research communications
A new mononuclear neutral high-spin iron(III) complex with the different tridentate ligands 5-bromosalicylaldehyde (pyridin-2-yl)hydrazone and 5-bromosalicylaldehyde thiosemicarbazone
aSchool of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
*Correspondence e-mail: zhanglifang@cumt.edu.cn
The title neutral mononuclear complex, [1-(5-bromo-2-oxidobenzylidene)thiosemicarbazidato](4-bromo-2-{[2-(pyridin-2-yl)hydrazinylidene]methyl}phenolato)iron(III), [Fe(C8H6BrN3OS)(C12H9BrN3O)] (I), crystallizes in the monoclinic C2/c and has two different planar tridentate ligands. The central FeIII ion is coordinated to three N, two O and one S atom, forming a distorted octahedral FeN3O2S coordination geometry. In the crystal, the complex molecules are linked by N—H⋯O and N—H⋯N hydrogen bonds and π–π interactions into layers parallel to (100). Magnetic measurements show that the central FeIII ion is in the high-spin state; this is also supported by the bond distances around the FeIII ion.
Keywords: iron(III) complex; 5-bromo-salicylaldehyde-2-pyridylhydrazone; 5-bromo-salicylaldehyde-thiosemicarbazone; high-spin; magnetic property; crystal structure.
CCDC reference: 1818280
1. Chemical context
Much attention have been paid to the design and synthesis of FeIII complexes for magnetic materials owing to their interesting thermal- or light-induced spin conversion between the high-spin (HS, S = 5/2) and low-spin (LS, S = 1/2) states (Li et al., 2013; Phonsri et al., 2017; Sato et al., 2007). It is well known that the organic ligands usually play a significant role in the crystal structures and magnetic properties of metal complexes (Ni et al., 2017; Zhang et al., 2016). Up to date, many FeIII complexes with spin-crossover (SCO) behavior have been designed and synthesized through the subtle design and combination of different ligands. Among the many organic ligands, are the most common ligands for new FeIII complexes due to their convenient synthesis and regulation. Compared with homo-ligand complexes, the employment of mixed ligands provides more selection and modification strategies for new magnetic complexes. In previous reports, the ligands 5-bromo-salicylaldehyde-2-pyridylhydrazone (5-Br-Hpsal), 5-bromo-salicylaldehyde-thiosemicarbazone (5-Br-H2thsa) and their derivatives have been explored to assembly FeIII and MnIII complexes with SCO behavior (Shongwe et al., 2014). Recently, we obtained the title complex, [(C20H15N6O2SBr2)Fe] (I), using 5-Br-Hpsal and 5-Br-H2thsa ligands. Herein, we report the and magnetic property of this iron(III) complex.
2. Structural commentary
The title complex (Fig. 1) crystallizes in the monoclinic C2/c. Compound (I) is a neutral mononuclear complex with two different rigid tridentate ligands – 5-Br-psal− and 5-Br-thsa2– – which adopt a meridional coordination mode. The central FeIII ion lies almost within the plane of each ligand [give deviations] and is coordinated to three nitrogen, two oxygen and one sulfur atoms from the two tridentate 5-Br-psal− and 5-Br-thsa2– ligands, forming a distored octahedral FeN3O2S geometry. The Fe—O bond lengths are 1.943 (3) and 1.931 (3) Å, the Fe—N bond lengths range from 2.142 (3) to 2.157 (3) Å, and the Fe1—S1 bond length is 2.4093 (14) Å. All the bond lengths are normal and agree well with those in related high-spin state FeIII compounds (Li et al., 2013; Phonsri et al., 2017). The C1—S1 bond length [1.720 (4) Å] is comparable with the ordinary C—S bond length (Li & Sato, 2017), whereas the C1=N2 and C2=N3 bond distances [1.314 (5) and 1.287 (5) Å, respectively] are significantly smaller than those of C1—N1 [1.350 (5) Å] and C16—N5 [1.377 (6) Å] indicating the double-bond character. The bond angles further evidence the significantly distorted octahedral coordination geometry around the FeIII ion.
3. Supramolecular features
In the crystal, there are two independent hydrogen bonds (Table 1), which link the complex molecules into layers parallel to (100) (Fig. 2). In addition, there exist relatively strong π–π interactions between the pyridine and benzene rings of the 5-Br-psal− ligands with a shortest interatomic distance of 3.485 (3) Å (Fig. 2).
4. Magnetic properties
The magnetic susceptibilities of (I) have been measured in the temperature range 2–350 K under an applied of 2000 Oe by SQUID magnetometry. A plot of χmT versus T is presented in Fig. 3, where χm represents the molar per FeIII unit. The χmT value is 4.042 emu K mol−1 at room temperature, which is slightly smaller than the expected value of 4.375 emu K mol−1 for the single spin carrier of high-spin FeIII (S = 5/2) based on g = 2.0. The measurement of the magnetic property shows that the FeIII ion is in the high-spin state, which agrees well with the above-mentioned bond lengths around the FeIII ion. The χmT value keeps nearly constant with decreasing temperature until around 75 K, and then it decreases quickly to a minimum value of 1.12 emu K mol−1 at 2.0 K. This tendency to change of the χmT curve indicates the existence of overall weak antiferromagnetic interactions in (I). The magnetic susceptibilities in the range of 2–350 K comply well with the Curie–Weiss law with a negative Weiss constant θ = −4.28 K, and Curie constant C = 4.08 emu K mol−1, which further confirms the presence of overall intermolecular antiferromagnetic interactions between neighboring FeIII ions through intermolecular hydrogen bonds and π–π interactions in complex (I).
5. Synthesis and crystallization
All reactions were conducted in air using reagent grade solvents. The 5-Br-Hpsal and 5-Br-H2thsa ligands were synthesized by refluxing equimolar 5-bromosalicylaldehyde with thiosemicarbazone and 2-pyridylhydrazine, respectively, in an ethanol solvent. All other chemicals were purchased from the Sigma Aldrich Chemical Company and used as received. The precursors [Fe(5-Br-psal)2]Cl and Li[Fe(5-Br-thsa)2] were prepared according to literature methods (Phonsri et al., 2016). [Fe(5-Br-psal)2]Cl (0.2 mmol) and Li[Fe(5-Br-thsa)2] (0.2 mmol) were dissolved in acetonitrile (20 mL). The mixture was filtered and kept at room temperature for two days. Brown block-shaped single crystals were collected with a relatively high yield of 76%. Elemental analysis calculated for C20H15N6O2SBr2Fe: C, 38.80%; H, 2.44%; N, 13.57%; found: C, 38.72%, H, 2.38%; N, 13.62%.
6. Refinement
Crystal data, data collection and structure . The amino-H atom of 5-Br-psal− was found from the difference-Fourier map and refined isotropically. All other hydrogen atoms were placed in calculated positions with C—H = 0.88–0.95 Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C,N)].
details are summarized in Table 2Supporting information
CCDC reference: 1818280
https://doi.org/10.1107/S2056989018001263/kq2017sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018001263/kq2017Isup2.hkl
Data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[Fe(C8H6BrN3OS)(C12H9BrN3O)] | F(000) = 2440 |
Mr = 619.11 | Dx = 1.846 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 21.145 (4) Å | Cell parameters from 2456 reflections |
b = 14.738 (3) Å | θ = 3.0–26.6° |
c = 15.471 (3) Å | µ = 4.39 mm−1 |
β = 112.47 (3)° | T = 123 K |
V = 4455.2 (18) Å3 | Block, brown |
Z = 8 | 0.12 × 0.10 × 0.08 mm |
Bruker APEXII CCD area-detector diffractometer | 3514 reflections with I > 2σ(I) |
Radiation source: Rotating Anode | Rint = 0.074 |
ω scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) | h = −27→25 |
Tmin = 0.576, Tmax = 0.707 | k = −18→19 |
17937 measured reflections | l = −20→18 |
5012 independent reflections |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: mixed |
wR(F2) = 0.106 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0455P)2 + 0.2543P] where P = (Fo2 + 2Fc2)/3 |
5012 reflections | (Δ/σ)max = 0.001 |
293 parameters | Δρmax = 0.53 e Å−3 |
0 restraints | Δρmin = −0.76 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.25435 (3) | 0.91027 (4) | 0.12510 (4) | 0.01599 (15) | |
Br1 | 0.11616 (2) | 1.34761 (3) | −0.13350 (3) | 0.02748 (14) | |
Br2 | 0.56554 (3) | 0.64748 (4) | 0.14892 (4) | 0.04080 (16) | |
O1 | 0.20626 (15) | 0.96909 (19) | 0.00536 (18) | 0.0228 (7) | |
O2 | 0.33707 (15) | 0.91116 (19) | 0.1001 (2) | 0.0226 (7) | |
S1 | 0.30696 (6) | 0.87380 (7) | 0.28908 (7) | 0.0232 (3) | |
N1 | 0.32499 (18) | 0.9869 (2) | 0.4275 (2) | 0.0250 (8) | |
H1A | 0.3225 | 1.0394 | 0.4532 | 0.030* | |
H1B | 0.3446 | 0.9402 | 0.4631 | 0.030* | |
N2 | 0.27026 (18) | 1.0507 (2) | 0.2850 (2) | 0.0184 (8) | |
N3 | 0.24650 (17) | 1.0386 (2) | 0.1873 (2) | 0.0160 (7) | |
N4 | 0.26090 (17) | 0.7660 (2) | 0.1140 (2) | 0.0165 (7) | |
N5 | 0.20634 (19) | 0.7168 (2) | 0.1166 (2) | 0.0212 (8) | |
N6 | 0.15575 (18) | 0.8575 (2) | 0.1092 (2) | 0.0198 (8) | |
C1 | 0.2987 (2) | 0.9781 (3) | 0.3335 (3) | 0.0183 (9) | |
C2 | 0.2241 (2) | 1.1126 (3) | 0.1416 (3) | 0.0191 (9) | |
H2 | 0.2272 | 1.1656 | 0.1780 | 0.023* | |
C3 | 0.1945 (2) | 1.1242 (3) | 0.0406 (3) | 0.0171 (9) | |
C4 | 0.1734 (2) | 1.2118 (3) | 0.0059 (3) | 0.0190 (9) | |
H4 | 0.1792 | 1.2605 | 0.0484 | 0.023* | |
C5 | 0.1448 (2) | 1.2278 (3) | −0.0876 (3) | 0.0182 (9) | |
C6 | 0.1360 (2) | 1.1570 (3) | −0.1512 (3) | 0.0252 (10) | |
H6 | 0.1161 | 1.1686 | −0.2165 | 0.030* | |
C7 | 0.1558 (2) | 1.0713 (3) | −0.1194 (3) | 0.0246 (10) | |
H7 | 0.1490 | 1.0235 | −0.1632 | 0.030* | |
C8 | 0.1863 (2) | 1.0516 (3) | −0.0228 (3) | 0.0170 (9) | |
C9 | 0.3869 (2) | 0.8521 (3) | 0.1141 (3) | 0.0211 (10) | |
C10 | 0.4514 (2) | 0.8828 (3) | 0.1204 (3) | 0.0272 (10) | |
H10 | 0.4588 | 0.9460 | 0.1170 | 0.033* | |
C11 | 0.5042 (2) | 0.8236 (3) | 0.1311 (3) | 0.0298 (11) | |
H11 | 0.5477 | 0.8453 | 0.1361 | 0.036* | |
C12 | 0.4922 (2) | 0.7305 (3) | 0.1347 (3) | 0.0295 (11) | |
C13 | 0.4306 (2) | 0.6972 (3) | 0.1282 (3) | 0.0241 (10) | |
H13 | 0.4240 | 0.6335 | 0.1299 | 0.029* | |
C14 | 0.3763 (2) | 0.7575 (3) | 0.1191 (3) | 0.0207 (9) | |
C15 | 0.3135 (2) | 0.7189 (3) | 0.1168 (3) | 0.0202 (9) | |
H15 | 0.3101 | 0.6546 | 0.1172 | 0.024* | |
C16 | 0.1507 (2) | 0.7671 (3) | 0.1137 (3) | 0.0209 (9) | |
C17 | 0.0910 (2) | 0.7237 (3) | 0.1113 (3) | 0.0279 (11) | |
H17 | 0.0889 | 0.6595 | 0.1157 | 0.034* | |
C18 | 0.0352 (2) | 0.7776 (3) | 0.1022 (3) | 0.0315 (11) | |
H18 | −0.0060 | 0.7505 | 0.1005 | 0.038* | |
C19 | 0.0396 (2) | 0.8719 (3) | 0.0956 (3) | 0.0312 (11) | |
H19 | 0.0016 | 0.9099 | 0.0885 | 0.037* | |
C20 | 0.1007 (2) | 0.9079 (3) | 0.0996 (3) | 0.0269 (10) | |
H20 | 0.1041 | 0.9718 | 0.0953 | 0.032* | |
H5 | 0.214 (2) | 0.665 (3) | 0.140 (3) | 0.022 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0230 (3) | 0.0106 (3) | 0.0143 (3) | 0.0020 (3) | 0.0071 (3) | −0.0004 (2) |
Br1 | 0.0358 (3) | 0.0187 (2) | 0.0243 (2) | 0.0050 (2) | 0.0074 (2) | 0.00645 (19) |
Br2 | 0.0304 (3) | 0.0502 (4) | 0.0369 (3) | 0.0172 (2) | 0.0073 (2) | −0.0101 (2) |
O1 | 0.0372 (19) | 0.0142 (15) | 0.0146 (15) | 0.0049 (13) | 0.0073 (14) | 0.0016 (12) |
O2 | 0.0283 (17) | 0.0176 (15) | 0.0253 (16) | 0.0048 (14) | 0.0140 (14) | 0.0042 (13) |
S1 | 0.0350 (7) | 0.0156 (5) | 0.0160 (5) | 0.0058 (5) | 0.0063 (5) | −0.0004 (4) |
N1 | 0.037 (2) | 0.019 (2) | 0.0144 (18) | 0.0031 (17) | 0.0049 (17) | 0.0010 (15) |
N2 | 0.029 (2) | 0.0158 (18) | 0.0109 (16) | 0.0016 (15) | 0.0085 (15) | −0.0026 (14) |
N3 | 0.0220 (19) | 0.0145 (18) | 0.0129 (17) | 0.0002 (15) | 0.0082 (15) | −0.0029 (13) |
N4 | 0.0217 (19) | 0.0160 (18) | 0.0098 (16) | −0.0018 (15) | 0.0038 (14) | −0.0010 (13) |
N5 | 0.032 (2) | 0.0092 (18) | 0.0214 (19) | −0.0001 (16) | 0.0096 (17) | 0.0003 (15) |
N6 | 0.0219 (19) | 0.019 (2) | 0.0152 (18) | −0.0012 (16) | 0.0035 (15) | −0.0012 (14) |
C1 | 0.024 (2) | 0.014 (2) | 0.018 (2) | −0.0017 (18) | 0.0093 (19) | −0.0021 (16) |
C2 | 0.026 (2) | 0.013 (2) | 0.020 (2) | 0.0003 (18) | 0.0116 (19) | −0.0010 (17) |
C3 | 0.022 (2) | 0.016 (2) | 0.014 (2) | 0.0054 (18) | 0.0071 (18) | 0.0024 (16) |
C4 | 0.033 (3) | 0.011 (2) | 0.014 (2) | 0.0027 (18) | 0.0101 (19) | 0.0021 (16) |
C5 | 0.020 (2) | 0.014 (2) | 0.021 (2) | 0.0034 (17) | 0.0072 (18) | 0.0052 (17) |
C6 | 0.030 (3) | 0.029 (3) | 0.015 (2) | 0.004 (2) | 0.0070 (19) | 0.0036 (19) |
C7 | 0.034 (3) | 0.026 (3) | 0.012 (2) | 0.004 (2) | 0.0065 (19) | −0.0018 (18) |
C8 | 0.018 (2) | 0.015 (2) | 0.018 (2) | 0.0013 (17) | 0.0056 (18) | 0.0027 (16) |
C9 | 0.029 (3) | 0.021 (2) | 0.014 (2) | 0.009 (2) | 0.0096 (19) | 0.0027 (17) |
C10 | 0.031 (3) | 0.029 (3) | 0.023 (2) | −0.001 (2) | 0.011 (2) | −0.001 (2) |
C11 | 0.023 (3) | 0.040 (3) | 0.025 (2) | 0.000 (2) | 0.007 (2) | −0.003 (2) |
C12 | 0.029 (3) | 0.035 (3) | 0.024 (2) | 0.012 (2) | 0.009 (2) | −0.004 (2) |
C13 | 0.032 (3) | 0.018 (2) | 0.022 (2) | 0.004 (2) | 0.010 (2) | −0.0044 (18) |
C14 | 0.027 (2) | 0.023 (2) | 0.011 (2) | 0.0045 (19) | 0.0060 (18) | −0.0031 (17) |
C15 | 0.029 (3) | 0.012 (2) | 0.013 (2) | 0.0022 (18) | 0.0000 (18) | −0.0017 (16) |
C16 | 0.030 (2) | 0.021 (2) | 0.0089 (19) | −0.003 (2) | 0.0035 (18) | −0.0010 (16) |
C17 | 0.034 (3) | 0.028 (3) | 0.024 (2) | −0.008 (2) | 0.012 (2) | −0.006 (2) |
C18 | 0.027 (3) | 0.035 (3) | 0.030 (3) | −0.009 (2) | 0.008 (2) | −0.002 (2) |
C19 | 0.026 (3) | 0.036 (3) | 0.029 (3) | 0.004 (2) | 0.007 (2) | −0.001 (2) |
C20 | 0.029 (3) | 0.027 (2) | 0.023 (2) | 0.005 (2) | 0.009 (2) | −0.002 (2) |
Fe1—O2 | 1.931 (3) | C4—C5 | 1.359 (5) |
Fe1—O1 | 1.943 (3) | C4—H4 | 0.9500 |
Fe1—N4 | 2.142 (3) | C5—C6 | 1.396 (6) |
Fe1—N6 | 2.150 (4) | C6—C7 | 1.362 (6) |
Fe1—N3 | 2.157 (3) | C6—H6 | 0.9500 |
Fe1—S1 | 2.4093 (14) | C7—C8 | 1.412 (5) |
Br1—C5 | 1.913 (4) | C7—H7 | 0.9500 |
Br2—C12 | 1.921 (4) | C9—C10 | 1.405 (6) |
O1—C8 | 1.307 (5) | C9—C14 | 1.418 (6) |
O2—C9 | 1.318 (5) | C10—C11 | 1.376 (6) |
S1—C1 | 1.720 (4) | C10—H10 | 0.9500 |
N1—C1 | 1.350 (5) | C11—C12 | 1.399 (6) |
N1—H1A | 0.8800 | C11—H11 | 0.9500 |
N1—H1B | 0.8800 | C12—C13 | 1.361 (6) |
N2—C1 | 1.314 (5) | C13—C14 | 1.416 (6) |
N2—N3 | 1.409 (4) | C13—H13 | 0.9500 |
N3—C2 | 1.287 (5) | C14—C15 | 1.433 (6) |
N4—C15 | 1.298 (5) | C15—H15 | 0.9500 |
N4—N5 | 1.376 (5) | C16—C17 | 1.403 (6) |
N5—C16 | 1.377 (6) | C17—C18 | 1.384 (6) |
N5—H5 | 0.83 (4) | C17—H17 | 0.9500 |
N6—C20 | 1.339 (5) | C18—C19 | 1.400 (6) |
N6—C16 | 1.341 (5) | C18—H18 | 0.9500 |
C2—C3 | 1.454 (5) | C19—C20 | 1.376 (6) |
C2—H2 | 0.9500 | C19—H19 | 0.9500 |
C3—C4 | 1.403 (5) | C20—H20 | 0.9500 |
C3—C8 | 1.416 (5) | ||
O2—Fe1—O1 | 89.41 (12) | C4—C5—Br1 | 120.3 (3) |
O2—Fe1—N4 | 84.23 (12) | C6—C5—Br1 | 119.4 (3) |
O1—Fe1—N4 | 113.13 (12) | C7—C6—C5 | 119.9 (4) |
O2—Fe1—N6 | 153.25 (13) | C7—C6—H6 | 120.0 |
O1—Fe1—N6 | 85.48 (13) | C5—C6—H6 | 120.0 |
N4—Fe1—N6 | 73.81 (13) | C6—C7—C8 | 121.7 (4) |
O2—Fe1—N3 | 108.28 (13) | C6—C7—H7 | 119.2 |
O1—Fe1—N3 | 86.13 (12) | C8—C7—H7 | 119.2 |
N4—Fe1—N3 | 157.59 (12) | O1—C8—C7 | 120.1 (4) |
N6—Fe1—N3 | 97.57 (13) | O1—C8—C3 | 122.3 (4) |
O2—Fe1—S1 | 97.11 (10) | C7—C8—C3 | 117.6 (4) |
O1—Fe1—S1 | 165.00 (9) | O2—C9—C10 | 119.5 (4) |
N4—Fe1—S1 | 81.07 (9) | O2—C9—C14 | 121.7 (4) |
N6—Fe1—S1 | 94.42 (10) | C10—C9—C14 | 118.7 (4) |
N3—Fe1—S1 | 79.01 (9) | C11—C10—C9 | 121.7 (4) |
C8—O1—Fe1 | 135.9 (3) | C11—C10—H10 | 119.1 |
C9—O2—Fe1 | 133.6 (3) | C9—C10—H10 | 119.1 |
C1—S1—Fe1 | 98.35 (14) | C10—C11—C12 | 118.5 (4) |
C1—N1—H1A | 120.0 | C10—C11—H11 | 120.8 |
C1—N1—H1B | 120.0 | C12—C11—H11 | 120.8 |
H1A—N1—H1B | 120.0 | C13—C12—C11 | 122.2 (4) |
C1—N2—N3 | 114.1 (3) | C13—C12—Br2 | 119.1 (4) |
C2—N3—N2 | 112.8 (3) | C11—C12—Br2 | 118.6 (4) |
C2—N3—Fe1 | 125.0 (3) | C12—C13—C14 | 119.8 (4) |
N2—N3—Fe1 | 122.2 (2) | C12—C13—H13 | 120.1 |
C15—N4—N5 | 115.8 (4) | C14—C13—H13 | 120.1 |
C15—N4—Fe1 | 127.5 (3) | C13—C14—C9 | 119.0 (4) |
N5—N4—Fe1 | 116.1 (2) | C13—C14—C15 | 117.4 (4) |
N4—N5—C16 | 115.6 (4) | C9—C14—C15 | 123.5 (4) |
N4—N5—H5 | 118 (3) | N4—C15—C14 | 124.2 (4) |
C16—N5—H5 | 122 (3) | N4—C15—H15 | 117.9 |
C20—N6—C16 | 118.2 (4) | C14—C15—H15 | 117.9 |
C20—N6—Fe1 | 125.1 (3) | N6—C16—N5 | 116.9 (4) |
C16—N6—Fe1 | 116.6 (3) | N6—C16—C17 | 122.8 (4) |
N2—C1—N1 | 116.6 (4) | N5—C16—C17 | 120.3 (4) |
N2—C1—S1 | 126.4 (3) | C18—C17—C16 | 117.6 (4) |
N1—C1—S1 | 117.0 (3) | C18—C17—H17 | 121.2 |
N3—C2—C3 | 127.3 (4) | C16—C17—H17 | 121.2 |
N3—C2—H2 | 116.4 | C17—C18—C19 | 120.0 (4) |
C3—C2—H2 | 116.4 | C17—C18—H18 | 120.0 |
C4—C3—C8 | 119.5 (4) | C19—C18—H18 | 120.0 |
C4—C3—C2 | 117.5 (4) | C20—C19—C18 | 117.8 (4) |
C8—C3—C2 | 123.0 (4) | C20—C19—H19 | 121.1 |
C5—C4—C3 | 121.0 (4) | C18—C19—H19 | 121.1 |
C5—C4—H4 | 119.5 | N6—C20—C19 | 123.6 (5) |
C3—C4—H4 | 119.5 | N6—C20—H20 | 118.2 |
C4—C5—C6 | 120.3 (4) | C19—C20—H20 | 118.2 |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5···N2i | 0.83 (4) | 2.00 (4) | 2.825 (5) | 171 (4) |
N1—H1A···O2ii | 0.88 | 2.29 | 2.987 (4) | 136 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x, −y+2, z+1/2. |
Funding information
The work was supported by the Fundamental Research Funds for the Central Universities (No. 2015QNA24).
References
Li, Z. Y., Dai, J. W., Shiota, Y., Yoshizawa, K., Kanegawa, S. & Sato, O. (2013). Chem. Eur. J. 19, 12948–12952. CrossRef CAS PubMed Google Scholar
Li, G.-L. & Sato, O. (2017). Acta Cryst. E73, 993–995. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ni, Z.-H., Xu, L., Li, N. & Zhang, L. F. (2017). Inorg. Chim. Acta, 462, 204–208. CrossRef CAS Google Scholar
Phonsri, W., Davies, C. G., Jameson, G. N. L., Moubaraki, B. & Murray, K. S. (2016). Chem. Eur. J. 22, 1322–1333. CrossRef CAS PubMed Google Scholar
Phonsri, W., Harding, P., Murray, K. S., Moubaraki, B. & Harding, D. J. (2017). New J. Chem. 41, 13747–13753. CrossRef CAS Google Scholar
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sato, O., Tao, J. & Zhang, Y.-Z. (2007). Angew. Chem. Int. Ed. 46, 2152–2187. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shongwe, M. S., Al-Barhi, K. S., Mikuriya, M., Adams, H., Morris, M. J., Bill, E. & Molloy, K. C. (2014). Chem. Eur. J. 20, 9693–9701. CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, R., Xu, L., Ni, Z., Chen, H. & Zhang, L. (2016). Inorg. Chem. Commun. 67, 99–102. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.