
H4B0.6598490.4991700.3544210.031*
C50.5627 (2)0.5341 (2)0.1827 (2)0.0230 (5)
H5A0.6301650.5085200.1609110.028*
H5B0.5294640.5963900.1382490.028*
C60.4598 (2)0.4552 (2)0.1520 (2)0.0180 (5)
H6A0.4202310.4477140.0675710.022*
H6B0.4956150.3892760.1851890.022*
C70.1007 (3)0.2500000.6602 (3)0.0204 (7)
C80.1078 (4)0.2500000.7786 (3)0.0293 (9)
H80.0609 (16)0.18967 (4)0.785 (3)0.035*
C90.2415 (3)0.2500000.8654 (3)0.0208 (7)
H9A0.239 (2)0.2500000.9419 (10)0.031*
H9B0.2854 (9)0.31033 (4)0.8565 (13)0.031*
C100.2395 (3)0.7500000.5209 (3)0.0186 (7)
H100.1996100.7500000.5780170.022*
N10.36544 (17)0.48550 (15)0.19678 (16)0.0126 (4)
N20.0960 (3)0.2500000.5678 (3)0.0208 (6)
S10.13029 (5)0.51728 (4)0.18070 (5)0.01093 (10)
S20.18105 (5)0.52020 (4)0.01647 (5)0.01091 (10)
Cl10.40231 (9)0.7500000.59606 (10)0.0355 (2)
Cl20.19291 (7)0.64075 (6)0.43626 (7)0.03187 (16)
Ni10.0000000.5000000.0000000.00975 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01456 (13)0.01491 (13)0.01762 (14)0.00098 (11)0.00879 (11)0.00196 (11)
Cu20.0192 (2)0.0224 (2)0.01331 (18)0.0000.00625 (16)0.000
Cu30.01664 (14)0.01694 (13)0.01690 (14)0.00328 (11)0.00597 (11)0.00057 (11)
I10.00947 (9)0.01538 (9)0.02001 (10)0.0000.00278 (7)0.000
I20.01474 (7)0.01642 (7)0.01366 (7)0.00173 (5)0.00783 (5)0.00004 (5)
I30.01564 (10)0.00914 (8)0.01352 (9)0.0000.00751 (7)0.000
I40.01104 (10)0.01378 (9)0.03178 (12)0.0000.00600 (9)0.000
C10.0116 (10)0.0087 (9)0.0119 (9)0.0013 (7)0.0046 (8)0.0007 (7)
C20.0137 (10)0.0211 (11)0.0115 (10)0.0031 (9)0.0030 (8)0.0021 (8)
C30.0184 (12)0.0244 (13)0.0228 (13)0.0074 (10)0.0036 (10)0.0061 (10)
C40.0134 (11)0.0374 (15)0.0252 (13)0.0086 (11)0.0049 (10)0.0037 (12)
C50.0120 (11)0.0350 (14)0.0224 (12)0.0010 (10)0.0073 (9)0.0076 (11)
C60.0119 (10)0.0259 (12)0.0175 (11)0.0024 (9)0.0070 (8)0.0015 (9)
C70.0152 (15)0.0261 (17)0.0176 (16)0.0000.0038 (13)0.000
C80.0218 (18)0.050 (3)0.0166 (17)0.0000.0082 (14)0.000
C90.0230 (18)0.0214 (16)0.0178 (16)0.0000.0079 (14)0.000
C100.0164 (16)0.0209 (16)0.0188 (16)0.0000.0070 (13)0.000
N10.0090 (8)0.0164 (9)0.0125 (8)0.0003 (7)0.0043 (7)0.0020 (7)
N20.0186 (14)0.0245 (15)0.0178 (14)0.0000.0054 (11)0.000
S10.0094 (2)0.0128 (2)0.0110 (2)0.00043 (19)0.00435 (18)0.00117 (18)
S20.0106 (2)0.0120 (2)0.0101 (2)0.00024 (19)0.00394 (18)0.00100 (18)
Cl10.0190 (4)0.0285 (5)0.0436 (6)0.0000.0048 (4)0.000
Cl20.0251 (3)0.0354 (4)0.0314 (3)0.0004 (3)0.0068 (3)0.0173 (3)
Ni10.00797 (17)0.01081 (17)0.00993 (17)0.00041 (14)0.00288 (14)0.00080 (14)
Geometric parameters (Å, º) top
Cu1—S12.3505 (6)C4—H4A0.9900
Cu1—I22.6259 (3)C4—H4B0.9900
Cu1—I12.6435 (4)C5—C61.526 (4)
Cu1—I32.7001 (4)C5—H5A0.9900
Cu2—N21.968 (3)C5—H5B0.9900
Cu2—I12.6820 (5)C6—N11.476 (3)
Cu2—I22.6889 (3)C6—H6A0.9900
Cu2—I2i2.6889 (3)C6—H6B0.9900
Cu3—S22.3505 (6)C7—N21.147 (5)
Cu3—I42.5778 (4)C7—C81.466 (5)
Cu3—I22.6429 (4)C8—C91.521 (5)
Cu3—I32.7637 (4)C8—H80.9901 (10)
C1—N11.307 (3)C8—H8i0.9901 (10)
C1—S2ii1.734 (2)C9—H9A0.9800 (10)
C1—S11.739 (2)C9—H9B0.9800 (10)
C2—N11.476 (3)C9—H9Bi0.9800 (10)
C2—C31.521 (3)C10—Cl21.757 (2)
C2—H2A0.9900C10—Cl2iii1.757 (2)
C2—H2B0.9900C10—Cl11.767 (4)
C3—C41.523 (4)C10—H101.0000
C3—H3A0.9900S1—Ni12.2106 (5)
C3—H3B0.9900S2—Ni12.2219 (5)
C4—C51.521 (4)
Cu1···Cu22.6920 (5)Cu1···Cu1i2.8366 (6)
Cu1···Cu32.7883 (4)Cu3···Cu3i2.9378 (6)
S1—Cu1—I298.089 (17)S2ii—C1—S1108.58 (12)
S1—Cu1—I1114.335 (17)N1—C2—C3109.1 (2)
I2—Cu1—I1116.170 (13)N1—C2—H2A109.9
S1—Cu1—Cu2142.553 (19)C3—C2—H2A109.9
I2—Cu1—Cu260.730 (11)N1—C2—H2B109.9
I1—Cu1—Cu260.344 (12)C3—C2—H2B109.9
S1—Cu1—I3107.115 (17)H2A—C2—H2B108.3
I2—Cu1—I3116.286 (12)C2—C3—C4110.6 (2)
I1—Cu1—I3104.798 (11)C2—C3—H3A109.5
Cu2—Cu1—I3109.985 (12)C4—C3—H3A109.5
S1—Cu1—Cu399.008 (17)C2—C3—H3B109.5
I2—Cu1—Cu358.346 (10)C4—C3—H3B109.5
I1—Cu1—Cu3146.557 (14)H3A—C3—H3B108.1
Cu2—Cu1—Cu394.797 (15)C5—C4—C3110.8 (2)
I3—Cu1—Cu360.446 (10)C5—C4—H4A109.5
S1—Cu1—Cu1i154.742 (15)C3—C4—H4A109.5
I2—Cu1—Cu1i106.881 (7)C5—C4—H4B109.5
I1—Cu1—Cu1i57.554 (7)C3—C4—H4B109.5
Cu2—Cu1—Cu1i58.208 (8)H4A—C4—H4B108.1
I3—Cu1—Cu1i58.314 (7)C4—C5—C6111.8 (2)
Cu3—Cu1—Cu1i91.040 (8)C4—C5—H5A109.3
N2—Cu2—I1111.67 (9)C6—C5—H5A109.3
N2—Cu2—I2105.34 (5)C4—C5—H5B109.3
I1—Cu2—I2112.776 (11)C6—C5—H5B109.3
N2—Cu2—I2i105.34 (5)H5A—C5—H5B107.9
I1—Cu2—I2i112.776 (12)N1—C6—C5110.5 (2)
I2—Cu2—I2i108.395 (17)N1—C6—H6A109.6
N2—Cu2—Cu1144.91 (4)C5—C6—H6A109.6
I1—Cu2—Cu158.933 (12)N1—C6—H6B109.6
I2—Cu2—Cu158.418 (9)C5—C6—H6B109.6
I2i—Cu2—Cu1109.322 (16)H6A—C6—H6B108.1
N2—Cu2—Cu1i144.90 (4)N2—C7—C8179.5 (4)
I1—Cu2—Cu1i58.932 (12)C7—C8—C9111.8 (3)
I2—Cu2—Cu1i109.322 (16)C7—C8—H8105.5 (19)
I2i—Cu2—Cu1i58.419 (9)C9—C8—H8112.9 (16)
Cu1—Cu2—Cu1i63.585 (16)C7—C8—H8i105.5 (19)
S2—Cu3—I4121.711 (19)C9—C8—H8i112.9 (17)
S2—Cu3—I298.612 (17)H8—C8—H8i107.80 (19)
I4—Cu3—I2114.539 (14)C8—C9—H9A107.0 (15)
S2—Cu3—I3103.950 (17)C8—C9—H9B110.8 (8)
I4—Cu3—I3104.370 (12)H9A—C9—H9B109.44 (16)
I2—Cu3—I3113.573 (12)C8—C9—H9Bi110.8 (8)
S2—Cu3—Cu196.405 (18)H9A—C9—H9Bi109.44 (16)
I4—Cu3—Cu1141.671 (14)H9B—C9—H9Bi109.4 (2)
I2—Cu3—Cu157.751 (10)Cl2—C10—Cl2iii111.1 (2)
I3—Cu3—Cu158.198 (10)Cl2—C10—Cl1110.00 (14)
S2—Cu3—Cu3i154.073 (15)Cl2iii—C10—Cl1110.00 (14)
I4—Cu3—Cu3i55.263 (8)Cl2—C10—H10108.6
I2—Cu3—Cu3i105.626 (7)Cl2iii—C10—H10108.6
I3—Cu3—Cu3i57.894 (7)Cl1—C10—H10108.6
Cu1—Cu3—Cu3i88.961 (8)C1—N1—C2122.64 (19)
Cu1—I1—Cu1i64.893 (14)C1—N1—C6122.8 (2)
Cu1—I1—Cu260.724 (11)C2—N1—C6114.55 (18)
Cu1i—I1—Cu260.724 (11)C7—N2—Cu2171.6 (3)
Cu1—I2—Cu363.902 (10)C1—S1—Ni186.27 (7)
Cu1—I2—Cu260.851 (12)C1—S1—Cu1104.11 (7)
Cu3—I2—Cu298.341 (12)Ni1—S1—Cu191.60 (2)
Cu1—I3—Cu1i63.372 (13)C1ii—S2—Ni186.04 (8)
Cu1—I3—Cu361.356 (10)C1ii—S2—Cu3108.01 (7)
Cu1i—I3—Cu394.530 (11)Ni1—S2—Cu394.29 (2)
Cu1—I3—Cu3i94.530 (11)S1—Ni1—S1ii180.0
Cu1i—I3—Cu3i61.357 (10)S1—Ni1—S2ii79.02 (2)
Cu3—I3—Cu3i64.211 (13)S1ii—Ni1—S2ii100.98 (2)
Cu3—I4—Cu3i69.475 (15)S1—Ni1—S2100.98 (2)
N1—C1—S2ii126.40 (18)S1ii—Ni1—S279.02 (2)
N1—C1—S1125.01 (17)S2ii—Ni1—S2180.0
N1—C2—C3—C457.4 (3)C3—C2—N1—C1121.9 (2)
C2—C3—C4—C556.4 (3)C3—C2—N1—C658.3 (3)
C3—C4—C5—C653.4 (3)C5—C6—N1—C1124.8 (2)
C4—C5—C6—N151.7 (3)C5—C6—N1—C255.4 (3)
S2ii—C1—N1—C2175.50 (17)N1—C1—S1—Ni1176.18 (19)
S1—C1—N1—C26.1 (3)S2ii—C1—S1—Ni12.44 (9)
S2ii—C1—N1—C64.7 (3)N1—C1—S1—Cu185.46 (19)
S1—C1—N1—C6173.69 (18)S2ii—C1—S1—Cu193.16 (10)
Symmetry codes: (i) x, y+1/2, z; (ii) x, y+1, z; (iii) x, y+3/2, z.
 

Funding information

This work was partly supported by a Grant–in–Aid for Science Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan and PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332–0012, Japan. Part of the work was supported by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities 2014–2018, subsidy from MEXT and Kindai University.

References

First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEngelhardt, L. M., Healy, P. C., Shephard, R. M., Skelton, B. W. & White, A. H. (1988). Inorg. Chem. 27, 2371–2373.  CSD CrossRef CAS Web of Science Google Scholar
First citationEngelhardt, L. M., Healy, P. C., Skelton, B. W. & White, A. H. (1989). Aust. J. Chem. 42, 885–893.  CSD CrossRef CAS Google Scholar
First citationGhosh, S., Roy, S., Liu, C.-M. & Mohanta, S. (2018). Dalton Trans. 47 doi: 10.1039/c7dt04032f. Any update?  Google Scholar
First citationGivaja, G., Amo-Ochoa, P., Gómez-García, C. J. & Zamora, F. (2012). Chem. Soc. Rev. 41, 115–147.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHealy, P. C., Skelton, B. W. & White, A. H. (1989). J. Chem. Soc. Dalton Trans. pp. 971–976.  CSD CrossRef Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S.-I. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationKubelka, P. (1948). J. Opt. Soc. Am. 38, 448–457.  CrossRef PubMed CAS Google Scholar
First citationOkubo, T., Tanaka, N., Anma, H., Kim, K. H., Maekawa, M. & Kuroda-Sowa, T. (2012). Polymers, 4, 1613–1626.  CSD CrossRef Google Scholar
First citationRigaku (2017). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan  Google Scholar
First citationSato, O., Iyoda, T., Fujishima, A. & Hashimoto, K. (1996). Science, 272, 704–705.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTokoro, K., Ebihara, M. & Kawamura, T. (1995). Acta Cryst. C51, 2010–2013.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, A., Kobayashi, A., Saitoh, E., Nagao, Y., Omagari, S., Nakanishi, T., Hasegawa, Y., Sameera, W. M. C., Yoshida, M. & Kato, M. (2017). Inorg. Chem. 56, 3005–3013.  CrossRef CAS PubMed Google Scholar
First citationYaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature, 423, 705–714.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds